1
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Laura Francés J, Musolino E, Papait R, Pagiatakis C. Non-Coding RNAs in Cell-to-Cell Communication: Exploiting Physiological Mechanisms as Therapeutic Targets in Cardiovascular Pathologies. Int J Mol Sci 2023; 24:ijms24032205. [PMID: 36768528 PMCID: PMC9916956 DOI: 10.3390/ijms24032205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, has been characterized at the molecular level by alterations in gene expression that contribute to the etiology of the disease. Such alterations have been shown to play a critical role in the development of atherosclerosis, cardiac remodeling, and age-related heart failure. Although much is now known about the cellular and molecular mechanisms in this context, the role of epigenetics in the onset of cardiovascular disease remains unclear. Epigenetics, a complex network of mechanisms that regulate gene expression independently of changes to the DNA sequence, has been highly implicated in the loss of homeostasis and the aberrant activation of a myriad of cellular pathways. More specifically, non-coding RNAs have been gaining much attention as epigenetic regulators of various pathologies. In this review, we will provide an overview of the ncRNAs involved in cell-to-cell communication in cardiovascular disease, namely atherosclerosis, cardiac remodeling, and cardiac ageing, and the potential use of epigenetic drugs as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Roberto Papait
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
3
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
4
|
Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9050190. [PMID: 35621468 PMCID: PMC9137703 DOI: 10.3390/bioengineering9050190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022] Open
Abstract
Research on the capability of non-viral gene delivery systems to induce tissue regeneration is a continued effort as the current use of viral vectors can present with significant limitations. Despite initially showing lower gene transfection and gene expression efficiencies, non-viral delivery methods continue to be optimized to match that of their viral counterparts. Ultrasound-mediated gene transfer, referred to as sonoporation, occurs by the induction of transient membrane permeabilization and has been found to significantly increase the uptake and expression of DNA in cells across many organ systems. In addition, it offers a more favorable safety profile compared to other non-viral delivery methods. Studies have shown that microbubble-enhanced sonoporation can elicit significant tissue regeneration in both ectopic and disease models, including bone and vascular tissue regeneration. Despite this, no clinical trials on the use of sonoporation for tissue regeneration have been conducted, although current clinical trials using sonoporation for other indications suggest that the method is safe for use in the clinical setting. In this review, we describe the pre-clinical studies conducted thus far on the use of sonoporation for tissue regeneration. Further, the various techniques used to increase the effectiveness and duration of sonoporation-induced gene transfer, as well as the obstacles that may be currently hindering clinical translation, are explored.
Collapse
|
5
|
Fasolo F, Jin H, Winski G, Chernogubova E, Pauli J, Winter H, Li DY, Glukha N, Bauer S, Metschl S, Wu Z, Koschinsky ML, Reilly M, Pelisek J, Kempf W, Eckstein HH, Soehnlein O, Matic L, Hedin U, Bäcklund A, Bergmark C, Paloschi V, Maegdefessel L. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021; 144:1567-1583. [PMID: 34647815 PMCID: PMC8570347 DOI: 10.1161/circulationaha.120.052023] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hong Jin
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Daniel Y Li
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Nadiya Glukha
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Sabine Bauer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Susanne Metschl
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | | | - Muredach Reilly
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Switzerland (J. Pelisek)
| | - Wolfgang Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Oliver Soehnlein
- Department of Experimental Pathology, Westphalian Wilhelms University, Munster, Germany (O.S.).,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (O.S.).,Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Germany (O.S.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Bäcklund
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Claes Bergmark
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Valentina Paloschi
