1
|
Jurca AD, Galea-Holhos LB, Jurca AA, Atasie D, Petchesi CD, Severin E, Jurca CM. Wolfram Syndrome Type I Case Report and Review-Focus on Early Diagnosis and Genetic Variants. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1064. [PMID: 39064493 PMCID: PMC11278941 DOI: 10.3390/medicina60071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Wolfram syndrome type 1 (OMIM# 222300; ORPHAcode 3463) is an extremely rare autosomal recessive syndrome with a 25% recurrence risk in children. It is characterized by the presence of juvenile-onset diabetes mellitus (DM), progressive optic atrophy (OA), diabetes insipidus (DI), and sensorineural deafness (D), often referred to by the acronym DIDMOAD. It is a severe neurodegenerative disease with a life expectancy of 39 years, with death occurring due to cerebral atrophy. For a positive diagnosis, the presence of diabetes mellitus and optic nerve atrophy is sufficient. The disease occurs because of pathogenic variants in the WFS1 gene. The aim of this article is to present a case report of Wolfram Syndrome Type I, alongside a review of genetic variants, clinical manifestations, diagnosis, therapy, and long-term management. Emphasizing the importance of early diagnosis and a multidisciplinary approach, the study aims to enhance understanding and improve outcomes for patients with this complex syndrome. Materials and Methods: A case of a 28-year-old patient diagnosed with DM at the age of 6 and with progressive optic atrophy at 26 years old is presented. Molecular diagnosis revealed the presence of a heterozygous nonsense variant WFS1 c.1943G>A (p.Trp648*), and a heterozygous missense variant WFS1 c.1675G>C (p.Ala559Pro). Results: The molecular diagnosis of the patient confirmed the presence of a heterozygous nonsense variant and a heterozygous missense variant in the WFS1 gene, correlating with the clinical presentation of Wolfram syndrome type 1. Both allelic variants found in our patient have been previously described in other patients, whilst this combination has not been described before. Conclusions: This case report and review underscores the critical role of early recognition and diagnosis in Wolfram syndrome, facilitated by genetic testing. By identifying pathogenic variants in the WFS1 gene, genetic testing not only confirms diagnosis but also guides clinical management and informs genetic counseling for affected families. Timely intervention based on genetic insights can potentially reduce the progressive multisystem manifestations of the syndrome, thereby improving the quality of life and outcomes for patients.
Collapse
Affiliation(s)
- Alexandru Daniel Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
| | - Larisa Bianca Galea-Holhos
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania
| | | | - Diter Atasie
- Departament II Medical Clinic, Faculty of Medicine, University “Lucian Blaga of Sibiu”, Lucian Blaga Street 2A, 550169 Sibiu, Romania;
| | - Codruta Diana Petchesi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| | - Emilia Severin
- Genetics Department, “Carol Davila” University of Medicine and Pharmacy, 020027 Bucharest, District 2, Romania
| | - Claudia Maria Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| |
Collapse
|
2
|
Kiely C, Douglas KAA, Douglas VP, Miller JB, Lizano P. Overlap between ophthalmology and psychiatry - A narrative review focused on congenital and inherited conditions. Psychiatry Res 2024; 331:115629. [PMID: 38029629 PMCID: PMC10842794 DOI: 10.1016/j.psychres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
A number of congenital and inherited diseases present with both ocular and psychiatric features. The genetic inheritance and phenotypic variants play a key role in disease severity. Early recognition of the signs and symptoms of those disorders is critical to earlier intervention and improved prognosis. Typically, the associations between these two medical subspecialties of ophthalmology and psychiatry are poorly understood by most practitioners so we hope to provide a narrative review to improve the identification and management of these disorders. We conducted a comprehensive review of the literature detailing the diseases with ophthalmic and psychiatric overlap that were more widely represented in the literature. Herein, we describe the clinical features, pathophysiology, molecular biology, diagnostic tests, and the most recent approaches for the treatment of these diseases. Recent studies have combined technologies for ocular and brain imaging such as optical coherence tomography (OCT) and functional imaging with genetic testing to identify the genetic basis for eye-brain connections. Additional work is needed to further explore these potential biomarkers. Overall, accurate, efficient, widely distributed and non-invasive tests that can help with early recognition of these diseases will improve the management of these patients using a multidisciplinary approach.
