1
|
Pixner T, Chaikouskaya T, Lauth W, Zimmermann G, Mörwald K, Lischka J, Furthner D, Awender E, Geiersberger S, Maruszczak K, Forslund A, Anderwald CH, Cadamuro J, Weghuber D, Bergsten P. Rise in fasting and dynamic glucagon levels in children and adolescents with obesity is moderate in subjects with impaired fasting glucose but accentuated in subjects with impaired glucose tolerance or type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1368570. [PMID: 39027470 PMCID: PMC11254805 DOI: 10.3389/fendo.2024.1368570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Fasting levels of glucagon are known to be elevated in youth and adults with type 2 diabetes mellitus (T2D). Children and adolescents with obesity were previously reported to show increasing fasting and post-glucose-challenge hyperglucagonemia across the spectrum of glucose tolerance, while no data are available in those with impaired fasting glucose (IFG). Materials and methods Individuals from the Beta-JUDO study population (Uppsala and Salzburg 2010-2016) (n=101, age 13.3 ± 2.8, m/f =50/51) were included (90 with overweight or obesity, 11 with normal weight). Standardized OGTT were performed and plasma glucose, glucagon and insulin concentrations assessed at baseline, 5, 10, 15, 30, 60, 90 and 120 minutes. Patients were grouped according to their glycemic state in six groups with normal glucose metabolism (NGM) and normal weight (NG-NW), NGM with obesity or overweight (NG-O), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IGT+IFG and T2D, and in two groups with NGM and impaired glucose metabolism (IGM), for statistical analysis. Results and conclusion Glucagon concentrations were elevated in young normoglycemic individuals with overweight or obesity (NG-O) compared to normoglycemic individuals with normal weight. Glucagon levels, fasting and dynamic, increased with progressing glycemic deterioration, except in IFG, where levels were comparable to those in NG-O. All glycemic groups showed an overall suppression of glucagon during OGTT. An initial increase of glucagon could be observed in T2D. In T2D, glucagon showed a strong direct linear correlation with plasma glucose levels during OGTT. Glucagon in adolescents, as in adults, may play a role in the disease progression of T2D.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Tatsiana Chaikouskaya
- Institut national supérieur des sciences agronomiques de l'alimentation et de l'environnement, Dijon, France
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanda Lauth
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Georg Zimmermann
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Julia Lischka
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Elisabeth Awender
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Geiersberger
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Clinical Research Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Christian-Heinz Anderwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Direction, Arnoldstein Healthcare Centre, Arnoldstein, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Huang H, Pu J, Zhou Y, Fan Y, Zhang Y, Li Y, Chen Y, Wang Y, Yu X, Dmitry B, Zhou Z, Wang J. A spontaneous hyperglycaemic cynomolgus monkey presents cognitive deficits, neurological dysfunction and cataract. Clin Exp Pharmacol Physiol 2024; 51:e13863. [PMID: 38650114 DOI: 10.1111/1440-1681.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.
Collapse
Affiliation(s)
- Hongdi Huang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jianglin Pu
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Yufang Zhou
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Fan
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yali Zhang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yanling Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yangzhuo Chen
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaomei Yu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bulgin Dmitry
- Research Institute of Medical Primatology, National Research Centre "Kurchatov Institute", Sochi, Russia
| | - Zhu Zhou
- Deparment of Nephrology, The First Affiliated Hospital of Kunming Medical University and Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Zhai L, Xiao H, Lin C, Wong HLX, Lam YY, Gong M, Wu G, Ning Z, Huang C, Zhang Y, Yang C, Luo J, Zhang L, Zhao L, Zhang C, Lau JYN, Lu A, Lau LT, Jia W, Zhao L, Bian ZX. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome. Nat Commun 2023; 14:4986. [PMID: 37591886 PMCID: PMC10435514 DOI: 10.1038/s41467-023-40552-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jingyuan Luo
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok-Ting Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Jia
- Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Healthy. School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
4
|
