1
|
Zhao K, Zhao Y, Guo A, Xiao S, Tu C. Oral Microbiota Variations in Psoriasis Patients Without Comorbidity. Clin Cosmet Investig Dermatol 2024; 17:2231-2241. [PMID: 39399065 PMCID: PMC11468564 DOI: 10.2147/ccid.s473237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Background Psoriasis is a chronic inflammatory skin disease, and its etiology is still unclear. There is increasing evidence suggesting that microorganisms may trigger psoriasis. However, the relationship between psoriasis and oral microbiota remains poorly understood. Our aim is to identify differences in the composition and diversity of the oral microbiota between patients with psoriasis and healthy controls, and to discover oral microbial markers for assessing the severity of psoriasis. Methods This study recruited 20 psoriasis patients and 20 healthy individuals, collecting their saliva to analyze the composition of the oral microbiota in psoriasis patients. We employed 16S rRNA sequencing technology and utilized various methods for oral microbiome analysis, including the Shannon Index, Gini-Simpson Index, Principal Coordinates Analysis (PCoA), non-metric multidimensional scaling (NMDS), Linear discriminant analysis Effect Size (LEfSe), Wilcoxon test, and Spearman's rank correlation. Results The results showed that the alpha diversity of oral microbiota was higher in psoriasis patients. The relative abundances of certain bacterial taxa differed between psoriasis and healthy individuals, including Prevotella, Prevotella 7 and Porphyromonas gingivalis, which are increased in psoriasis. We also found a positive correlation between Alloprevotella, Porphyromonas, and Neisseria with the severity of psoriasis, while Veillonella showed a negative correlation. Conclusion In summary, this study found significant changes in the composition of the oral microbiota in patients with psoriasis. Some oral bacteria are associated with psoriasis severity. It provides a new perspective on the relationship between the oral microbiota and psoriasis.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yang Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ao Guo
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Chen Tu
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| |
Collapse
|
2
|
Dong C, Liu F, Liao Z, Lin L, Wang R, Du J, Huang W. Analysis of Adverse Reactions of Cosmetics in Chinese Han Population in Recent Five Years. Clin Cosmet Investig Dermatol 2023; 16:2419-2428. [PMID: 37694195 PMCID: PMC10492557 DOI: 10.2147/ccid.s418591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Background There are still some gaps in the summary and generalization of cosmetic-related adverse reaction reports. Objective The aim of this study is to summarize and analyze the occurrence of cosmetic adverse reactions in Shanghai Han population by using available survey data. Materials and Methods Collection, statistics and analysis of patients with cosmetic adverse reactions in Shanghai Huashan Hospital from 2017 to 2021. Results Among the 1004 patients, most of them (96.71%) were diagnosed as cosmetic contact dermatitis, which often occurred within 3 days of using cosmetics (51.79%). A total of 260 patients were tested with patch test, but the compliance rate was only 18.08%. Among them, 240 patients underwent additional European standard allergen tests, and positive allergens were detected in 210 cases (87.5%). Univariate analysis revealed that dosage form (emulsion and cream), age (≤25 years) and the allergic ingredients triethanolamine, rose oil, propylene glycol, thiomersal and musk ambrette are associated with the occurrence of cosmetic adverse reactions within seven days. A logit prediction model was also successfully constructed: Logit (P) = 1.710-0.796×1 + 1.185×2 -3.650X3-1.335X4. Conclusion This study complements the data reported on cosmetic adverse reactions in the Chinese Han population and suggests that in future clinical diagnosis and data collection, emphasis should be placed on patch testing, combining the patch test with cosmetic protoplast with the European standard allergen test to improve the detection rate.
