1
|
Wu Y, Gao R, Huang Q, Huang C, Wang L, Lin L, He G, Wu K, Liu X, Liu X, Liu L. Lactate supplementation after hypoglycemia alleviates cognitive dysfunction induced by recurrent non-severe hypoglycemia in diabetic mice. Exp Neurol 2024; 383:115037. [PMID: 39481512 DOI: 10.1016/j.expneurol.2024.115037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Recurrent non-severe hypoglycemia (RH) in diabetes is an independent risk factor for cognitive dysfunction. However, the mechanisms and potential therapeutic strategies remain poorly understood. In this study, we aimed to elucidate the mechanisms underlying RH-induced diabetic cognitive impairment. We investigated the effects of RH on lactate metabolism and cognitive function in male C57BL/6 J diabetic mice. After RH, diabetic mice showed decreased brain lactate and adenosine triphosphate levels, decreased expression of lactate transporter proteins MCT1 and MCT4, increased neuroapoptosis, and decreased astrocyte glycolysis in vitro. This was accompanied by increased neuronal mitochondrial reactive oxygen species levels, decreased mitochondrial COX IV activity, impaired mitochondrial morphology and function, impaired synaptic morphology, and decreased expression of synaptic plasticity proteins. Intraperitoneal lactic acid injection improved lactate transport restored neuronal mitochondrial morphology and function, upregulated synaptic plasticity proteins brain-derived neurotrophic factor and early growth response 1, enhanced synaptic ultrastructure, and ultimately improved cognitive dysfunction following RH in diabetic mice. These findings provide insights into the prevention and treatment of cognitive dysfunction in patients with diabetes mellitus caused by RH.
Collapse
Affiliation(s)
- Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Qintao Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Cuihua Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lu Lin
- 900th Hospital of the Joint Logistic Support Force, Fuzhou 350000, China
| | - Guanlian He
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
2
|
Zucchini S, Tumini S, Scaramuzza AE, Bonfanti R, Delvecchio M, Franceschi R, Iafusco D, Lenzi L, Mozzillo E, Passanisi S, Piona C, Rabbone I, Rapini N, Rigamonti A, Ripoli C, Salzano G, Savastio S, Schiaffini R, Zanfardino A, Cherubini V. Recommendations for recognizing, risk stratifying, treating, and managing children and adolescents with hypoglycemia. Front Endocrinol (Lausanne) 2024; 15:1387537. [PMID: 38894740 PMCID: PMC11183505 DOI: 10.3389/fendo.2024.1387537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
There has been continuous progress in diabetes management over the last few decades, not least due to the widespread dissemination of continuous glucose monitoring (CGM) and automated insulin delivery systems. These technological advances have radically changed the daily lives of people living with diabetes, improving the quality of life of both children and their families. Despite this, hypoglycemia remains the primary side-effect of insulin therapy. Based on a systematic review of the available scientific evidence, this paper aims to provide evidence-based recommendations for recognizing, risk stratifying, treating, and managing patients with hypoglycemia. The objective of these recommendations is to unify the behavior of pediatric diabetologists with respect to the timely recognition and prevention of hypoglycemic episodes and the correct treatment of hypoglycemia, especially in patients using CGM or advanced hybrid closed-loop systems. All authors have long experience in the specialty and are members of the Italian Society of Pediatric Endocrinology and Diabetology. The goal of treating hypoglycemia is to raise blood glucose above 70 mg/dL (3.9 mmol/L) and to prevent further decreases. Oral glucose at a dose of 0.3 g/kg (0.1 g/kg for children using "smart pumps" or hybrid closed loop systems in automated mode) is the preferred treatment for the conscious individual with blood glucose <70 mg/dL (3.9 mmol/L), although any form of carbohydrate (e.g., sucrose, which consists of glucose and fructose, or honey, sugary soft drinks, or fruit juice) containing glucose may be used. Using automatic insulin delivery systems, the oral glucose dose can be decreased to 0.1 g/kg. Practical flow charts are included to aid clinical decision-making. Although representing the official position of the Italian Society of Pediatric Endocrinology and Diabetology (ISPED), these guidelines are applicable to the global audience and are especially pertinent in the era of CGM and other advanced technologies.