Collapse
Affiliation(s)
- Chelsea Kiely
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States
| | - Konstantinos A A Douglas
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States
| | | | - John B Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States; Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, United States.
| |
Collapse
|
3
|
Serbis A, Rallis D, Giapros V, Galli-Tsinopoulou A, Siomou E. Wolfram Syndrome 1: A Pediatrician's and Pediatric Endocrinologist's Perspective. Int J Mol Sci 2023; 24:ijms24043690. [PMID: 36835101 PMCID: PMC9960967 DOI: 10.3390/ijms24043690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease caused by mutations in WFS1 and WFS2 genes that produce wolframin, a protein involved in endoplasmic reticulum calcium homeostasis and cellular apoptosis. Its main clinical features are diabetes insipidus (DI), early-onset non-autoimmune insulin-dependent diabetes mellitus (DM), gradual loss of vision due to optic atrophy (OA) and deafness (D), hence the acronym DIDMOAD. Several other features from different systems have been reported such as urinary tract, neurological, and psychiatric abnormalities. In addition, endocrine disorders that can appear during childhood and adolescence include primary gonadal atrophy and hypergonadotropic hypogonadism in males and menstrual cycle abnormalities in females. Further, anterior pituitary dysfunction with deficient GH and/or ACTH production have been described. Despite the lack of specific treatment for the disease and its poor life expectancy, early diagnosis and supportive care is important for timely identifying and adequately managing its progressive symptoms. The current narrative review focuses on the pathophysiology and the clinical features of the disease, with a special emphasis on its endocrine abnormalities that appear during childhood and adolescence. Further, therapeutic interventions that have been proven to be effective in the management of WS1 endocrine complications are discussed.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
- Correspondence:
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
4
|
Rossi G, Ordazzo G, Vanni NN, Castoldi V, Iannielli A, Di Silvestre D, Bellini E, Bernardo L, Giannelli SG, Luoni M, Muggeo S, Leocani L, Mauri P, Broccoli V. MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice. eLife 2023; 12:81779. [PMID: 36645345 PMCID: PMC9891717 DOI: 10.7554/elife.81779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes, and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.
Collapse
Affiliation(s)
- Greta Rossi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Gabriele Ordazzo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Niccolò N Vanni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Valerio Castoldi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Dario Di Silvestre
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Edoardo Bellini
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Bernardo
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | | | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Leocani
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - PierLuigi Mauri
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| |
Collapse
|
5
|
Barboni P, Amore G, Cascavilla ML, Battista M, Frontino G, Romagnoli M, Caporali L, Baldoli C, Gramegna LL, Sessagesimi E, Bonfanti R, Romagnoli A, Scotti R, Brambati M, Carbonelli M, Starace V, Fiorini C, Panebianco R, Parisi V, Tonon C, Bandello F, Carelli V, La Morgia C. The pattern of retinal ganglion cell loss in Wolfram syndrome is distinct from mitochondrial optic neuropathies. Am J Ophthalmol 2022; 241:206-216. [PMID: 35452662 DOI: 10.1016/j.ajo.2022.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To describe the clinical phenotype of a cohort of Wolfram syndrome (WS) patients, focusing on the pattern of optic atrophy correlated with brain MRI measurements, as compared to OPA1-associated mitochondrial optic neuropathy. DESIGN Retrospective, comparative cohort study METHODS: 25 WS patients and 33 age-matched patients affected by OPA1-related Dominant Optic Atrophy (DOA). Ophthalmological, neurological, endocrinological and MRI data from WS patients were retrospectively retrieved. Ophthalmological data were compared to OPA1-related DOA and further analyzed for age dependency dividing patients in age quartiles. In a subgroup of WS patients, we correlated the structural damage assessed by optical coherence tomography (OCT) with brain MRI morphological measurements. Visual acuity (VA), visual field mean defect (MD), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness assessed by OCT, MRI morphological measurements of anterior and posterior visual pathways. RESULTS In our cohort optic atrophy was present in 100% of WS patients. VA, MD and RNFL thickness loss were worse in WS patients with a faster decline since early age as compared to DOA patients, who displayed a more stable visual function over the years. Conversely, GCL sectors were overall thinner in DOA patients since early age compared to WS, in which GCL thickness started to decline later in life. The neuroradiological sub-analysis on 11 WS patients exhibited bilateral thinning of the anterior optic pathway, especially prechiasmatic optic nerves and optic tracts. Optic tract thinning was significantly correlated with the GCL thickness but not with RNFL parameters. CONCLUSIONS Our results showed a generally more severe and diffuse degeneration of both anterior and posterior visual pathways in WS, with fast deterioration of visual function and structural OCT parameters since early age. The pattern observed at OCT suggests that retinal ganglion cells axonal degeneration (i.e. RNFL) precedes of about a decade the cellular body atrophy (i.e. GCL). This differs substantially from DOA, in which a more stable visual function is evident with predominant early loss of GCL, indirectly supporting the lack of a primary mitochondrial dysfunction in WS.