Collapse
Affiliation(s)
- Canbin Dong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| | - Fang Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| | - Zuda Liao
- Medical Insurance Office of Huashan Hospital Affiliated, Fudan University, Shanghai, People’s Republic of China
| | - Lanmei Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| | - Runnan Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| | - Wen Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Słuczanowska-Głabowska S, Salmanowicz M, Staniszewska M, Pawlik A. The Role of Sirtuins in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:10782. [PMID: 37445960 DOI: 10.3390/ijms241310782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is the most common chronic inflammatory skin disease with a genetic basis. It is characterised by keratinocyte hyperproliferation, parakeratosis and inflammatory cell infiltration. Psoriasis negatively affects a patient's physical and emotional quality of life. Sirtuins (SIRTs; silent information regulators) are an evolutionarily conserved group of enzymes involved in the post-translational modification of proteins, including deacetylation, polyADP-ribosylation, demalonylation and lipoamidation. SIRTs are involved in a number of cellular pathways related to ageing, inflammation, oxidative stress, epigenetics, tumorigenesis, the cell cycle, DNA repair and cell proliferation, positioning them as an essential component in the pathogenesis of many diseases, including psoriasis. Activation of SIRT1 counteracts oxidative-stress-induced damage by inhibiting the mitogen-activated protein kinases (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways and may mitigate pathological events in psoriasis. There is a significant reduction in the expression of SIRT1, SIRT2, SIRT3, SIRT4 and SIRT5 and an increase in the expression of SIRT6 and SIRT7 in psoriasis. The aim of the review is to draw the attention of physicians and scientists to the importance of SIRTs in dermatology and to provide a basis and impetus for future discussions, research and pharmacological discoveries to modulate SIRT activity. In light of the analysis of the mode of action of SIRTs in psoriasis, SIRT1-SIRT5 agonists and SIRT6 and SIRT7 inhibitors may represent new therapeutic options for the treatment of psoriasis.
Collapse
Affiliation(s)
| | - Maria Salmanowicz
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
| |
Collapse
|
4
|
Maiti D, Naseeruddin Inamdar M, Almuqbil M, Suresh S, Mohammed Basheeruddin Asdaq S, Alshehri S, Ali Al Arfaj S, Musharraf Alamri A, Meshary Aldohyan M, Theeb Alqahtani M, Mohammed Alosaimi T, Haran Alenazi S, Almadani ME, Ahmed S. Mulla J, Imam Rabbani S. Evaluation of solid-lipid nanoparticles formulation of methotrexate for anti-psoriatic activity. Saudi Pharm J 2023; 31:834-844. [PMID: 37228325 PMCID: PMC10203772 DOI: 10.1016/j.jsps.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Background & Objectives Methotrexate (MTX) is commonly used to manage psoriasis. The drug has erratic absorption characteristics and shows several complications. The present study uses different experimental models to evaluate the solid-lipid nanoparticles of MTX (SLN-MTX) for the anti-psoriatic effect. Methods A prepared SLN-MTX formulation was used and its permeability studies were conducted on Wistar rat abdominal skin. The organ-level distribution of the drug in the formulation was tested in mice and the in-vitro anti-psoriatic activity was determined in CL-177; XB-2 keratinocytes cell lines. The efficacy of SLN-MTX formulation was compared with standard MTX and marketed MTX preparations. The results are analyzed statistically using the student's t-test. Results The data suggested that MTX from the formulation was slowly released and completely (80.36%) permeated through the skin. The flux and permeation data were found to be maximum for SLN-MTX compared to marketed and standard preparations. MTX in the formulation was found to be distributed more in the liver (67.5%) and kidney (2.34%). Further, SLN-MTX formulation showed dose-dependent inhibition on the growth of keratinocytes, and the cytotoxic concentration (CTC50) was found to be the least (518 mcg/ml). Interpretation & Conclusion The findings suggested that MTX in solid-lipid nanoparticles could be a promising formulation for the management of psoriasis since the drug was slowly released, progressively inhibited the growth of keratinocytes, and distributed mostly in organs meant for elimination. More studies in this direction might establish the precise safety and efficacy of SLN-MTX formulation in psoriasis.
Collapse
Affiliation(s)
- Debarati Maiti
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
| | - Mohammed Naseeruddin Inamdar
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
- Department of Pharmacology, East West College of Pharmacy, Bangalore, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarasija Suresh
- RGV Research and Innovations Pvt Ltd (RGVRI), Bangalore, India
| | | | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Saad Ali Al Arfaj
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | - Ali Musharraf Alamri
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | | | | | | | - Sami Haran Alenazi
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | - Moneer E. Almadani
- Department of clinical medicine, College of medicine, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Jameel Ahmed S. Mulla
- Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon, Karad, Maharashtra, India
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
6
|
Zhang Y, Zhang X, Zhang N, Yu S, Zhong Y, Zhao K. Leukadherin-1 inhibits NLRP3 inflammasome by blocking inflammasome assembly. Int Immunopharmacol 2023; 118:110024. [PMID: 36958209 DOI: 10.1016/j.intimp.2023.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Aberrant activation of the NLRP3 inflammasome has been implicated in the occurrence and development of many inflammatory diseases, and thus potent inhibitors of the NLRP3 inflammasome should be explored. An antitumor agent, Leukadherin-1 (LA-1), tested in phase 1/2 clinical trials, has been reported to exert anti-inflammatory properties by blocking the NF-κB pathway. However, the effects of LA-1 on the NLRP3 inflammasome have not been conclusively determined. In this study, we found that at lower doses (below 1 μM) ex vivo, LA-1 blocked NLRP3 inflammasome activation without affecting NF-κB signaling. Accordingly, 1 mg/Kg LA-1 strongly inhibited the release of NLRP3-dependent cytokine, but only slightly inhibited NLRP3-independent-cytokines secretion in endotoxemia and alleviated NLRP3-dependent peritonitis in vivo. Mechanistically, LA-1 had no effects on ion flux or mitochondrial injury. Instead, it inhibited NLRP3 inflammasome assembly by suppressing ASC oligomerization, blocking NLRP3 self-assembly, and reducing interactions of NLRP3 with ASC and NEK7. Therefore, LA-1 inhibits NLRP3 inflammasome activation, implying that it is a potential treatment option for NLRP3-associated diseases.