Collapse
Affiliation(s)
- Stefano Zucchini
- Study Group of Diabetology of the Italian Society for Pediatric Endocrinology and Diabetes (I.S.P.E.D.,) University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Tumini
- Department of Maternal and Child Health, UOSD Regional Center of Pediatric Diabetology, Annunziata Hospital, Chieti, Italy
| | - Andrea Enzo Scaramuzza
- Division of Pediatrics, Pediatric Diabetes, Endocrinology and Nutrition, Azienda Socio Sanitaria Territoriale (ASST) Cremona, Cremona, Italy
| | - Riccardo Bonfanti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Franceschi
- Department of Pediatrics, S. Chiara Hospital of Trento, APSS, Trento, Italy
| | - Dario Iafusco
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Lorenzo Lenzi
- Diabetology Unit, Pediatric Department, Anna Meyer Children’s Hospital, Florence, Italy
| | - Enza Mozzillo
- Section of Pediatrics, Regional Center of Pediatric Diabetes, University Federico II, Naples, Italy
| | - Stefano Passanisi
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Novella Rapini
- Diabetes Unit, Bambino Gesú Childrens’ Hospital, Rome, Italy
| | - Andrea Rigamonti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Carlo Ripoli
- Pediatric Diabetology Unit, Department of Pediatrics, ASL 8 Cagliari, Cagliari, Italy
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Silvia Savastio
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Angela Zanfardino
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Valentino Cherubini
- Department of Women’s and Children’s Health, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, ‘Salesi Hospital’, Ancona, Italy
| |
Collapse
|
3
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Selvin E, Stanton RC, Gabbay RA. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S111-S125. [PMID: 38078586 PMCID: PMC10725808 DOI: 10.2337/dc24-s006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
4
|
Gitsi E, Livadas S, Angelopoulos N, Paparodis RD, Raftopoulou M, Argyrakopoulou G. A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus. Nutrients 2023; 15:4897. [PMID: 38068755 PMCID: PMC10707799 DOI: 10.3390/nu15234897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Achieving optimal glucose control in individuals with type 1 diabetes (T1DM) continues to pose a significant challenge. While continuous insulin infusion systems have shown promise as an alternative to conventional insulin therapy, there remains a crucial need for greater awareness regarding the necessary adaptations for various special circumstances. Nutritional choices play an essential role in the efficacy of diabetes management and overall health status for patients with T1DM. Factors such as effective carbohydrate counting, assessment of the macronutrient composition of meals, and comprehending the concept of the glycemic index of foods are paramount in making informed pre-meal adjustments when utilizing insulin pumps. Furthermore, the ability to handle such situations as physical exercise, illness, pregnancy, and lactation by making appropriate adjustments in nutrition and pump settings should be cultivated within the patient-practitioner relationship. This review aims to provide healthcare practitioners with practical guidance on optimizing care for individuals living with T1DM. It includes recommendations on carbohydrate counting, managing mixed meals and the glycemic index, addressing exercise-related challenges, coping with illness, and managing nutritional needs during pregnancy and lactation. Additionally, considerations relating to closed-loop systems with regard to nutrition are addressed. By implementing these strategies, healthcare providers can better equip themselves to support individuals with T1DM in achieving improved diabetes management and enhanced quality of life.
Collapse
Affiliation(s)
- Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125 Athens, Greece; (E.G.); (M.R.)
| | | | | | - Rodis D. Paparodis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Marina Raftopoulou
- Diabetes and Obesity Unit, Athens Medical Center, 15125 Athens, Greece; (E.G.); (M.R.)