Chen W, Cui W, Wu J, Zheng W, Sun X, Zhang J, Shang H, Yuan Y, Li X, Wang J, Hu X, Chen L, Zeng F, Xiao RP, Zhang X. Blocking IL-6 signaling improves glucose tolerance via SLC39A5-mediated suppression of glucagon secretion. Metabolism 2023:155641. [PMID: 37380017 DOI: 10.1016/j.metabol.2023.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia, hyperglucagonemia, and low-grade inflammation are frequently presented in obesity and type 2 diabetes (T2D). The pathogenic regulation between hyperinsulinemia/insulin resistance (IR) and low-grade inflammation is well documented in the development of diabetes. However, the cross-talk of hyperglucagonemia with low-grade inflammation during diabetes progression is poorly understood. In this study, we investigated the regulatory role of proinflammatory cytokine interleukin-6 (IL-6) on glucagon secretion. METHODS The correlations between inflammatory cytokines and glucagon or insulin were analyzed in rhesus monkeys and humans. IL-6 signaling was blocked by IL-6 receptor-neutralizing antibody tocilizumab in obese or T2D rhesus monkeys, glucose tolerance was evaluated by intravenous glucose tolerance test (IVGTT). Glucagon and insulin secretion were measured in isolated islets from wild-type mouse, primary pancreatic α-cells and non-α-cells sorted from GluCre-ROSA26EYFP (GYY) mice, in which the enhanced yellow fluorescent protein (EYFP) was expressed under the proglucagon promoter, by fluorescence-activated cell sorting (FACS). Particularly, glucagon secretion in α-TC1 cells treated with IL-6 was measured, and RNA sequencing was used to screen the mediator underlying IL-6-induced glucagon secretion. SLC39A5 was knocking-down or overexpressed in α-TC1 cells to determine its impact in glucagon secretion and cytosolic zinc density. Dual luciferase and chromatin Immunoprecipitation were applied to analyze the signal transducer and activator of transcription 3 (STAT3) in the regulation of SLC39A5 transcription. RESULTS Plasma IL-6 correlate positively with plasma glucagon levels, but not insulin, in rhesus monkeys and humans. Tocilizumab treatment reduced plasma glucagon, blood glucose and HbA1c in spontaneously obese or T2D rhesus monkeys. Tocilizumab treatment also decreased glucagon levels during IVGTT, and improved glucose tolerance. Moreover, IL-6 significantly increased glucagon secretion in isolated islets, primary pancreatic α-cells and α-TC1 cells. Mechanistically, we found that IL-6-activated STAT3 downregulated the zinc transporter SLC39A5, which in turn reduced cytosolic zinc concentration and ATP-sensitive potassium channel activity and augmented glucagon secretion. CONCLUSIONS This study demonstrates that IL-6 increases glucagon secretion via the downregulation of zinc transporter SLC39A5. This result revealed the molecular mechanism underlying the pathogenesis of hyperglucagonemia and a previously unidentified function of IL-6 in the pathophysiology of T2D, providing a potential new therapeutic strategy of targeting IL-6/glucagon to preventing or treating T2D.
Collapse
Affiliation(s)
- Wenli Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Weiyi Cui
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jianhong Wu
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China
| | - Haibao Shang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Liangyi Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China.
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China.
| |
Collapse
|
5
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Zhao Y, Shu Y, Zhao N, Zhou Z, Jia X, Jian C, Jin S. Insulin resistance induced by long-term sleep deprivation in rhesus macaques can be attenuated by Bifidobacterium. Am J Physiol Endocrinol Metab 2022; 322:E165-E172. [PMID: 34843659 DOI: 10.1152/ajpendo.00329.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term sleep deprivation (SD) is a bad lifestyle habit, especially among specific occupational practitioners, characterized by circadian rhythm misalignment and abnormal sleep/wake cycles. SD is closely associated with an increased risk of metabolic disturbance, particularly obesity and insulin resistance. The incretin hormone, glucagon-like peptide-1 (GLP-1), is a critical insulin release determinant secreted by the intestinal L-cell upon food intake. Besides, the gut microbiota participates in metabolic homeostasis and regulates GLP-1 release in a circadian rhythm manner. As a commonly recognized intestinal probiotic, Bifidobacterium has various clinical indications regarding its curative effect. However, few studies have investigated the effect of Bifidobacterium supplementation on sleep disorders. In the present study, we explored the impact of long-term SD on the endocrine metabolism of rhesus monkeys and determined the effect of Bifidobacterium supplementation on the SD-induced metabolic status. Lipid concentrations, body weight, fast blood glucose, and insulin levels increased after SD. Furthermore, after 2 mo of long-term SD, the intravenous glucose tolerance test showed that the glucose metabolism was impaired and the insulin sensitivity decreased. Moreover, 1 mo of Bifidobacterium oral administration significantly reduced blood glucose and attenuated insulin resistance in rhesus macaques. Overall, our results suggested that Bifidobacterium might be used to alleviate SD-induced aberrant glucose metabolism and improve insulin resistance. Also, it might help in better understanding the mechanisms governing the beneficial effects of Bifidobacterium.NEW & NOTEWORTHY Our findings demonstrated that long-term sleep deprivation is closely associated with metabolic syndromes. Bifidobacterium administration showed a superior effect on insulin resistance caused by sleep deprivation. Overall, we provide prevention and treatment methods for long-term sleep deprivation, a bad lifestyle habit among specific occupational practitioners, such as irregular shift workers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chenxing Jian