Collapse
Affiliation(s)
- Yening Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songlin Yu
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| | - YanJun Zhong
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Can Essential Oils/Botanical Agents Smart-Nanoformulations Be the Winning Cards against Psoriasis? Pharmaceutics 2023; 15:pharmaceutics15030750. [PMID: 36986611 PMCID: PMC10056241 DOI: 10.3390/pharmaceutics15030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Although psoriasis remains one of the most devastating inflammatory disorders due to its huge negative impact on patients’ quality of life, new “green” treatment approaches still need to be fully explored. The purpose of this review article is to focus on the utilization of different essential oils and active constituents of herbal botanical origin for the treatment of psoriasis that proved efficacious via both in vitro and in vivo models. The applications of nanotechnology-based formulations which displayed great potential in augmenting the permeation and delivery of these agents is also addressed. Numerous studies have been found which assessed the potential activity of natural botanical agents to overcome psoriasis. Nano-architecture delivery is applied in order to maximize the benefits of their activity, improve properties, and increase patient compliance. This field of natural innovative formulations can be a promising tool to optimize remediation of psoriasis while minimizing adverse effects.
Collapse
|
8
|
Formulation Development and In Vitro/In Vivo Characterization of Methotrexate-Loaded Nanoemulsion Gel Formulations for Enhanced Topical Delivery. Gels 2022; 9:gels9010003. [PMID: 36661771 PMCID: PMC9857773 DOI: 10.3390/gels9010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Methotrexate-loaded oil-in-water nanoemulsion formulations were prepared using the high shear homogenization technique. A drug excipient study (ATR-FTIR) was carried out to investigate the compatibility between the drug, the polymers, and its admixtures. The thermal stability of the nanoemulsion formulations was evaluated by subjecting them to a heating and cooling cycle. The prepared nanoemulsion formulations (FNE1 to FNE6) were evaluated for particle size, PDI value, and entrapment efficiency (EE). They were analyzed for morphological information using transmission electron microscopy. The drug (methotrexate)-loaded nanoemulsion formulations (FNE2, FNE4, and FNE6) were then converted into nanoemulsion gel formulations by adding 1% chitosan (polymer) as a gelling agent. The nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6) were investigated for physicochemical parameters, viscosity, spreadability, extrudability, drug content, and skin irritation. Various penetration enhancers (olive oil, clove, and almond oil) were employed to examine the potency of the prepared nanoemulsion gel formulations. In vitro drug release, ex vivo permeation, skin drug retention, and stability tests were carried out for evaluation of the prepared nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6). The data obtained from the in vitro study were subjected to the kinetic model, and the Korsemeyer-Peppas model was best fitted to the data. The nanoemulsion gel formulation FNEG6 showed the maximum controlled drug release and followed an anomalous, non-Fickian release mechanism. The use of almond oil in the preparation of the nanoemulsion gel formulation FNEG6 helped the penetration of the drug across stratum corneum and the restructuring of the properties of skin and resulted in a higher penetration and retention of methotrexate in a deeper layer of the skin. The current study concluded that the methotrexate-loaded nanoemulsion gel formulation FNEG6 showed the best optimum release, permeation, and retention results as compared to the available oral tablets' formulations, followed by a low serum concentration and the maximum drug retention, which is beneficial in treating skin infections and reducing systemic toxicity.