| | | |
Collapse
|
5
|
Coutant R, Bismuth E, Bonnemaison E, Dalla-Vale F, Morinais P, Perrard M, Trely J, Faure N, Bouhours-Nouet N, Levaillant L, Farret A, Storey C, Donzeau A, Poidvin A, Amsellem-Jager J, Place J, Quemener E, Hamel JF, Breton MD, Tubiana-Rufi N, Renard E. Hybrid Closed Loop Overcomes the Impact of Missed or Suboptimal Meal Boluses on Glucose Control in Children with Type 1 Diabetes Compared to Sensor-Augmented Pump Therapy. Diabetes Technol Ther 2023. [PMID: 36927054 DOI: 10.1089/dia.2022.0518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Background: It is unclear whether hybrid closed-loop (HCL) therapy attenuates the metabolic impact of missed or suboptimal meal insulin bolus compared with sensor-augmented pump (SAP) therapy in children with type 1 diabetes in free-living conditions. Methods: This is an ancillary study from a multicenter randomized controlled trial that compared 24/7 HCL with evening and night (E/N) HCL for 36 weeks in children between 6 and 12 years old. In the present study, the 60 children from the E/N arm underwent a SAP phase, an E/N HCL for 18 weeks, then a 24/7 phase for 18 weeks, extended for 36 more weeks. The last 28-30 days of each of the four phases were analyzed according to meal bolus management (cumulated 6817 days). The primary endpoint was the percentage of time that the sensor glucose was in the target range (TIR, 70-180 mg/dL) according to the number of missed boluses per day. Findings: TIR was 54% ± 10% with SAP, 63% ± 7% with E/N HCL, and steadily 67% ± 7% with 24/7 HCL. From the SAP phase to 72 weeks of HCL, the percentage of days with at least one missed meal bolus increased from 12% to 22%. Estimated marginal (EM) mean TIR when no bolus was missed was 54% (95% confidence intervals [CI] 53-56) in SAP and it was 13% higher (95% CI 11-15) in the 24/7 HCL phase. EM mean TIR with 1 and ≥2 missed boluses/day was 49.5% (95% CI 46-52) and 45% (95% CI 39-51) in SAP, and it was 15% (95% CI 14-16) and 17% higher (95% CI 6-28), respectively, in the 24/7 HCL phase (P < 0.05 for all comparisons vs. SAP). Interpretation: HCL persistently improves glycemic control compared with SAP, even in case of meal bolus omission. ClinicalTrials.gov (NCT03739099).
Collapse
Affiliation(s)
- Régis Coutant
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Elise Bismuth
- Department of Pediatric Endocrinology and Diabetology, Robert Debré University Hospital, University of Paris, Paris, France
| | | | - Fabienne Dalla-Vale
- Department of Pediatrics, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France
| | - Paul Morinais
- School of Medicine, Angers University Hospital, Angers, France
| | - Maelys Perrard
- School of Medicine, Angers University Hospital, Angers, France
| | - Jeanne Trely
- School of Medicine, Angers University Hospital, Angers, France
| | - Nathalie Faure
- Department of Pediatrics, Tours University Hospital, Tours, France
| | - Natacha Bouhours-Nouet
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Lucie Levaillant
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Anne Farret
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Caroline Storey
- Department of Pediatric Endocrinology and Diabetology, Robert Debré University Hospital, University of Paris, Paris, France
| | - Aurélie Donzeau
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Amélie Poidvin
- Department of Pediatric Endocrinology and Diabetology, Robert Debré University Hospital, University of Paris, Paris, France
| | - Jessica Amsellem-Jager
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Jérôme Place
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Quemener
- Department of Pediatric Endocrinology, Diabetology, Angers University Hospital, Angers, France
| | - Jean François Hamel
- Department of Biostatistics and Methodology, Angers University Hospital, Angers, France
| | - Marc D Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Nadia Tubiana-Rufi
- Department of Pediatric Endocrinology and Diabetology, Robert Debré University Hospital, University of Paris, Paris, France
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- INSERM Clinical Investigation Centre 1411, Montpellier, France
| |
Collapse
|
6
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA. 6. Glycemic Targets: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S97-S110. [PMID: 36507646 PMCID: PMC9810469 DOI: 10.2337/dc23-s006] [Citation(s) in RCA: 278] [Impact Index Per Article: 278.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
7
|
Abraham MB, Karges B, Dovc K, Naranjo D, Arbelaez AM, Mbogo J, Javelikar G, Jones TW, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1322-1340. [PMID: 36537534 PMCID: PMC10107518 DOI: 10.1111/pedi.13443] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mary B Abraham
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Naranjo
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joyce Mbogo
- Department of Pediatric and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Ganesh Javelikar
