1
|
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol 2025; 15:1487641. [PMID: 39834364 PMCID: PMC11743475 DOI: 10.3389/fmicb.2024.1487641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics. It not only improves the viability and stability of probiotic cells, but also inhibits the growth of pathogenic strains. Lactobacillus and Bifidobacterium spp. are most commonly used as probiotics. The other microbial spp. that can be used as probiotics are Bacillus, Streptococcus, Enterococcus, and Saccharomyces. Probiotics can be used for the treatment of diabetes, obesity, inflammatory, cardiovascular, respiratory, Central nervous system disease (CNS) and digestive disorders. It is also essential to encapsulate live microorganisms that promote intestinal health. Encapsulation of probiotics safeguards them against risks during production, storage, and gastrointestinal transit. Heat, pressure, and oxidation eradicate probiotics and their protective qualities. Encapsulation of probiotics prolongs their viability, facilitates regulated release, reduces processing losses, and enables application in functional food products. Probiotics as microspheres produced through spray drying or coacervation. This technique regulates the release of gut probiotics and provides stress resistance. Natural encapsulating materials including sodium alginate, calcium chloride, gel beads and polysaccharide promoting safeguards in probiotics during the digestive process. However, several methods including, spray drying where liquid is atomized within a heated air chamber to evaporate moisture and produce dry particles that improves the efficacy and stability of probiotics. Additionally, encapsulating probiotics with prebiotics or vitamins enhance their efficacy. Probiotics enhance immune system efficacy by augmenting the generation of antibodies and immunological cells. It combats illnesses and enhances immunity. Recent studies indicate that probiotics may assist in the regulation of weight and blood glucose levels and influence metabolism and insulin sensitivity. Emerging research indicates that the "gut-brain axis" connects mental and gastrointestinal health. Probiotics may alleviate anxiety and depression via influencing neurotransmitter synthesis and inflammation. Investigations are underway about the dermatological advantages of probiotics that forecasting the onsite delivery of probiotics, encapsulation is an effective technique and requires more consideration from researchers. This review focuses on the applications of probiotics, prebiotics and synbiotics in the prevention and treatment of human health.
Collapse
Affiliation(s)
- Bhutada Sarita
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Dahikar Samadhan
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Md Zakir Hassan
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Elena G. Kovaleva
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
2
|
Mitchell CM. Assessment and Treatment of Vaginitis. Obstet Gynecol 2024; 144:765-781. [PMID: 38991218 DOI: 10.1097/aog.0000000000005673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 07/13/2024]
Abstract
Vaginitis is the presenting symptom at millions of office visits each year in the United States. Although treatment of sporadic cases is often straightforward, recurrent cases present both diagnostic and treatment challenges. Molecular diagnostic tests are likely superior to in-office microscopy for most clinicians and most cases. In both recurrent bacterial vaginosis and recurrent vulvovaginal candidiasis, national treatment guidelines recommend an extended treatment duration with one of the first-line agents. In cases in which such treatment is not successful, vaginal boric acid is likely the cheapest and easiest alternative option. New antifungal medications offer additional but limited treatment options. Probiotics are not recommended for prevention of vulvovaginal candidiasis; however, vaginal products containing Lactobacillus crispatus may have promise for recurrent bacterial vaginosis. Trichomoniasis should be treated with a 1-week course of metronidazole; this is the only sexually transmitted infection for which treatment recommendations vary by sex. In cases in which patients do not respond to initial treatment, the diagnosis should be reconsidered, and other potential causes such as desquamative inflammatory vaginitis, genitourinary syndrome of menopause, or vulvodynia should be considered.