Collapse
|
9
|
Gisondi P, Geat D, Armeni P, Bellinato F, Maurelli M, Girolomoni G. Cost per responder of Adalimumab biosimilars MSB11022 and ABP 501 versus the originator and methotrexate in chronic plaque psoriasis. Expert Opin Biol Ther 2022; 22:1579-1584. [PMID: 35466843 DOI: 10.1080/14712598.2022.2070428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Pharmacoeconomic studies comparing the cost of adalimumab biosimilars versus the originator and conventional drugs in psoriasis are lacking. RESEARCH DESIGN AND METHODS To assess the cost per responder of adalimumab biosimilars versus the originator and methotrexate for psoriasis treatment. A cost per responder analysis comparing adalimumab biosimilars MSB11022 (Idacio®) and ABP 501 (Amgevita®), and methotrexate to the originator (Humira®) was performed. The incremental cost per responder was calculated by multiplying the cost of treatment based on the perspective of the National Healthcare System and number needed to treat for each therapy. RESULTS Considering the PASI75 response rate at 16 weeks, the cost per responder for MSB11022 and ABP 501 compared to the originator was € 500 versus 1,831 and € 968 versus 1,949, respectively. For the same endpoint, the cost per responder for subcutaneous or oral methotrexate was € 543 or 34 compared to 2,117 for adalimumab originator. At an indirect comparison among methotrexate, MSB11022 and ABP 501, the costs per PASI75 responder at week 16 were 2%, 26%, 27% and 50% of that of the originator, respectively. CONCLUSIONS The use of biosimilars was confirmed as a valuable pharmacoeconomic strategy to lower healthcare cost in patients with psoriasis.
Collapse
Affiliation(s)
- Paolo Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Davide Geat
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Patrizio Armeni
- Centre for Research on Health and Social Care Management, SDA Bocconi School of Management, Bocconi University, Milan, Italy
| | - Francesco Bellinato
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Martina Maurelli
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Shree D, Patra CN, Sahoo BM. Novel Herbal Nanocarriers for Treatment of Dermatological Disorders. Pharm Nanotechnol 2022; 10:246-256. [PMID: 35733305 DOI: 10.2174/2211738510666220622123019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. METHODS In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. CONCLUSION Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| |
Collapse
|
11
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Zozaya N, Villoro R, Abdalla F, Alfonso Zamora S, Balea Filgueiras J, Carrascosa Carrillo JM, Delgado Sánchez O, Dolz Sinisterra F, García-Ruiz A, Herranz Pinto P, Manfredi A, Martínez Olmos J, Morales de Los Ríos Luna P, Puig Sanz L, Ros S, Hildago-Vega Á. Unmet Needs in the Management of Moderate-to-Severe Psoriasis in Spain: A Multidimensional Evaluation. Acta Derm Venereol 2022; 102:adv00678. [PMID: 35312022 PMCID: PMC9631248 DOI: 10.2340/actadv.v102.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic, systemic inflammatory disease that affects the skin, with a high impact on patients' quality of life. The aim of this study was to identify and determine the relative importance of unmet needs in the management of moderate-to-severe psoriasis in Spain, from a multi-stakeholder perspective. A mixed method-approach was used to collect information, design a questionnaire and a discrete-choice exercise, and elicit the unmet needs through a multidisciplinary committee composed of 12 experts. A total of 65 unmet needs were identified and categorized into 4 areas: clinical, patient-related, decision-making process, and social. Decision-making process unmet needs were perceived as the most pressing ones, followed by social, clinical and patient-related. Individually, the need to incorporate outcomes that are important to the patients and to have treatments that achieve total clearance with a rapid onset of action and long-term persistence were the most important unmet needs.
Collapse
|
13
|
Parveen S, Ahmed M, Baboota S, Ali J. An Innovative Approach In Nanotechnology-Based Delivery System For The Effective Management Of Psoriasis. Curr Pharm Des 2022; 28:1082-1102. [PMID: 35105284 DOI: 10.2174/1381612828666220201141915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Psoriasis is an ineradicable, non-contagious inflammatory autoimmune skin disorder exhibiting abnormal redness of the skin and flaky patches which affect the exposed body surface. It is caused by negative signals produced by the immune system, leading to excessive growth and differentiation of keratinocytes and other inflammatory reactions on the skin. The topical route is primarily preferred in treating skin disorders due to the smaller size of the drug molecule, which allows them to cross the outer layer of the skin, i.e., stratum corneum, and permeate into the deep layer, unlike transdermal and other routes. The conventional topical treatments used in the past, such as coal tar, and dithranol leads to meager patient compliance due to decreased potency, and imperfect aesthetic. In contrast, systemic therapy such as methotrexate, cyclosporine, and acitretin produce related side effects. At present, various novel carriers like liposomes, ethosomes, niosomes, nanostructured lipid carriers, etc., have shown promising results to treat psoriasis. Therefore, this review primarily concentrates on the current advancements in novel carriers for various drugs to treat psoriasis topically. Area covered: The objective of this review describes the detailed study such as pathophysiology, epidemiology, types, causes, diagnosis, and topical treatment options for psoriasis, as well as the role of the nanotechnology-based delivery system to manage psoriasis.