- Department of Endocrinology and Diabetes, Max Super Speciality Hospital, New Delhi, India
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Farid H Mahmud
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Urbanová J, Frier BM, Taniwall A, Brožová K, Malinovská J, Chandel A, Brož J. Optimal Carbohydrate Dose for Treatment of Nonsevere Hypoglycemia in Insulin-Treated Patients With Diabetes: A Narrative Review. Can J Diabetes 2022; 46:743-749.e4. [PMID: 35995674 DOI: 10.1016/j.jcjd.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/03/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
Nonsevere hypoglycemia in people with diabetes is usually treated with rapid-acting carbohydrate, of which glucose is the most suitable form. A quantity of 15 g is recommended and repeated after 15 min if hypoglycemia persists. This recommendation has not changed for several years despite the introduction of continuous glucose monitoring, newer and more flexible insulin regimens and improved insulin delivery. The present review has examined published studies that have explored how effectively defined amounts of carbohydrate treat nonsevere hypoglycemia in adults with insulin-treated diabetes. For most nonsevere episodes of hypoglycemia, the optimal treatment is 15 to 20 g of oral glucose. However, this dose may not be appropriate with many current insulins and insulin pump therapy, where doses of glucose may have to be individualized, based on body weight or type of insulin delivery system. Current guidelines on hypoglycemia treatment for newer glucose-lowering therapies may require re-evaluation.
Collapse
Affiliation(s)
- Jana Urbanová
- Center for Research in Diabetes, Metabolism and Nutrition, Department of Internal Medicine Faculty, Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Brian M Frier
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arian Taniwall
- Department of Pediatric Neurology, Thomayer University Hospital, Prague, Czech Republic
| | - Klára Brožová
- Department of Pediatric Neurology, Thomayer University Hospital, Prague, Czech Republic
| | - Jana Malinovská
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Aviral Chandel
- Department of Pediatric Neurology, Thomayer University Hospital, Prague, Czech Republic
| | - Jan Brož
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, Chandrasekaran S, DeFronzo RA, Einhorn D, Galindo RJ, Gardner TW, Garg R, Garvey WT, Hirsch IB, Hurley DL, Izuora K, Kosiborod M, Olson D, Patel SB, Pop-Busui R, Sadhu AR, Samson SL, Stec C, Tamborlane WV, Tuttle KR, Twining C, Vella A, Vellanki P, Weber SL. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract 2022; 28:923-1049. [PMID: 35963508 PMCID: PMC10200071 DOI: 10.1016/j.eprac.2022.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this clinical practice guideline is to provide updated and new evidence-based recommendations for the comprehensive care of persons with diabetes mellitus to clinicians, diabetes-care teams, other health care professionals and stakeholders, and individuals with diabetes and their caregivers. METHODS The American Association of Clinical Endocrinology selected a task force of medical experts and staff who updated and assessed clinical questions and recommendations from the prior 2015 version of this guideline and conducted literature searches for relevant scientific papers published from January 1, 2015, through May 15, 2022. Selected studies from results of literature searches composed the evidence base to update 2015 recommendations as well as to develop new recommendations based on review of clinical evidence, current practice, expertise, and consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RESULTS This guideline includes 170 updated and new evidence-based clinical practice recommendations for the comprehensive care of persons with diabetes. Recommendations are divided into four sections: (1) screening, diagnosis, glycemic targets, and glycemic monitoring; (2) comorbidities and complications, including obesity and management with lifestyle, nutrition, and bariatric surgery, hypertension, dyslipidemia, retinopathy, neuropathy, diabetic kidney disease, and cardiovascular disease; (3) management of prediabetes, type 2 diabetes with antihyperglycemic pharmacotherapy and glycemic targets, type 1 diabetes with insulin therapy, hypoglycemia, hospitalized persons, and women with diabetes in pregnancy; (4) education and new topics regarding diabetes and infertility, nutritional supplements, secondary diabetes, social determinants of health, and virtual care, as well as updated recommendations on cancer risk, nonpharmacologic components of pediatric care plans, depression, education and team approach, occupational risk, role of sleep medicine, and vaccinations in persons with diabetes. CONCLUSIONS This updated clinical practice guideline provides evidence-based recommendations to assist with person-centered, team-based clinical decision-making to improve the care of persons with diabetes mellitus.