Collapse
Affiliation(s)
- Caroline M Mitchell
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, and the Vulvovaginal Disorders Program, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
4
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
5
|
Maniah K. Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1097-1110. [PMID: 38351615 DOI: 10.1080/10934529.2024.2315922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Drug resistance of pathogenic candidal strains to conventional antifungal agents represents a significant health issue contributing to high morbidity worldwide. Hence, the aim of the current study focused on evaluating the antifungal and synergistic activities of the green synthesized zinc oxide nanoparticles formulated using Laurus nobilis leaf extract. The biogenic ZnONPs were hexagonal in shape with average particle size diameter of 37.98 nm and pure crystalline structure as detected by XRD data. The highest antifungal activity of biogenic ZnONPs was detected against Candida parapsilosis strain demonstrating relative inhibitory zone diameters of 17.13 ± 0.74 and 25.78 ± 0.47 mm, at the concentrations of 100 and 200 µg/disk, respectively. Moreover, the biogenic ZnONPs demonstrated the highest synergistic activity with clotrimazole antifungal agent against Candida glabrata followed by Candida auris strains. MTT assay revealed that the biogenic ZnONPs showed low toxicity demonstrating relative IC50 value of 774.45 µg/mL against normal lung fibroblast cells which further affirmed their biosafety for application. In conclusion, the bioinspired ZnONPs could be utilized for the formulation of effective antifungal agents against drug resistant candidal strains and also could be combined with antifungal agents to boost their antifungal efficiency.
Collapse
Affiliation(s)
- Khalid Maniah
- Department of Biology, King Khalid Military Academy, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
San Juan Galán J, Poliquin V, Gerstein AC. Insights and advances in recurrent vulvovaginal candidiasis. PLoS Pathog 2023; 19:e1011684. [PMID: 37948448 PMCID: PMC10637712 DOI: 10.1371/journal.ppat.1011684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Affiliation(s)
- Javier San Juan Galán
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vanessa Poliquin
- Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleeza Cara Gerstein
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Satora M, Grunwald A, Zaremba B, Frankowska K, Żak K, Tarkowski R, Kułak K. Treatment of Vulvovaginal Candidiasis-An Overview of Guidelines and the Latest Treatment Methods. J Clin Med 2023; 12:5376. [PMID: 37629418 PMCID: PMC10455317 DOI: 10.3390/jcm12165376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a common condition associated with discomfort in affected women. Due to the presence of different forms of the disease, diverse treatment regimens are developed; the newest ones include oteseconazole and ibrexafungerp. Here, we focus on the most up-to-date recommendations regarding VVC treatment, as well as novel treatment options. Topical and oral azoles are the drugs of choice in uncomplicated mycosis. The efficacy of probiotics and substances such as TOL-463 and chlorhexidine is indicated as satisfactory; however, there are no relevant guidelines. Although the majority of researchers agree that the treatment of non-albicans VVC should be long-lasting, the recommendations are inconsistent. Another clinical problem is the treatment of VVC with azole intolerance or resistance, for which literature proposes the use of several drugs including oteseconazole, ibrexafungerp, and voriconazole. The treatment schedules for recurrent VVC include mainly fluconazole; however, alternative options such as immunotherapeutic vaccine (NDV-3A) or designed antimicrobial peptides (dAMPs) were also described. We also focused on VVC affecting pregnant women, which is a substantial challenge in clinical practice, also due to the heterogeneous relevant guidelines. Thus far, few precise recommendations are available in the literature. Future studies should focus on atypical VVC forms to elucidate the inconsistent findings.
Collapse
Affiliation(s)
- Małgorzata Satora
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (A.G.); (B.Z.); (K.F.); (K.Ż.)
| | - Arkadiusz Grunwald
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (A.G.); (B.Z.); (K.F.); (K.Ż.)
| | - Bartłomiej Zaremba
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (A.G.); (B.Z.); (K.F.); (K.Ż.)
| | - Karolina Frankowska
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (A.G.); (B.Z.); (K.F.); (K.Ż.)
| | - Klaudia Żak
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (A.G.); (B.Z.); (K.F.); (K.Ż.)
| | - Rafał Tarkowski
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (R.T.); (K.K.)
| | - Krzysztof Kułak
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (R.T.); (K.K.)