Collapse
Affiliation(s)
- Shaheen Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
14
|
Nanodelivery Strategies for Skin Diseases with Barrier Impairment: Focusing on Ceramides and Glucocorticoids. NANOMATERIALS 2022; 12:nano12020275. [PMID: 35055292 PMCID: PMC8779445 DOI: 10.3390/nano12020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.
Collapse
|
15
|
The Brain-Skin Axis in Psoriasis-Psychological, Psychiatric, Hormonal, and Dermatological Aspects. Int J Mol Sci 2022; 23:ijms23020669. [PMID: 35054853 PMCID: PMC8776235 DOI: 10.3390/ijms23020669] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with systemic manifestation, in which psychological factors play an important role. The etiology of psoriasis is complex and multifactorial, including genetic background and environmental factors such as emotional or physical stress. Psychological stress may also play a role in exacerbation of psoriasis, by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, sympathetic–adrenal–medullary axis, peripheral nervous system, and immune system. Skin cells also express various neuropeptides and hormones in response to stress, including the fully functional analog of the HPA axis. The deterioration of psoriatic lesions is accompanied by increased production of inflammatory mediators, which could contribute to the imbalance of neurotransmitters and the development of symptoms of depression and anxiety. Therefore, deregulation of the crosstalk between endocrine, paracrine, and autocrine stress signaling pathways contributes to clinical manifestations of psoriasis, which requires multidisciplinary approaches.
Collapse
|
16
|
Rancan F, Guo X, Rajes K, Sidiropoulou P, Zabihi F, Hoffmann L, Hadam S, Blume-Peytavi U, Rühl E, Haag R, Vogt A. Topical Delivery of Rapamycin by Means of Microenvironment-Sensitive Core-Multi-Shell Nanocarriers: Assessment of Anti-Inflammatory Activity in an ex vivo Skin/T Cell Co-Culture Model. Int J Nanomedicine 2021; 16:7137-7151. [PMID: 34712046 PMCID: PMC8548260 DOI: 10.2147/ijn.s330716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction Rapamycin (Rapa) is an immunosuppressive macrolide that inhibits the mechanistic target of rapamycin (mTOR) activity. Thanks to its anti-proliferative effects towards different cell types, including keratinocytes and T cells, Rapa shows promise in the treatment of skin diseases characterized by cell hyperproliferation. However, Rapa skin penetration is limited due to its lipophilic nature (log P = 4.3) and high molecular weight (MW = 914 g/mol). In previous studies, new microenvironment-sensitive core multishell (CMS) nanocarriers capable of sensing the redox state of inflamed skin were developed as more efficient and selective vehicles for macrolide delivery to inflamed skin. Methods In this study, we tested such redox-sensitive CMS nanocarriers using an inflammatory skin model based on human skin explants co-cultured with Jurkat T cells. Serine protease (SP) was applied on skin surface to induce skin barrier impairment and oxidative stress, whereas phytohaemagglutinin (PHA), IL-17A, and IL-22 were used to activate Jurkat cells. Activation markers, such as CD45 and CD69, phosphorylated ribosomal protein S6 (pRP-S6), and IL-2 release were monitored in activated T cells, whereas pro-inflammatory cytokines were measured in skin extracts and culture medium. Results We found that alteration of skin barrier proteins corneodesmosin (CDSN), occludin (Occl), and zonula occludens-1 (ZO-1) as well as oxidation-induced decrease of free thiol groups occurred upon SP-treatment. All Rapa formulations exerted inhibitory effects on T cells after penetration across ex vivo skin. No effects on skin inflammatory markers were detected. The superiority of the oxidative-sensitive CMS nanocarriers over the other formulations was observed with regard to drug delivery as well as downregulation of IL-2 release. Conclusion Overall, our results demonstrate that nanocarriers addressing features of diseased skin are promising approaches to improve the topical delivery of macrolide drugs.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Polytimi Sidiropoulou
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Luisa Hoffmann
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Current Concepts of Psoriasis Immunopathogenesis. Int J Mol Sci 2021; 22:ijms222111574. [PMID: 34769005 PMCID: PMC8584028 DOI: 10.3390/ijms222111574] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a recurrent, chronic, immune-mediated, systemic inflammatory disease of the skin, joints, and other organic systems. After atopic dermatitis, chronic stationary psoriasis is the most common inflammatory skin disease, affecting an average of 2-4% of the world's population. The disease carries a significant burden due to its numerous comorbidities and the major impact on patients' social and emotional aspects of life. According to current knowledge, psoriasis is a multifactorial disease that occurs in genetically predisposed individuals under various environmental factors, which trigger an immune response disorder with a series of complex inflammatory cascades. The disease is initiated and maintained by mutual interaction of the innate and adaptive immune cells, primarily dendritic cells, T lymphocytes, and keratinocytes, whose leading role alternates at different stages of the disease, consisting mainly in the IL-23/Th17 pathway. Inflammatory events result in consequent epidermal and dermal changes and evolution of the characteristic psoriatic phenotype, respectively. This paper aims to present a comprehensive overview of current knowledge on psoriasis genetic and environmental etiological factors, immunopathogenesis, and the leading cellular and cytokine participants in the inflammatory pathways of this disease.