Collapse
Affiliation(s)
| | | | - S Sethu Reddy
- Central Michigan University, Mount Pleasant, Michigan
| | | | | | | | | | | | - Daniel Einhorn
- Scripps Whittier Diabetes Institute, La Jolla, California
| | | | | | - Rajesh Garg
- Lundquist Institute/Harbor-UCLA Medical Center, Torrance, California
| | | | | | | | | | | | - Darin Olson
- Colorado Mountain Medical, LLC, Avon, Colorado
| | | | | | - Archana R Sadhu
- Houston Methodist; Weill Cornell Medicine; Texas A&M College of Medicine; Houston, Texas
| | | | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | | | - Katherine R Tuttle
- University of Washington and Providence Health Care, Seattle and Spokane, Washington
| | | | | | | | - Sandra L Weber
- University of South Carolina School of Medicine-Greenville, Prisma Health System, Greenville, South Carolina
| |
Collapse
|
10
|
Evaluation of the Efficacy of a Hypoglycemia Protocol to Treat Severe Hypoglycemia. CLIN NURSE SPEC 2022; 36:196-203. [PMID: 35714322 DOI: 10.1097/nur.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this quality improvement project was to evaluate the efficacy of the facility's Hypoglycemia Protocol when treating severe hypoglycemia (defined as blood glucose < 50 mg/dL). DESCRIPTION The diabetes clinical nurse specialists conducted a retrospective chart review of diabetic inpatients with severe hypoglycemia who were treated per the Hypoglycemia Protocol from October 1, 2017, through April 30, 2019. The primary outcome was achievement of euglycemia (defined as blood glucose ≥ 80 mg/dL) 15 to 30 minutes post treatment with either oral carbohydrates or intravenous dextrose. OUTCOME Two hundred twenty-two patients received treatment with oral carbohydrates versus 120 patients who received intravenous dextrose. Fifty patients receiving oral carbohydrates versus 106 patients receiving intravenous dextrose achieved euglycemia after 1 treatment. Compared with treatment with intravenous dextrose, the odds ratio of the rise in blood glucose to 80 mg/dL or greater within 15 to 30 minutes post treatment for a patient given oral carbohydrate was decreased by 97.2%. CONCLUSION Intravenous dextrose was more efficacious than oral carbohydrate treatment in patients with diabetes experiencing severe hypoglycemia. In response, the Hypoglycemia Protocol was revised to increase oral carbohydrate treatment for severe hypoglycemia and to expedite escalation from oral to intravenous treatment.
Collapse
|
11
|
Jackson S, Creo A, Al Nofal A. Management of Type 1 Diabetes in Children in the Outpatient Setting. Pediatr Rev 2022; 43:160-170. [PMID: 35229106 DOI: 10.1542/pir.2020-001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sarah Jackson
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine
| | - Ana Creo
- Division of Pediatric Endocrinology and Metabolism and Division of Endocrinology, Mayo Clinic, Rochester, MN
| | - Alaa Al Nofal
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| |
Collapse
|
12
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
13
|
Grassi B, Onetto MT, Zapata Y, Jofré P, Echeverría G. Lower versus standard sucrose dose for treating hypoglycemia in patients with type 1 diabetes mellitus in therapy with predictive low glucose suspend (PLGS) augmented insulin pumps: A randomized crossover trial in Santiago, Chile. Diabetes Metab Syndr 2021; 15:695-701. [PMID: 33813244 DOI: 10.1016/j.dsx.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Recommended hypoglycemia treatment in adults with T1D consists of 15 g of rapid absorption carbohydrates. We aimed to evaluate the response to fewer carbohydrates for treating hypoglycemia in patients with T1D on insulin pumps with predictive suspension technology (PLGS). METHODS T1D patients on insulin pumps with PLGS were randomized to receive 10 or 15 g of sucrose per hypoglycemia for two weeks (S10 and S15 groups, respectively) when capillary blood glucose (BG) was <70 mg/dL, with crossover after two weeks. Evolution of capillary BG, active insulin, and suspension time were assessed. RESULTS 59 hypoglycemic episodes were analyzed, 33 in S10 and 26 in S15. Baseline BG in S10 was 54.3 ± 7.7 mg/dL versus 56.9 ± 8.8 in S15 (p = 0,239). Active insulin, present in 85% of the episodes, and PLGS suspension time were similar between groups. BG at 15 min was 77 mg/dL in S10 and 95 mg/dL in S15 (p = 0.0007). In S10, 21% of the episodes required to repeat the treatment after 15 min compared with none on S15, with a RR of 0,79 (95% CI 0.66, 0.940, p = 0,014) for successfully treating the episode. Sensor glucose was significantly different from BG at the moment of the hypoglycemia and control 15 min after treatment. No severe hypoglycemia and no rebound hyperglycemia occurred in neither group. CONCLUSIONS A hypoglycemia treatment protocol with a lower dose of sucrose might be insufficient despite PLGS technology. Our data suggest that standard doses of sucrose should still be recommended.