| |
Collapse
|
8
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
9
|
Pedro NA, Fontebasso G, Pinto SN, Alves M, Mira NP. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:88-102. [PMID: 37009625 PMCID: PMC10054710 DOI: 10.15698/mic2023.04.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The exploration of the interference prompted by commensal bacteria over fungal pathogens is an interesting alternative to develop new therapies. In this work we scrutinized how the presence of the poorly studied vaginal species Lactobacillus gasseri affects relevant pathophysiological traits of Candida albicans and Candida glabrata. L. gasseri was found to form mixed biofilms with C. albicans and C. glabrata resulting in pronounced death of the yeast cells, while bacterial viability was not affected. Reduced viability of the two yeasts was also observed upon co-cultivation with L. gasseri under planktonic conditions. Either in planktonic cultures or in biofilms, the anti-Candida effect of L. gasseri was augmented by acetate in a concentration-dependent manner. During planktonic co-cultivation the two Candida species counteracted the acidification prompted by L. gasseri thus impacting the balance between dissociated and undissociated organic acids. This feature couldn't be phenocopied in single-cultures of L. gasseri resulting in a broth enriched in acetic acid, while in the co-culture the non-toxic acetate prevailed. Altogether the results herein described advance the design of new anti-Candida therapies based on probiotics, in particular, those based on vaginal lactobacilli species, helping to reduce the significant burden that infections caused by Candida have today in human health.
Collapse
Affiliation(s)
- Nuno A. Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriela Fontebasso
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Alves
- CQE-Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P. Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- * Corresponding Author: Nuno P Mira, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, Portugal; E-mail:
| |
Collapse
|
10
|
Donders G, Sziller IO, Paavonen J, Hay P, de Seta F, Bohbot JM, Kotarski J, Vives JA, Szabo B, Cepuliené R, Mendling W. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front Cell Infect Microbiol 2022; 12:934353. [PMID: 36159646 PMCID: PMC9504472 DOI: 10.3389/fcimb.2022.934353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Recurrent vulvovaginal candidosis (RVVC) is a chronic, difficult to treat vaginal infection, caused by Candida species, which affects women of all ages and ethnic and social background. A long-term prophylactic maintenance regimen with antifungals is often necessary. In most clinical practice guidelines, oral fluconazole is recommended as the first-line treatment. Although clinical resistance to antifungal agents remains rare, overexposure to azoles may increase the development of fluconazole-resistant C. albicans strains. In addition, non-albicans Candida species are frequently dose-dependent susceptible or resistant to fluconazole and other azoles, and their prevalence is rising. Available therapeutic options to treat such fluconazole-resistant C. albicans and low susceptibility non-albicans strains are limited. Ten experts from different European countries discussed problematic issues of current RVVC diagnosis and treatment in two audiotaped online sessions and two electronic follow-up rounds. A total of 340 statements were transcribed, summarized, and compared with published evidence. The profile of patients with RVVC, their care pathways, current therapeutic needs, and potential value of novel drugs were addressed. Correct diagnosis, right treatment choice, and patient education to obtain adherence to therapy regimens are crucial for successful RVVC treatment. As therapeutic options are limited, innovative strategies are required. Well- tolerated and effective new drugs with an optimized mechanism of action are desirable and are discussed. Research into the impact of RVVC and treatments on health-related quality of life and sex life is also needed.