Collapse
|
18
|
Biswasroy P, Pradhan D, Kar B, Ghosh G, Rath G. Recent Advancement in Topical Nanocarriers for the Treatment of Psoriasis. AAPS PharmSciTech 2021; 22:164. [PMID: 34041632 DOI: 10.1208/s12249-021-02057-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a life-threatening autoimmune inflammatory skin disease, triggered by T lymphocyte. Recently, the drugs most commonly used for the treatment of psoriasis include methotrexate (MTX), cyclosporine (CsA), acitretin, dexamethasone, and salicylic acid. However, conventional formulations due to poor absorptive capacity, inconsistent drug release characteristics, poor capability of selective targeting, poor retention of drug molecules in target tissue, and unintended skin reactions restrict the clinical efficacy of drugs. Advances in topical nanocarriers allow the development of prominent drug delivery platforms can be employed to address the critical issues associated with conventional formulations. Advances in nanocarriers design, nano-dimensional configuration, and surface functionalization allow formulation scientists to develop formulations for a more effective treatment of psoriasis. Moreover, interventions in the size distribution, shape, agglomeration/aggregation potential, and surface chemistry are the significant aspects need to be critically evaluated for better therapeutic results. This review attempted to explore the opportunities and challenges of current revelations in the nano carrier-based topical drug delivery approach used for the treatment of psoriasis.
Collapse
|
19
|
Petit RG, Cano A, Ortiz A, Espina M, Prat J, Muñoz M, Severino P, Souto EB, García ML, Pujol M, Sánchez-López E. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. Int J Mol Sci 2021; 22:4983. [PMID: 34067151 PMCID: PMC8125586 DOI: 10.3390/ijms22094983] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Research in the pathogenesis of inflammatory skin diseases, such as skin dermatitis and psoriasis, has experienced some relevant breakthroughs in recent years. The understanding of age-related factors, gender, and genetic predisposition of these multifactorial diseases has been instrumental for the development of new pharmacological and technological treatment approaches. In this review, we discuss the molecular mechanisms behind the pathological features of psoriasis, also addressing the currently available treatments and novel therapies that are under clinical trials. Innovative therapies developed over the last 10 years have been researched. In this area, advantages of nanotechnological approaches to provide an effective drug concentration in the disease site are highlighted, together with microneedles as innovative candidates for drug delivery systems in psoriasis and other inflammatory chronic skin diseases.