Collapse
Affiliation(s)
- Bruno Grassi
- Departament of Nutrition, Diabetes and Metabolism, School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - María Teresa Onetto
- Departament of Nutrition, Diabetes and Metabolism, School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yazmín Zapata
- Departament of Nutrition, Diabetes and Metabolism, School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Jofré
- Departament of Nutrition, Diabetes and Metabolism, School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guadalupe Echeverría
- Departament of Nutrition, Diabetes and Metabolism, School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile; Center of Molecular Nutrition and Chronic Diseases. School of Medicine. Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
15
|
Moser O, Riddell MC, Eckstein ML, Adolfsson P, Rabasa-Lhoret R, van den Boom L, Gillard P, Nørgaard K, Oliver NS, Zaharieva DP, Battelino T, de Beaufort C, Bergenstal RM, Buckingham B, Cengiz E, Deeb A, Heise T, Heller S, Kowalski AJ, Leelarathna L, Mathieu C, Stettler C, Tauschmann M, Thabit H, Wilmot EG, Sourij H, Smart CE, Jacobs PG, Bracken RM, Mader JK. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020; 63:2501-2520. [PMID: 33047169 DOI: 10.1007/s00125-020-05263-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (i.e. before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria.
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany.
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Max L Eckstein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Peter Adolfsson
- Department of Pediatrics, The Hospital of Halland, Kungsbacka, Sweden
- Sahlgrenska Academy at University of Gothenburg, Institution of Clinical Sciences, Gothenburg, Sweden
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Endocrinology Division Centre Hospitalier Universitaire de Montréal, Montréal, QC, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Centre, Montréal, QC, Canada
| | | | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Nick S Oliver
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, London, UK
| | - Dessi P Zaharieva
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, USA
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Carine de Beaufort
- Department of Pediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
- Department of Pediatrics, Free University Brussels (VUB), Brussels, Belgium
| | | | - Bruce Buckingham
- Department of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA, USA
| | - Eda Cengiz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Bahçeşehir Üniversitesi, Istanbul, Turkey
| | - Asma Deeb
- Paediatric Endocrinology Division, Shaikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | | | - Simon Heller
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hood Thabit
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma G Wilmot
- Diabetes Department, Royal Derby Hospital, University Hospitals of Derby and Burton NHSFT, Derby, UK
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Carmel E Smart
- School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Peter G Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| | - Julia K Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| |
Collapse
|
16
|
Moser O, Riddell MC, Eckstein ML, Adolfsson P, Rabasa‐Lhoret R, van den Boom L, Gillard P, Nørgaard K, Oliver NS, Zaharieva DP, Battelino T, de Beaufort C, Bergenstal RM, Buckingham B, Cengiz E, Deeb A, Heise T, Heller S, Kowalski AJ, Leelarathna L, Mathieu C, Stettler C, Tauschmann M, Thabit H, Wilmot EG, Sourij H, Smart CE, Jacobs PG, Bracken RM, Mader JK. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes 2020; 21:1375-1393. [PMID: 33047481 PMCID: PMC7702152 DOI: 10.1111/pedi.13105] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes.