Collapse
Affiliation(s)
- Gilbert Donders
- Femicare VZW, Clinical Research for Women, Tienen, Belgium
- Department of Obstetrics and Gynecology, University Hospital Antwerp, Antwerp, Belgium
- Department of Obstetrics and Gynecology, Regional Hospital Tienen, Tienen, Belgium
| | - István Oszkár Sziller
- Dél-budai Centrumkórház, Szent Imre Egyetemi Oktatókórház, Szülészet és Nőgyógyászati Osztály, Budapest, Hungary
| | - Jorma Paavonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Phillip Hay
- Guys and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Francesco de Seta
- Department of Medical, Surgical and Health Sciences, Institute for Maternal and Child Health, University of Trieste, IRCCS Burlo Garofolo, Trieste, Italy
| | - Jean Marc Bohbot
- Department of Sexually Transmitted Infections, Institut Alfred Fournier, Paris, France
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jordi Antoni Vives
- Department of Gynecology and Obstetrics, Hospital CIMA, Barcelona, Spain
| | - Bela Szabo
- Department of Obstetrics-Gynecology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | | | - Werner Mendling
- Deutsches Zentrum für Infektionen in Gynäkologie und Geburtshilfe, Helios Universitätsklinikum Wuppertal, Wuppertal, Germany
| |
Collapse
|
11
|
Probiotics for the Prevention of Antibiotic-Associated Diarrhea. Healthcare (Basel) 2022; 10:healthcare10081450. [PMID: 36011108 PMCID: PMC9408191 DOI: 10.3390/healthcare10081450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Several communities have started using probiotic-rich fermented foods as therapeutic options with presumed medicinal powers. We now know the importance of microbiome balance and how probiotics can restore imbalances in the microbiome. Probiotics have been tested for a number of clinical uses such as the prevention of antibiotic-associated diarrhea (AAD), the treatment of various diseases such as H. pylori infection, irritable bowel disease, vaginitis, the prevention of allergies, and necrotizing enterocolitis in newborns. AAD has been the most indicated therapeutic use for probiotics. AAD is a common side effect of antibiotic usage, which affects up to 30% of patients. The hypothesis behind using probiotics for AAD is that they help normalize an unbalanced flora. There are many potential mechanisms by which probiotics support intestinal health such as (i) boosting immunity, (ii) increasing gut barrier integrity, (iii) producing antimicrobial substances, (iv) modulating the gut microbiome, (v) increasing water absorption, and (vi) decreasing opportunistic pathogens. Many randomized-controlled trials including the strain-specific trials that use Lactobacillus and Saccharomyces and meta-analyses have shown the benefits of probiotics in addressing AAD. Although adverse events have been reported for probiotics, these are broadly considered to be a safe and inexpensive preventative treatment option for AAD and other gastrointestinal disorders.
Collapse
|
12
|
Rahim MA, Seo H, Kim S, Tajdozian H, Barman I, Lee Y, Lee S, Song HY. In vitro anti-tuberculosis effect of probiotic Lacticaseibacillus rhamnosus PMC203 isolated from vaginal microbiota. Sci Rep 2022; 12:8290. [PMID: 35585245 PMCID: PMC9116076 DOI: 10.1038/s41598-022-12413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), poses a severe challenge for public health and remains the number one cause of death as a single infectious agent. There are 10 million active cases of TB per year with 1.5 million deaths, and 2-3 billion people are estimated to harbor latent M. tb infection. Moreover, the emergence of multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and the recent totally drug-resistant (TDR) M. tb is becoming a global issue that has fueled the need to find new drugs different from existing regimens. In these circumstances, probiotics can be a potential choice, so we focused on developing them as an anti-tuberculosis drug candidate. Here, we report the anti-tubercular activities of Lacticaseibacillus rhamnosus PMC203 isolated from the vaginal microbiota of healthy women. PMC203 exhibited a promising intracellular killing effect against both drug-sensitive and resistant M. tb infected murine macrophage cell line RAW 264.7 without showing any cytotoxicity. Additionally, it also inhibited the growth of M. tb under broth culture medium. PMC203 did not cause weight change or specific clinical symptoms in a 2-week repeated oral administration toxicity test in a guinea pig model. Here, we also found that PMC203 induces autophagy in a dose dependent manner by increasing the signal of well-known autophagy gene markers, suggesting a possible intracellular killing mechanism.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hanieh Tajdozian
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Indrajeet Barman
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Youngkyoung Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea. .,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea.