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Zhao S, Xie J, Zhao C, Cao W, Yu Y. Ultrasound-Targeted Microbubble Destruction Enhances the Inhibitive Efficacy of miR-21 Silencing in HeLa Cells. Med Sci Monit 2021; 27:e923660. [PMID: 33606670 PMCID: PMC7901158 DOI: 10.12659/msm.923660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown that miR-21 upregulation is related to the aggressive development of cervical cancer. Ultrasound-targeted microbubble destruction (UTMD) is a method that increases the absorption of targeted genes or drugs by cells. We focus on the role of UTMD-mediated miR-21 transfection in HeLa cells, a cervical cancer cell line. MATERIAL AND METHODS The effects of different ultrasound intensities on the transfection efficiency of miR-21-enhanced green fluorescent protein (EGFP) and miR-21 inhibitor-EGFP plasmids were determined by flow cytometry. The effects of UTMD-mediated miR-21 transfection on HeLa cell proliferation, apoptosis, migration, and invasion were measured by CCK-8, flow cytometry, wound healing experiments, and transwell migration assay, respectively. Western blot and real-time quantitative PCR were used to detect the expression of tumor-related genes. RESULTS When the ultrasound intensity was 1.5 W/cm², the miR-21 plasmid had the highest transfection efficiency. Exogenous miR-21 promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis in HeLa cells. Treatment of cells with UTMD further enhanced the effects of miR-21-EGFP and miR-21 inhibitor-EGFP. In addition, miR-21 overexpression significantly increased the expression of p-Akt, Akt, Bcl-2, Wnt, ß-catenin, matrix metalloprotein-9 (MMP-9), and epidermal growth factor (EGFR) levels, and decreased Bax expression. The regulatory role of miR-21 inhibitor-EGFP was opposite to that of miR-21-EGFP. After UTMD, miR-21-EGFP and miR-21 inhibitor-EGFP had more significant regulatory effects on these genes. CONCLUSIONS Our research revealed that an ultrasound intensity of 1.5 W/cm² is the best parameter for miR-21 transfection. UTMD can enhance the biological function of miR-21 in HeLa cells, and alter the effect of miR-21 on apoptosis, metastasis, and phosphorylation genes.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Ultrasonography, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Jing Xie
- Department of Ultrasonography, Wucheng Traditional Chinese Medicine (TMC) Hospital, Wucheng, Shandong, China (mainland)
| | - Changhua Zhao
- Department of Ultrasonography, Zhucheng People's Hospital, Zhucheng, Shandong, China (mainland)
| | - Wen Cao
- Departmeng of Oncology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Yangping Yu
- Department of Ultrasonography, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
7
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs. J Control Release 2019; 309:1-10. [PMID: 31326463 DOI: 10.1016/j.jconrel.2019.07.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
In this study, we designed and validated a platform for ultrasound and microbubble-mediated delivery of FDA-approved pegylated poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with anticancer microRNAs (miRNAs) to deep tissues in a pig model. Small RNAs have been shown to reprogram tumor cells and sensitize them to clinically used chemotherapy. To overcome their short intravascular circulation half-life and achieve controlled and sustained release into tumor cells, anticancer miRNAs need to be encapsulated into nanocarriers. Focused ultrasound combined with gas-filled microbubbles provides a noninvasive way to improve the permeability of tumor vasculature and increase the delivery efficiency of drug-loaded particles. A single handheld, curvilinear ultrasound array was used in this study for image-guided therapy with clinical-grade SonoVue contrast agent. First, we validated the platform on phantoms to optimize the microbubble cavitation dose based on acoustic parameters, including peak negative pressure, pulse length, and pulse repetition frequency. We then tested the system in vivo by delivering PLGA nanoparticles co-loaded with antisense-miRNA-21 and antisense-miRNA-10b to pig liver and kidney. Enhanced miRNA delivery was observed (1.9- to 3.7-fold increase) as a result of the ultrasound treatment compared to untreated control regions. Additionally, we used highly fluorescent semiconducting polymer nanoparticles to visually assess nanoparticle extravasation. Fluorescent microscopy suggested the presence of nanoparticles in the extravascular compartment. Hematoxylin and eosin staining of treated tissues did not reveal tissue damage. The results presented in this manuscript suggest that the proposed platform may be used to safely and noninvasively enhance the delivery of miRNA-loaded nanoparticles to target regions in deep organs in large animal models.