Collapse
Affiliation(s)
- Othmar Moser
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of BayreuthBayreuthGermany
| | - Michael C. Riddell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Max L. Eckstein
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| | - Peter Adolfsson
- Department of PediatricsThe Hospital of HallandKungsbackaSweden
- Sahlgrenska Academy at University of GothenburgInstitution of Clinical SciencesGothenburgSweden
| | - Rémi Rabasa‐Lhoret
- Institut de recherches Cliniques de MontréalMontréalQCCanada
- Endocrinology division Centre Hospitalier Universitaire de MontréalMontréalQCCanada
- Nutrition Department, Faculty of MedicineUniversité de MontréalMontréalQCCanada
- Montreal Diabetes Research CentreMontréalQCCanada
| | | | - Pieter Gillard
- Department of EndocrinologyUniversity Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Kirsten Nørgaard
- Steno Diabetes Center CopenhagenUniversity of CopenhagenCopenhagenDenmark
| | - Nick S. Oliver
- Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial CollegeLondonLondonUK
| | - Dessi P. Zaharieva
- Department of Pediatric Endocrinology and DiabetesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC ‐ University Children’s HospitalUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Carine de Beaufort
- Department of Pediatric Diabetes and EndocrinologyCentre Hospitalier LuxembourgLuxembourgLuxembourg
- Department of Pediatrics, Free University Brussels (VUB)BrusselsBelgium
| | | | - Bruce Buckingham
- Department of Pediatric Endocrinology and DiabetesStanford University School of MedicineStanfordCaliforniaUSA
| | - Eda Cengiz
- Department of Pediatrics, Yale School of MedicineNew HavenConnecticutUSA
- Bahçeşehir Üniversitesi, IstanbulTurkey
| | - Asma Deeb
- Paediatric Endocrinology DivisionShaikh Shakhbout Medical CityAbu DhabiUnited Arab Emirates
| | | | - Simon Heller
- Department of Oncology & Metabolism, The Medical SchoolUniversity of SheffieldSheffieldUK
- Sheffield Teaching Hospitals NHS Foundation Trust, SheffieldUK
| | | | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester University NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Chantal Mathieu
- Department of EndocrinologyUniversity Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Martin Tauschmann
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Hood Thabit
- Manchester Diabetes Centre, Manchester University NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
| | - Emma G. Wilmot
- Diabetes Department, Royal Derby Hospital, University Hospitals of Derby and Burton NHSFTDerbyUK
- Faculty of Medicine & Health SciencesUniversity of NottinghamNottinghamUK
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| | - Carmel E. Smart
- School of Health Sciences, University of NewcastleCallaghanNew South WalesAustralia
- Department of Paediatric Diabetes and EndocrinologyJohn Hunter Children’s HospitalNewcastleNew South WalesAustralia
| | - Peter G. Jacobs
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandOregonUSA
| | - Richard M. Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A‐STEM), College of EngineeringSwansea UniversitySwanseaUK
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazAustria
| |
Collapse
|
17
|
Erbas IM, Abaci A, Anik A, Simsek E, Tuhan HU, Kocyigit C, Yıldız M, Dundar BN, Bober E, Catli G. Comparison of the effectiveness of simple carbohydrates on hypoglycemic episodes in children and adolescents with type 1 diabetes mellitus: A randomized study in a diabetes camp. Pediatr Diabetes 2020; 21:1249-1255. [PMID: 32662200 DOI: 10.1111/pedi.13077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypoglycemia is the most common and severe complication of insulin treatment during the management of type 1 diabetes mellitus (T1DM). Despite its importance, there is a lack of data about the efficacy and superiority of the carbohydrate sources used in hypoglycemia management in children and adolescents. OBJECTIVE We aimed to compare the effectiveness of honey, fruit juice, and sugar cubes as simple carbohydrates used in the primary treatment of hypoglycemia in children and adolescents with T1DM, who attended a diabetes summer camp. METHODS A prospective randomized study was performed in a 5-days-long diabetes summer camp. Three different types of simple carbohydrates; sugar cubes, honey, or fruit juice were randomly given for the treatment of hypoglycemia and the recovery results in the three groups were compared. RESULTS About 32 patients (53.1% male, mean age 12.9 ± 1.9 years) were included and 158 mild hypoglycemic episodes were observed. Sugar cubes, honey, and fruit juice were given in 46 (29.1%), 60 (37.9%), and 52 (33%) events, respectively. We found that honey and fruit juice had similar efficiency in recovering hypoglycemia in 15 minutes with a rate of 95% and 98%, respectively. However, sugar cubes had a significantly lower impact on treatment of hypoglycemia than the others, with a recovery rate of 84.7% at 15 minutes. CONCLUSIONS This study showed, for the first time, that honey and fruit juice were more effective in treating hypoglycemia than sugar cubes, and can be preferred in treating hypoglycemic events in children and adolescents with T1DM.