| |
Collapse
|
13
|
Archambault LS, Dongari-Bagtzoglou A. Probiotics for Oral Candidiasis: Critical Appraisal of the Evidence and a Path Forward. FRONTIERS IN ORAL HEALTH 2022; 3:880746. [PMID: 35495563 PMCID: PMC9046664 DOI: 10.3389/froh.2022.880746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Oropharyngeal Candidiasis (OPC) is a mucosal fungal infection that is prevalent among patients with compromised immunity. The success of probiotics in treating chronic diseases with a microbial etiology component at other mucosal sites (i.e., gastro-intestinal, genitourinary and alveolar mucosae) has inspired research into the use of probiotics in the treatment of OPC. A growing body of research in vitro and in animal models indicates that some probiotic species and strains have inhibitory activities against Candida albicans growth, morphological switching, and biofilm formation. However, recent review and meta-analysis studies reveal a dearth of human randomized, controlled clinical trials on the efficacy of probiotics to treat or prevent OPC, while the majority of these have not based their selection of probiotic strains or the type of administration on sound pre-clinical evidence. In this mini-review, we assess the state of the field, outline some of the difficulties in translating lab results to clinical efficacy, and make recommendations for future research needed in order to move the field forward.
Collapse
Affiliation(s)
- Linda S. Archambault
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- *Correspondence: Anna Dongari-Bagtzoglou
| |
Collapse
|
14
|
Ahmed N, Mahmood MS, Ullah MA, Araf Y, Rahaman TI, Moin AT, Hosen MJ. COVID-19-Associated Candidiasis: Possible Patho-Mechanism, Predisposing Factors, and Prevention Strategies. Curr Microbiol 2022; 79:127. [PMID: 35287179 PMCID: PMC8918595 DOI: 10.1007/s00284-022-02824-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.
Collapse
Affiliation(s)
- Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Maiesha Samiha Mahmood
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
15
|
Wu Y, Hu S, Wu C, Gu F, Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front Cell Infect Microbiol 2022; 11:793419. [PMID: 35127557 PMCID: PMC8813855 DOI: 10.3389/fcimb.2021.793419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The global infection rate of fungal diseases is increasing year by year, and it has gradually become one of the most serious infectious diseases threatening human health. However, the side effects of antifungal drugs and the fungal resistance to these drugs are gradually increasing. Therefore, the development of new broad-spectrum, safe, and economical alternatives to antibacterial drugs are essential. Probiotics are microorganisms that are beneficial for human health. They boost human immunity, resist pathogen colonization, and reduce pathogen infection. Many investigations have shown their inhibitory activity on a wide range of pathogenic fungi. However, their antibacterial mechanism is still a secret. This article reviews the progress of probiotics as a new method for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Yunjian Wu
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shan Hu
- Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Ying Yang
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| |
Collapse
|
16
|
Forssten SD, Ouwehand AC. Contribution of the Microbiota to Healthy Aging. COMPREHENSIVE GUT MICROBIOTA 2022:69-84. [DOI: 10.1016/b978-0-12-819265-8.00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Yoon Y, Seo H, Kim S, Lee Y, Rahim MDA, Lee S, Song HY. Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis. J Microbiol Biotechnol 2021; 31:1632-1642. [PMID: 34584040 PMCID: PMC9705845 DOI: 10.4014/jmb.2107.07044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemicalbased drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.
Collapse
Affiliation(s)
- Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - MD Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax : +82-41-577-2415 E-mail:
| |
Collapse
|
18
|
Barqawi HJ, Adra SF, Ramzi HR, Abouaggour MA, Almehairi SK. Evaluating the knowledge, attitudes and practices of the UAE community on microbiota composition and the main factors affecting it: a cross-sectional study. BMJ Open 2021; 11:e047869. [PMID: 34404705 PMCID: PMC8372808 DOI: 10.1136/bmjopen-2020-047869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This study aims to explore the knowledge, attitudes and practices (KAP) of the population in the United Arab Emirates (UAE) regarding microbiota and the main factors affecting its composition. DESIGN/SETTING A cross-sectional study, using a self-administered questionnaire, was conducted from May 2018 to September 2018, recruiting participants in public venues via convenience sampling. PARTICIPANTS UAE residents (aged 18 years and above) who spoke either Arabic or English. RESULTS 419 responses were completed and analysed using SPSS V.24. Only 29.3% (n=94) of the participants who defined microbiota correctly had good knowledge. There was a significant difference in knowledge among different age groups (p=0.004) and educational levels (p<0.001). Multiple linear regression (MLR) model indicated that being a university student and a healthcare professional (HCP) are the only significant predictors regarding microbiota knowledge (p=0.014 and p<0.001, respectively). Of the respondents who claimed to be aware of probiotics, only 9.1% (n=15) exhibited good knowledge. MLR model showed that being a postgraduate and an HCP are the only significant predictors for probiotics knowledge (p=0.016 and p<0.001, respectively). 42.4% (n=143) and 34.6% (n=28) of the non-medical and HCP participants, respectively, use antibiotics without a prescription. None of the respondents, with or without a medical background, demonstrated good attitudes and practices toward the use of antibiotics. CONCLUSION Despite the fact that the participants had a basic understanding of microbiota and probiotics, the overall knowledge was substandard. Additionally, the respondents engaged in improper practices that alter the microbiota composition, especially via antibiotics misuse. Campaigns should target the general population as well as HCPs to upheave their overall KAP.