Collapse
Affiliation(s)
- Piero Barboni
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; Studio Oculistico d'Azeglio (P.B.), Bologna, Italy.
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Battista
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Frontino
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Cristina Baldoli
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ludovica Gramegna
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Elisa Sessagesimi
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Romagnoli
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Scotti
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Vincenzo Starace
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Roberta Panebianco
- Department of Ophthalmology (R.P.), University of Catania, Catania, Italy
| | | | - Caterina Tonon
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Francesco Bandello
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
6
|
Eisenstein SA, Boodram RS, Sutphen CL, Lugar HM, Gordon BA, Marshall BA, Urano F, Fagan AM, Hershey T. Plasma Neurofilament Light Chain Levels Are Elevated in Children and Young Adults With Wolfram Syndrome. Front Neurosci 2022; 16:795317. [PMID: 35495027 PMCID: PMC9039397 DOI: 10.3389/fnins.2022.795317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Wolfram syndrome is a rare disease caused by pathogenic variants in the WFS1 gene with progressive neurodegeneration. As an easily accessible biomarker of progression of neurodegeneration has not yet been found, accurate tracking of the neurodegenerative process over time requires assessment by costly and time-consuming clinical measures and brain magnetic resonance imaging (MRI). A blood-based measure of neurodegeneration, neurofilament light chain (NfL), is relatively inexpensive and can be repeatedly measured at remote sites, standardized, and measured in individuals with MRI contraindications. To determine whether NfL levels may be of use in disease monitoring and reflect disease activity in Wolfram syndrome, plasma NfL levels were compared between children and young adults with Wolfram syndrome (n = 38) and controls composed of their siblings and parents (n = 35) and related to clinical severity and selected brain region volumes within the Wolfram group. NfL levels were higher in the Wolfram group [median (interquartile range) NfL = 11.3 (7.8-13.9) pg/mL] relative to controls [5.6 (4.5-7.4) pg/mL]. Within the Wolfram group, higher NfL levels related to worse visual acuity, color vision and smell identification, smaller brainstem and thalamic volumes, and faster annual rate of decrease in thalamic volume over time. Our findings suggest that plasma NfL levels can be a powerful tool to non-invasively assess underlying neurodegenerative processes in children, adolescents and young adults with Wolfram syndrome.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Raveena S. Boodram
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Courtney L. Sutphen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Heather M. Lugar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bess A. Marshall
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
8
|
Reduced Corneal Sensitivity With Neuronal Degeneration is a Novel Clinical Feature in Wolfram Syndrome. Am J Ophthalmol 2022; 236:63-68. [PMID: 34710353 DOI: 10.1016/j.ajo.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate corneal sensitivity and corneal nerve morphology among patients with Wolfram syndrome (WFS). DESIGN An observational clinical case series with confirmatory experiments. METHODS We included a group of 12 patients with biallelic mutations in the WFS1 gene and a control group composed of 30 individuals with type 1 diabetes (T1D). All participants (n = 42) underwent a complete ophthalmic examination, esthesiometry, and retinal nerve fiber layer assessment using optical coherence tomography. Morphologic assessment of corneal neuropathy by in vivo corneal confocal microscopy was conducted in 11 patients with WFS (both eyes) and 1 WFS patient (1 eye) as well as in 24 patients with T1D (both eyes in 6 patients and 1 eye in 18 patients). Additionally, corneas from Wfs1KO mice and their wild-type littermates were subjected to laser scanning confocal microscopy. RESULTS Corneal sensitivity was significantly reduced in patients with WFS compared with patients with T1D (4.50 cm [interquartile range, 3.50-5.50 cm] vs 6.00 cm [interquartile range, 6.00-6.00 cm]; P < 10-5). Additionally, corneal nerve fiber and branch density as well as nerve fiber length were low among patients with WFS. Corneal sensitivity correlated with macular average thickness (R = 0.6928; P = .039) and best-corrected visual acuity (R = -0.61; P = .002) in the WFS group. Similarly, Wfs1 knockout mice also presented corneal neurodegeneration changes when corneal nerve fiber density and length were measured using laser scanning confocal microscopy. CONCLUSIONS Decreased corneal sensitivity and corneal nerve degeneration are observed in WFS. Corneal sensitivity is linked with the degree of disease progression as measured by visual acuity and retinal thinning.