Collapse
Affiliation(s)
- Ibrahim Mert Erbas
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ayhan Abaci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Anik
- Division of Pediatric Endocrinology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Erdem Simsek
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Hale Unver Tuhan
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Cemil Kocyigit
- Division of Pediatric Endocrinology, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Melek Yıldız
- Division of Pediatric Endocrinology, Dr Behçet Uz Children's Hospital, İzmir, Turkey
| | - Bumin Nuri Dundar
- Division of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| | - Ece Bober
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gonul Catli
- Division of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| |
Collapse
|
18
|
Ranjan AG, Schmidt S, Nørgaard K. Glucagon for hypoglycaemia treatment in type 1 diabetes. Diabetes Metab Res Rev 2020; 37:e3409. [PMID: 33090668 DOI: 10.1002/dmrr.3409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
To achieve strict glycaemic control and avoid chronic diabetes complications, individuals with type 1 diabetes (T1D) are recommended to follow an intensive insulin regimen. However, the risk and fear of hypoglycaemia often prevent individuals from achieving the treatment goals. Apart from early insulin suspension in insulin pump users, carbohydrate ingestion is the only option for preventing and treating non-severe hypoglycaemic events. These rescue treatments may give extra calories and cause overweight. As an alternative, the use of low-dose glucagon to counter hypoglycaemia has been proposed as a tool to raise glucose concentrations without adding extra calories. Previously, the commercially available glucagon formulations required reconstitution from powder to a solution before being injected subcutaneously or intramuscularly-making it practical only for treating severe hypoglycaemia. Several companies have developed more stable formulations that do not require the time-consuming reconstitution process before use. As well as treating severe hypoglycaemia, non-severe and impending hypoglycaemia can also be treated with lower doses of glucagon. Once available, low-dose glucagon can be either delivered manually, as an injection, or automatically, by an infusion pump. This review focuses on the role and perspectives of using glucagon to treat and prevent hypoglycaemia in T1D.
Collapse
Affiliation(s)
- Ajenthen G Ranjan
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | | | | |
Collapse
|
19
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc20-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
20
|
Abraham MB, Jones TW, Naranjo D, Karges B, Oduwole A, Tauschmann M, Maahs DM. ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2018; 19 Suppl 27:178-192. [PMID: 29869358 DOI: 10.1111/pedi.12698] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mary B Abraham
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Division of Paediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Division of Paediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Diana Naranjo
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Martin Tauschmann
- Wellcome Trust-MRC Institute of Metabolic Science, Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
21
|
Mellor DD, Langley-Evans S, Holt RIG. Update of Diabetes UK Evidence-Based Nutritional Guidelines for 2018: a celebration of two leading journals working together to improve nutritional science and dietetic care for people living with diabetes. J Hum Nutr Diet 2018; 31:289-291. [DOI: 10.1111/jhn.12564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Mellor D, Langley-Evans S, Holt RIG. Update of Diabetes UK Evidence-Based Nutritional Guidelines for 2018: a celebration of two leading journals working together to improve nutritional science and dietetic care for people living with diabetes. Diabet Med 2018; 35:539-540. [PMID: 29658193 DOI: 10.1111/dme.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D Mellor
- Journal of Human Nutrition and Dietetics, University of Canberra, ACT, Australia
| | - S Langley-Evans
- Journal of Human Nutrition and Dietetics, University of Nottingham, Nottingham, UK
| | - R I G Holt
- Diabetic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
23
|
Holt RIG. Diabetic Medicine and Diabetes UK. Diabet Med 2018; 35:291. [PMID: 29437255 DOI: 10.1111/dme.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|