Collapse
Affiliation(s)
- Hiba Jawdat Barqawi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | | | | | | | | |
Collapse
|
19
|
Wang D, Song Y, Jiang D. Co(II) coordination polymer: application values on vulvovaginal candidiasis through reducing Candida albicans growth. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1966446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dan Wang
- Department of Gynecology, First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yue Song
- Department of Gynecology, First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Di Jiang
- Department of Gynecology, First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
20
|
In Vitro Exploration of Probiotic Bacteria Interactions with Candida Using Culture Techniques to Model Dysbiotic Conditions in Colonized Tissues. Pathogens 2021; 10:pathogens10030289. [PMID: 33802379 PMCID: PMC7999685 DOI: 10.3390/pathogens10030289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Candida albicans overgrowth at various mucosal sites is an ongoing and complex clinical concern involving interactions with indigenous microbiota and therapeutic or preventive measures superimposed on the pathogen-microbiome interaction. In this paper we describe the use of quantitative flow cytometry (specific to the cytometer’s sample introduction mechanism) to explore the in vitro interaction between Candida albicans, probiotic lactobacilli and a topical vaginal therapeutic. Our central hypothesis was cytometric measurements of co-cultures of yeast and bacteria could provide a useful method for exploring the dynamics of different microbial species in culture, with and without inhibitors. Two commercial products were used as exemplars for this research, a vaginal antimicrobial gel and two species of probiotic lactobacillus intended or oral administration with crystalline bovine lactoferrin to augment the vaginal gel. The cytometer forward channel height parameter distinguished yeast from bacteria in co-culture experiments in the presence of a vaginal therapeutic gel or components of its formulation including EDTA, glycogen, polydextrose as well as the host defense factor, lactoferrin. Flow cytometry showed lactobacilli influenced yeast counts in co-culture, with the technique lending itself to wide-ranging test conditions including organisms, media composition and screening of various antimicrobials. Key findings: The proprietary vaginal gel augmented the effect of lactobacilli, as did EDTA and lactoferrin. Prebiotic compounds also enhanced Candida inhibition by lactobacilli. Propidium iodide (Fluorescence channel 3) discriminated between necrotic and non-necrotic yeast and bacteria in co-cultures under various culture conditions. This research demonstrates the value of flow cytometry to evaluate the population dynamics of yeast and bacteria in co-culture using a proprietary product and its components. We discuss both the limitations of the current study and describe how methods employed here would be transferrable to the investigation of organisms present in defined cultures or at body sites colonized by fungal species and the effects of therapeutics or probiotics on Candida.
Collapse
|
21
|
A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Sci Rep 2021; 11:2592. [PMID: 33510271 PMCID: PMC7843994 DOI: 10.1038/s41598-021-81931-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli with probiotic features play an essential role in maintaining a balanced vaginal microbiota and their administration has been suggested for the treatment and prevention of vaginal dysbiosis. The present study was aimed to in vitro and in vivo investigate the probiotic potential of the Lacticaseibacillus rhamnosus TOM 22.8 strain, isolated from the vaginal ecosystem of a healthy woman. For this purpose, safety and functional properties were in depth evaluated. The strain exhibited a broad spectrum of antagonistic activity against vaginal pathogens; adhesion capacity to both the vaginal VK2/E6E7 and the intestinal Caco-2 cells; anti-inflammatory and antioxidant activities, suggesting its promising probiotic features. In addition, an in vivo pilot-study was planned. Based on both clinical and microbiological parameters, the oral or vaginal strain administration, determined a significant pathogens reduction after 10 days of administration and a maintenance of eubiosis up to 30 days after the end of the treatment. Therefore, the L. rhamnosus TOM 22.8 strain can be proposed as valuable oral and/or vaginal treatment for vaginal dysbiosis.