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Chusyd DE, Nagy TR, Golzarri-Arroyo L, Dickinson SL, Speakman JR, Hambly C, Johnson MS, Allison DB, Brown JL. Adiposity, reproductive and metabolic health, and activity levels in zoo Asian elephant ( Elephas maximus). J Exp Biol 2021; 224:224/2/jeb219543. [PMID: 33500325 DOI: 10.1242/jeb.219543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Many captive Asian elephant populations are not self-sustaining, possibly due in part to obesity-related health and reproductive issues. This study investigated relationships between estimated body composition and metabolic function, inflammatory markers, ovarian activity (females only) and physical activity levels in 44 Asian elephants (n=35 females, n=9 males). Deuterium dilution was used to measure total body water from which fat mass (FM) and fat-free mass (FFM) could be derived to estimate body composition. Serum was analyzed for progestagens and estradiol (females only), deuterium, glucose, insulin and amyloid A. Physical activity was assessed by an accelerometer placed on the elephant's front leg for at least 2 days. Relative fat mass (RFM) - the amount of fat relative to body mass - was calculated to take differences in body size between elephants into consideration. Body fat percentage ranged from 2.01% to 24.59%. Male elephants were heavier (P=0.043), with more FFM (P=0.049), but not FM (P>0.999), than females. For all elephants, estimated RFM (r=0.45, P=0.004) was positively correlated with insulin. Distance walked was negatively correlated with age (r=-0.46, P=0.007). When adjusted for FFM and age (P<0.001), non-cycling females had less fat compared with cycling females, such that for every 100 kg increase in FM, the odds of cycling were 3 times higher (P<0.001). More work is needed to determine what an unhealthy amount of fat is for elephants; however, our results suggest higher adiposity may contribute to metabolic perturbations.
Collapse
Affiliation(s)
- Daniella E Chusyd
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA .,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lilian Golzarri-Arroyo
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Stephanie L Dickinson
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Maria S Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
8
|
Benito-Vicente A, Uribe KB, Rotllan N, Ramírez CM, Jebari-Benslaiman S, Goedeke L, Canfrán-Duque A, Galicia-García U, Saenz De Urturi D, Aspichueta P, Suárez Y, Fernández-Hernando C, Martín C. miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. Int J Mol Sci 2020; 21:ijms21228675. [PMID: 33212990 PMCID: PMC7698485 DOI: 10.3390/ijms21228675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Kepa B. Uribe
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Cristina M. Ramírez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Diego Saenz De Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- Correspondence: (C.F.-H.); (C.M.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Correspondence: (C.F.-H.); (C.M.)
| |
Collapse
|
9
|
Xu X, Li L, Zhang Y, Lu X, Lin W, Wu S, Qin X, Xu R, Lin W. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLoS One 2020; 15:e0240616. [PMID: 33035272 PMCID: PMC7546448 DOI: 10.1371/journal.pone.0240616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is a traditional herb that is often used to treat disease including edema and hyperlipidemia. However, the molecular mechanism by which Alisma orientale (Sam.) Juzep exerts its hypolipidemic effects remains unclear. In this study, a diabetic rat model was established by feeding a high-fat and high-sugar diet combined with a low-dose streptozotocin injection (HFS). Then the rats were treated with an A. orientale water extract (AOW), an A. orientale ethanolic extract (AOE) or metform (MET). The gut microflora and liver transcriptome were analyzed by high-throughput next-generation sequencing. Ultra-performance liquid chromatography-triple quadrupole-mass spectrometry was employed to analyze the major compounds in the AOE. The results showed that the serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in rats of the AOE group (2.10 g/kg/day, 14 days) were significantly lower than those in the HFS group (p<0.01). Moreover, AOE treatment altered the gut microecology, particularly modulating the relative abundance of gut microflora involved in lipid metabolism compared with the HFS group. Furthermore, compared with the HFS group, the mRNA expression levels of Fam13a, Mapk7, Mpp7, Chac1, Insig1, Mcpt10, Noct, Greb1l, Fabp12 and Hba-a3 were upregulated after the administration of AOE. In contrast, the mRNA expression levels of Lox, Mybl1, Arrdc3, Cyp4a2, Krt20, Vxn, Ggt1, Nr1d1 and S100a9 were downregulated. Moreover, AOE treatment for two weeks markedly promoted the relative abundance of Lachnospiraceae (p = 0.0013). The triterpenoids contents in AOE were alisol A, alisol A 24-acetate, alisol B, alisol B 23-acetate, alisol C 23-acetate, alisol F, alisol F 24-acetate, and alisol G. Our findings above illustrated that the hypolipidemic effect of the triterpenoids of A. orientale is mediated mainly through alteration of the gut microecology and the regulation of genes involved in cholesterol metabolism, especially Insig1.
Collapse
Affiliation(s)
- Xiaomei Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Lisha Li
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Yamin Zhang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xuehua Lu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shuangshuang Wu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xia Qin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Rongqing Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
- * E-mail:
| |
Collapse
|