Collapse
Affiliation(s)
- Robert Gironés Petit
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| | - Alba Ortiz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Montserrat Muñoz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patrícia Severino
- University of Tiradentes (Unit) Av. Murilo Dantas, Aracaju 49010-390, Brazil;
- Institute of Technology and Research (ITP) Av. Murilo Dantas, Aracaju 49010-390, Brazil
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria L. García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (R.G.P.); (A.C.); (A.O.); (M.E.); (J.P.); (M.M.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network, Carlos III Health Institute, 28031 Madrid, Spain
| |
Collapse
|
20
|
Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog Biomater 2021; 10:1-17. [PMID: 33738750 DOI: 10.1007/s40204-021-00154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, topical treatments to dermal disorders have shown ineffectiveness in delivering the medication at a particular location without a suitable drug carrier. Psoriasis treatment is hindered because of the ineffective delivery and efficacy of conventional pharmaceutical treatment. In conventional medication formulation approach, it is difficult to breach the transdermal layer of a skin membrane for topical drugs, i.e. cyclosporine, methotrexate. This problem is further complicated by extreme disease-associated conditions such as hyperkeratosis and irritation. Intending to assure better drug delivery carriers, this review emphasizes the therapeutic efficacy of polymers and their potential to deliver the drug into the deeper layer of the skin membrane. The polymers are essential in structural and physiochemical perspectives as it works as a carrier for the medication. A vast variety of delivery carriers is available nowadays but their applicability in such dermal cases like psoriasis is still lacking due to less knowledge on an appropriate polymer. The current investigation of suitable polymer would assist in brushing our expertise to optimize the advantages of a wide spectrum of polymers to fulfill the topical targeting of psoriasis.
Collapse
|
21
|
Bragazzi NL, Trabelsi K, Garbarino S, Ammar A, Chtourou H, Pacifico A, Malagoli P, Kocic H, Conic RRZ, Kridin K, Pigatto PDM, Damiani G. Can intermittent, time-restricted circadian fasting modulate cutaneous severity of dermatological disorders? Insights from a multicenter, observational, prospective study. Dermatol Ther 2021; 34:e14912. [PMID: 33629451 DOI: 10.1111/dth.14912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
The impact of intermittent circadian fasting (ICF) on skin disorders is far to be plenty deciphered. However, the circadian rhythm seems to exert a modulation on dermatoses severity, drug-response, and drug-related side effects. We aimed to evaluate ICF effect in the daily management of dermatological diseases. In this multicenter, prospective observational study we enrolled patients willing to undergo the 2018 ICF (from May 16 to June 14). Dermatoses severity were evaluated at the beginning of ICF (T0) and at the end of ICF (T1) by two independent board-certified dermatologists. Seventy-two patients suffering from different dermatoses volunteered to take part into the study. They displayed a mean age of 40.38 ± 12.46 years (median 41.0 years), 25 subjects were males (34.7% of the entire sample). The median weight change was 0 kg. The overall ICF effect size was -0.58 ([95% CI -0.83 to -0.33], P < .0001, medium effect size). Since in the present investigation no weight loss occurred, we could speculate that the impact of fasting in terms of improvements in the clinical symptoms could be rather due to the perturbation of the human biological clock. Despite our data remain preliminary, a chronobiological approach should be incorporated in the dermatological armamentarium.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy.,Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics, York University, Toronto, Ontario, Canada.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Polyclinic Hospital San Martino IRCCS, Genoa, Italy
| | - Khaled Trabelsi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Polyclinic Hospital San Martino IRCCS, Genoa, Italy
| | - Achraf Ammar
- Institute of Sport Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisia.,Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Alessia Pacifico
- Clinical Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | | | - Hristina Kocic
- Department of Dermatology, University of Nis, Nis, Serbia
| | - Rosalynn R Z Conic
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Khalaf Kridin
- Department of Experimental Dermatology, Lubeck Institute, University of Lübeck, Lübeck, Germany
| | - Paolo Daniele Maria Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Lin ZC, Hwang TL, Huang TH, Tahara K, Trousil J, Fang JY. Monovalent antibody-conjugated lipid-polymer nanohybrids for active targeting to desmoglein 3 of keratinocytes to attenuate psoriasiform inflammation. Theranostics 2021; 11:4567-4584. [PMID: 33754014 PMCID: PMC7978323 DOI: 10.7150/thno.56995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