Collapse
|
9
|
Jagomäe T, Seppa K, Reimets R, Pastak M, Plaas M, Hickey MA, Kukker KG, Moons L, De Groef L, Vasar E, Kaasik A, Terasmaa A, Plaas M. Early Intervention and Lifelong Treatment with GLP1 Receptor Agonist Liraglutide in a Wolfram Syndrome Rat Model with an Emphasis on Visual Neurodegeneration, Sensorineural Hearing Loss and Diabetic Phenotype. Cells 2021; 10:cells10113193. [PMID: 34831417 PMCID: PMC8623088 DOI: 10.3390/cells10113193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Wolfram syndrome (WS), also known as a DIDMOAD (diabetes insipidus, early-onset diabetes mellitus, optic nerve atrophy and deafness) is a rare autosomal disorder caused by mutations in the Wolframin1 (WFS1) gene. Previous studies have revealed that glucagon-like peptide-1 receptor agonist (GLP1 RA) are effective in delaying and restoring blood glucose control in WS animal models and patients. The GLP1 RA liraglutide has also been shown to have neuroprotective properties in aged WS rats. WS is an early-onset, chronic condition. Therefore, early diagnosis and lifelong pharmacological treatment is the best solution to control disease progression. Hence, the aim of this study was to evaluate the efficacy of the long-term liraglutide treatment on the progression of WS symptoms. For this purpose, 2-month-old WS rats were treated with liraglutide up to the age of 18 months and changes in diabetes markers, visual acuity, and hearing sensitivity were monitored over the course of the treatment period. We found that treatment with liraglutide delayed the onset of diabetes and protected against vision loss in a rat model of WS. Therefore, early diagnosis and prophylactic treatment with the liraglutide may also prove to be a promising treatment option for WS patients by increasing the quality of life.
Collapse
Affiliation(s)
- Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Correspondence: (T.J.); (M.P.)
| | - Kadri Seppa
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
| | - Riin Reimets
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
| | - Marko Pastak
- Eye Clinic of Tartu University Hospital, L. Puusepa 8 Street, 50406 Tartu, Estonia;
| | - Mihkel Plaas
- Ear Clinic of Tartu University Hospital, L. Puusepa 1a Street, 50406 Tartu, Estonia;
| | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (M.A.H.); (A.K.)
| | - Kaia Grete Kukker
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
| | - Lieve Moons
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Belgium & Leuven Brain Institute, University of Leuven, Naamsestraat 61, Box 2464, 3000 Leuven, Belgium; (L.M.); (L.D.G.)
| | - Lies De Groef
- Research Group Neural Circuit Development and Regeneration, Department of Biology, Belgium & Leuven Brain Institute, University of Leuven, Naamsestraat 61, Box 2464, 3000 Leuven, Belgium; (L.M.); (L.D.G.)
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (M.A.H.); (A.K.)
| | - Anton Terasmaa
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (K.S.); (R.R.); (K.G.K.); (A.T.)
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Correspondence: (T.J.); (M.P.)
| |
Collapse
|
10
|
Leahy KE, Wright T, Grudzinska Pechhacker MK, Audo I, Tumber A, Tavares E, MacDonald H, Locke J, VandenHoven C, Zeitz C, Heon E, Buncic JR, Vincent A. Optic Atrophy and Inner Retinal Thinning in CACNA1F-related Congenital Stationary Night Blindness. Genes (Basel) 2021; 12:genes12030330. [PMID: 33668843 PMCID: PMC7996180 DOI: 10.3390/genes12030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Hemizygous pathogenic variants in CACNA1F lead to defective signal transmission from retinal photoreceptors to bipolar cells and cause incomplete congenital stationary night blindness in humans. Although the primary defect is at the terminal end of first-order neurons (photoreceptors), there is limited knowledge of higher-order neuronal changes (inner retinal) in this disorder. This study aimed to investigate inner retinal changes in CACNA1F-retinopathy by analyzing macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness and optic disc pallor in 22 subjects with molecularly confirmed CACNA1F-retinopathy. Detailed ocular phenotypic data including distance and color vision, refraction and electroretinogram (ERG) were collected. Distance vision was universally reduced (mean: 0.42 LogMAR), six had abnormal color vision and myopia was common (n = 15; mean: −6.32 diopters). Mean GCL-IPL thickness was significantly lower in patients (55.00 µm) compared to age-matched controls (n = 87; 84.57 µm; p << 0.001). The GCL-IPL thickness correlated with scotopic standard (p = 0.04) and bright-flash (p = 0.014) ERG b/a ratios and photopic b-wave amplitudes (p = 0.05). Twenty-one patients had some degree of disc pallor (bilateral in 19). Fifteen putative disease-causing, including five novel variants were identified. This study establishes macular inner retinal thinning and optic atrophy as characteristic features of CACNA1F-retinopathy, which are independent of myopia and could impact potential future treatment strategies.