Collapse
|
22
|
Authier H, Salon M, Rahabi M, Bertrand B, Blondeau C, Kuylle S, Holowacz S, Coste A. Oral Administration of Lactobacillus helveticus LA401 and Lactobacillus gasseri LA806 Combination Attenuates Oesophageal and Gastrointestinal Candidiasis and Consequent Gut Inflammation in Mice. J Fungi (Basel) 2021; 7:57. [PMID: 33467443 PMCID: PMC7830595 DOI: 10.3390/jof7010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics are needed. Probiotics have been suggested as a useful alternative for the management of candidiasis. We demonstrated that oral administration of Lactobacillus gasseri LA806 alone or combined with Lactobacillus helveticus LA401 in Candida albicans-infected mice decrease the Candida colonization of the oesophageal and GI tract, highlighting a protective role for these strains in C. albicans colonization. Interestingly, the probiotic combination significantly modulates the composition of gut microbiota towards a protective profile and consequently dampens inflammatory and oxidative status in the colon. Moreover, we showed that L. helveticus LA401 and/or L. gasseri LA806 orient macrophages towards a fungicidal phenotype characterized by a C-type lectin receptors signature composed of Dectin-1 and Mannose receptor. Our findings suggest that the use of the LA401 and LA806 combination might be a promising strategy to manage GI candidiasis and the inflammation it causes by inducing the intrinsic antifungal activities of macrophages. Thus, the probiotic combination is a good candidate for managing GI candidiasis by inducing fungicidal functions in macrophages while preserving the GI integrity by modulating the microbiota and inflammation.
Collapse
Affiliation(s)
- Hélène Authier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Marie Salon
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Mouna Rahabi
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Bénédicte Bertrand
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | | | | | | | - Agnès Coste
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| |
Collapse
|
23
|
Vigani B, Faccendini A, Rossi S, Sandri G, Bonferoni MC, Grisoli P, Ferrari F. Development of a Mucoadhesive in Situ Gelling Formulation for the Delivery of Lactobacillus gasseri into Vaginal Cavity. Pharmaceutics 2019; 11:pharmaceutics11100511. [PMID: 31623341 PMCID: PMC6836057 DOI: 10.3390/pharmaceutics11100511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/08/2023] Open
Abstract
Local administration of vaginal probiotics, especially lactobacilli, has been recently proposed as an effective prevention strategy against candidosis recurrences, which affect 40-50% of women. In this context, the aim of the present work was the development of a mucoadhesive in situ gelling formulation for the vaginal administration of Lactobacillus gasseri. Mixtures of poloxamer 407 (P407) and methylcellulose (MC), two thermosensitive polymers, were prepared and subjected to rheological analyses for the assessment of their sol/gel transition temperature. The association of P407 (15% w/w) with MC (1.5% w/w) produced an increase in gelation extent at 37 °C even after dilution in simulated vaginal fluid (SVF). The presence of 0.5% w/w pectin (PEC) produced a reduction of vehicle pH and viscosity at 25 °C that is the vehicle resistance to flow during administration. The presence of a low concentration of xyloglucan (XYL) (0.25% w/w) increases the mucoadhesive properties and the capability to gelify at 37 °C of the formulation after dilution with SVF. A three-component (P407/MC/PEC; 3cM) and a four-component (P407/MC/PEC/XYL; 4cM) mixture were selected as promising candidates for the delivery of L. gasseri to the vaginal cavity. They were able to preserve L. gasseri viability and were cytocompatible towards the HeLa cell line.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| | | | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, V.le Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|