To improve the treatment of psoriasiform inflammation, we developed actively targeted nanocarriers loaded with the phosphodiesterase 4 inhibitor AN2728. Methods: Phospholipid-poly(lactic-co-glycolic acid) nanohybrids were prepared and conjugated with monovalent anti-desmoglein 3 antibody to bind keratinocytes. Results: The actively targeted nanohybrids were 229 nm in mean size with a nearly neutral surface charge. Flow cytometry and confocal microscopy showed a 9-fold increase in keratinocyte uptake of targeted nanohybrids relative to non-targeted nanoparticles. The nanoparticles localized mainly in lysosomes after internalization. AN2728-loaded antibody-conjugated nanocarriers inhibited cytokine/chemokine overexpression in activated keratinocytes without affecting cell viability. The targeted nanohybrids also suppressed neutrophil migration by reducing CXCL1 and CXCL2 release from keratinocytes. Following subcutaneous administration in mice, the nanohybrids distributed to the epidermis and hair follicles. In a psoriasis-like skin mouse model, the actively targeted nanoparticles were superior to free drug and non-targeted nanoparticles in mitigating skin inflammation. Intervention with the targeted nanosystem reduced the epidermal thickness of the psoriasiform lesion from 191 to 42 µm, decreased the Psoriasis Area Severity Index by 74%, restored barrier function, and returned chemokine levels to baseline. Conclusions: Our developed nanosystem was safe and demonstrated efficient targeting properties for the treatment of cutaneous inflammation.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
23
|
Sindrilaru A, Filip A, Scharffetter‐Kochanek K, Crisan D. How can nanoparticle‐based technologies revolutionize the topical therapy in psoriasis? Exp Dermatol 2020; 29:1097-1103. [DOI: 10.1111/exd.14149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Anca Sindrilaru
- Department of Dermatology and Allergic Diseases University of Ulm Ulm Germany
| | - Adriana Filip
- Department of Physiology University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | | | - Diana Crisan
- Department of Dermatology and Allergic Diseases University of Ulm Ulm Germany
| |
Collapse
|
24
|
Wu L, Liu G, Wang W, Liu R, Liao L, Cheng N, Li W, Zhang W, Ding D. Cyclodextrin-Modified CeO 2 Nanoparticles as a Multifunctional Nanozyme for Combinational Therapy of Psoriasis. Int J Nanomedicine 2020; 15:2515-2527. [PMID: 32368038 PMCID: PMC7170634 DOI: 10.2147/ijn.s246783] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Reactive oxygen species (ROS)-induced oxidative stress plays a key role in the pathogenesis and progression of psoriasis by causing inflammation. Antioxidative strategies eradicating ROS may serve as effective and easy treatment options for psoriasis, while nanozymes with intrinsic antioxidant enzyme-like activity have not been explored for psoriasis treatment. The aim of this study is to fabricate β-cyclodextrins (β-CDs)-modified ceria nanoparticles (β-CDs/CeO2 NPs) with drug-loaded and multimimic-enzyme activities for combinational psoriasis therapy. Methods The β-CDs/CeO2 NPs were synthesized by a hydrothermal method using unmodified β-CDs as a protecting agent. The structure, size and morphology were analyzed by dynamic light scattering, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. Considering the superoxide dismutase (SOD)- and catalase-mimetic activities, the in vitro antioxidant activity of the β-CDs/CeO2 NPs was investigated. After dithranol (DIT) was loaded, the drug-loading capacity and release profile were determined by UV-visible light spectrophotometer and high-performance liquid chromatography. The anti-psoriatic efficacy was studied in the imiquimod (IMQ)-induced mouse model on the basis of morphological evaluation, psoriasis area and severity index calculation (PASI), and inflammatory cytokine expression. Results The average particle size of the blank β-CDs/CeO2 NPs was 60.89±0.32 nm with a polydispersity index (PDI) of 0.12, whereas that of the DIT-loaded NPs was 79.38±1.06 nm with a PDI of 0.27. TEM results showed the as-prepared NPs formed a uniform quasi-spherical shape with low polydispersity. XPS indicates synthesized NPs have a mixed Ce3+/Ce4+ valence state. FTIR spectroscopy confirmed the presence of β-CDs and DIT in the NPs. Inhibition of superoxide anion rate by NPs could be reached to 79.4% in the presence of 200 µg/mL, and elimination of H2O2 efficiency reached about 50% in the presence of 40 µg/mL, demonstrating excellent superoxide dismutase- and catalase-mimicking activities, thereby providing remarkable cryoprotection against ROS-mediated damage. Furthermore, β-CDs on the surface endowed the NPs with drug-loading function via host–guest interactions. The entrapment efficiency and drug loading of DIT are 94.7% and 3.48%, respectively. The in vitro drug release curves revealed a suitable release capability of DIT@β-CDs/CeO2 NPs under physiological conditions. In IMQ-induced psoriatic model, the DIT@β-CDs/CeO2 NPs exhibited excellent therapeutic effect. Conclusion This study may pave the way for the application of nanozyme β-CDs/CeO2 NPs as a powerful tool for psoriasis therapy.
Collapse
Affiliation(s)
- Lingyun Wu
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China.,Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China
| | - Guoyan Liu
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, People's Republic of China
| | - Wenyu Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Ruobing Liu
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Lingyan Liao
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China
| |
Collapse
|