Collapse
Affiliation(s)
- Kate E Leahy
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Tom Wright
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Kensington Eye Institute, Toronto, ON M5T 3A9, Canada
| | - Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Isabelle Audo
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France; (I.A.); (C.Z.)
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012 Paris, France
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Erika Tavares
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Heather MacDonald
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jeff Locke
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Cynthia VandenHoven
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
| | - Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France; (I.A.); (C.Z.)
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - J Raymond Buncic
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (K.E.L.); (M.K.G.P.); (A.T.); (H.M.); (J.L.); (C.V.); (E.H.); (J.R.B.)
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada;
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Correspondence: ; Tel.: +1-416-813-1500
| |
Collapse
|
11
|
Zmyslowska A, Stanczak M, Nowicka Z, Waszczykowska A, Baranska D, Fendler W, Borowiec M, Młynarski W. Serum microRNA as indicators of Wolfram syndrome's progression in neuroimaging studies. BMJ Open Diabetes Res Care 2020; 8:8/2/e001379. [PMID: 33132210 PMCID: PMC7607591 DOI: 10.1136/bmjdrc-2020-001379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Patients with the ultra-rare Wolfram syndrome (WFS) develop insulin-dependent diabetes and progressive neurodegeneration. The aim of the study was to quantify microRNAs (miRNAs) in sera from patients with WFS, correlate their expression with neurological imaging over time and compare miRNA levels with those observed in patients with type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS We quantified miRNA expression (Qiagen, Germany) in two groups of patients: with WFS at study entry (n=14) and after 2 years of follow-up and in 15 glycated hemoglobin-matched (p=0.72) patients with T1DM. RESULTS We observed dynamic changes in the expression of multiple miRNAs in patients with WFS parallel to disease progression and in comparison to the T1DM patients group. Among miRNAs that differed between baseline and follow-up WFS samples, the level of 5 increased over time (miR-375, miR-30d-5p, miR-30e-30, miR-145-5p and miR-193a-5p) and was inversely correlated with macular average thickness, while the expression of 2 (let-7g-5p and miR-22-3p) decreased and was directly correlated with neuroimaging indicators of neurodegeneration. CONCLUSIONS Our findings show for the first time that serum miRNAs can be used as easily accessible indicators of disease progression in patients with WFS, potentially facilitating clinical trials on mitigating neurodegeneration.
Collapse
Affiliation(s)
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, Lodz, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Corneal Abnormalities Are Novel Clinical Feature in Wolfram Syndrome. Am J Ophthalmol 2020; 217:140-151. [PMID: 32335055 DOI: 10.1016/j.ajo.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate corneal morphology among patients with Wolfram syndrome (WFS). DESIGN Comparative observational longitudinal case series of WFS patients with a laboratory approach in the WFS1 gene knockout (Wfs1KO) mouse model. METHODS A group of 12 patients with biallelic mutations in the WFS1 gene recruited from the whole country and a control group composed of 30 individuals with type 1 diabetes (T1D) were evaluated in a national reference center for monogenic diabetes. All subjects (n = 42) underwent a complete ophthalmic examination, computer videokeratography, and corneal thickness and endothelial measurements. Additionally, WFS patients (n = 9) underwent longitudinal videokeratography and Pentacam evaluation. Corneal characteristics were assessed and compared between both groups. Human and mouse corneas were subjected to immunohistochemistry to detect wolframin expression and microscopic evaluation to study corneal morphology ex vivo. RESULTS Clinical and topographic abnormalities similar to keratoconus were observed in 14 eyes (58.3%) of 8 WFS patients (66.7%). Flat keratometry, inferior-superior dioptric asymmetry, skewed radial axis, logarithm of keratoconus percentage index, index of surface variance, index of vertical asymmetry, keratoconus index, central keratoconus index, index of height asymmetry, and index of height decentration differed between WFS and T1D patients. Immunohistochemistry demonstrated wolframin expression in human and mouse corneas. Compared with Wfs1WT mice, Wfs1KO mice also presented corneal abnormalities. CONCLUSIONS Patients with WFS present a high prevalence of changes in corneal morphology compatible with the diagnosis of early stages of keratoconus. Observations in a mouse model suggest that a mutation in the WFS1 gene may be responsible for corneal abnormalities similar to keratoconus.
Collapse
|
13
|
Multiple Retinal Anomalies in Wfs1-Deficient Mice. Diagnostics (Basel) 2020; 10:diagnostics10090607. [PMID: 32824898 PMCID: PMC7555979 DOI: 10.3390/diagnostics10090607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Wolfram syndrome (WFS, OMIM: #222300) is an ultrarare autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness. It has been reported that the average retinal thickness in WFS patients decreases with the progression of the disease. Aim: To investigate retinal thickness and wolframin expression disorders in Wolfram syndrome 1 gene knockout (Wfs1KO) mice compared to their wild-type (WT) littermates. Materials and methods: Both bulbs with optic nerves of three mice Wfs1WT and three Wfs1KO were taken for the histopathological examination. A strain of knockout mice with mutation in exon 8 was used. Results: No expression of wolframin protein in the retina and neurodegeneration of the optic nerve of Wfs1KO mice as compared among Wfs1WT mice was observed. The mean central retinal thickness was thinner and the retinal thickness/longitudinal diameter ratio was significantly lower in hte Wfs1KO as compared to the Wfs1WT mice. In four (67%) eyeballs of Wfs1KO mice, intra-retinal neovessels were observed. Conclusions: Wfs1KO mice retina with mutation in exon 8 present similar clinical features as patients with WFS in the form of reduced retinal thickness and neurodegeneration of the optic nerve. The presence of proliferative retinopathy observed in Wfs1KO mice requires further investigation.
Collapse
|
14
|
Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci Rep 2020; 10:4785. [PMID: 32179840 PMCID: PMC7075867 DOI: 10.1038/s41598-020-61735-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria.
Collapse
|
15
|
Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, Esposito S. Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med 2019; 17:238. [PMID: 31337416 PMCID: PMC6651977 DOI: 10.1186/s12967-019-1993-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background Wolfram syndrome (WS), a rare genetic disorder, is considered the best prototype of endoplasmic reticulum (ER) diseases. Classical WS features are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, neurological signs, and other abnormalities. Two causative genes (WFS1 and WFS2) have been identified. The transmission of the disease takes place in an autosomal recessive mode but autosomal dominant mutations responsible for WS-related disorders have been described. Prognosis is poor, death occurs at the median age of 39 years with a major cause represented by respiratory failure as a consequence of brain stem atrophy and neurodegeneration. The aim of this narrative review is to focus on etiology, pathogenesis and natural history of WS for an adequate patient management and for the discussion of future therapeutic interventions. Main body WS requires a multidisciplinary approach in order to be successfully treated. A prompt diagnosis decreases morbidity and mortality through prevention and treatment of complications. Being a monogenic pathology, WS represents a perfect model to study the mechanisms of ER stress and how this condition leads to cell death, in comparison with other prevalent diseases in which multiple factors interact to produce the disease manifestations. WS is also an important disease prototype to identify drugs and molecules associated with ER homeostasis. Evidence indicates that specific metabolic diseases (type 1 and type 2 diabetes), neurodegenerative diseases, atherosclerosis, inflammatory pathologies and also cancer are closely related to ER dysfunction. Conclusions Therapeutic strategies in WS are based on drug repurposing (i.e., investigation of approved drugs for novel therapeutic indications) with the aim to stop the progression of the disease by reducing the endoplasmic reticulum stress. An extensive understanding of WS from pathophysiology to therapy is fundamental and more studies are necessary to better manage this devastating disease and guarantee the patients a better quality of life and longer life expectancy.
Collapse
Affiliation(s)
- Maria Teresa Pallotta
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Roberta Crispoldi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy
| | - Ciriana Orabona
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Giada Mondanelli
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Ursula Grohmann
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| |
Collapse
|