Collapse
|
9
|
Duygu B, Juni R, Ottaviani L, Bitsch N, Wit JBM, de Windt LJ, da Costa Martins PA. Comparison of different chemically modified inhibitors of miR-199b in vivo. Biochem Pharmacol 2018; 159:106-115. [PMID: 30452907 DOI: 10.1016/j.bcp.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) have recently received great attention for their regulatory roles in diverse cellular processes and for their contribution to several human pathologies. Modulation of miRNAs in vivo provides beneficial therapeutic strategies for the treatment of many diseases, as evidenced by various preclinical studies. However, specific issues regarding the in vivo use of miRNA inhibitors (antimiRs) such as organ-specific delivery, optimal dosing and formulation of the best chemistry to obtain efficient miRNA inhibition remain to be addressed. Here, we aimed at comparing the in vivo efficacy of different chemistry-based antimiR oligonucleotides to inhibit cardiac expression of miR-199b, a highly promising therapeutic target for the treatment of pressure overload-induced cardiac dysfunction. For this purpose, four different designs of oligonucleotides to inhibit miR-199b were initially developed. Systemic administration to wildtype mice on three consecutive days was followed by organ harvesting, seven days after the first injection, in order to quantify the dose-dependent changes in miR-199b expression levels. When comparing the efficiency of each inhibitor at the highest applied dose we observed that the antagomir was the only inhibitor inducing complete inhibition of miR-199b in the heart. LNA reduced expression in the heart by 50 percent while the Zen-AMO and F/MOE chemistries failed to repress miR-199b expression in the heart at any given dose, in vivo. Further optimization was achieved by subjecting the antagomir and LNA nucleotides to additional chemical modifications. Interestingly, antagomir modification by replacing the cholesterol moiety from the 3' to the 5' end of the molecule significantly improved the inhibitory capacity, as reflected by a 75 percent downregulation of miR-199b expression already at a concentration of 5 mg/kg/day. Similar results could be obtained with a LNA-RNA molecule but upon administration of 80 mg/kg/day. These findings show that, from all the chemistries tested by us, an antagomir carrying the cholesterol group at the 5' end was the most efficient inhibitor of miR-199b in the heart, in vivo. Moreover, our data also emphasize the importance of chemistry optimization and best dose range finding to achieve the greatest efficacy in miRNA inhibition in vivo.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Rio Juni
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nicole Bitsch
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jan B M Wit
- Mirabilis Therapeutics BV, Maastricht, The Netherlands
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Jin H, Li DY, Chernogubova E, Sun C, Busch A, Eken SM, Saliba-Gustafsson P, Winter H, Winski G, Raaz U, Schellinger IN, Simon N, Hegenloh R, Matic LP, Jagodic M, Ehrenborg E, Pelisek J, Eckstein HH, Hedin U, Backlund A, Maegdefessel L. Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Mol Ther 2018; 26:1040-1055. [PMID: 29503197 PMCID: PMC6080193 DOI: 10.1016/j.ymthe.2018.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.
Collapse
Affiliation(s)
- Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniel Y Li
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | | | - Changyan Sun
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Suzanne M Eken
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Hanna Winter
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Uwe Raaz
- University Heart Center, Göttingen, Germany
| | | | - Nancy Simon
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Renate Hegenloh
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ewa Ehrenborg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany.
| |
Collapse
|
11
|
Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 2018; 10:1099-1111. [PMID: 29607187 DOI: 10.21037/jtd.2018.01.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular disorders. UTMD, which binds microbubbles with DNA or RNA carriers into the shell and destroys the located microbubbles with low frequency and high mechanical index ultrasound can release target agents to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance. Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
Collapse
Affiliation(s)
- Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Barsha Thapa
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanmei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Menglin Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Comparison of Intracoronary and Intravenous Ultrasound-targeted Microbubble Destruction–mediated Ang1 Gene Transfection on Left Ventricular Remodeling in Canines With Acute Myocardial Infarction. J Cardiovasc Pharmacol 2017; 70:25-33. [DOI: 10.1097/fjc.0000000000000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
Ultrasound targeted microbubble destruction (UTMD) is a novel technique that is used to deliver a gene or other bioactive substance to organs of living animals in a noninvasive manner. Plasmid DNA binding with cationic liposome into nanoparticles are assembled into the shell of microbubbles, which are circulated by intravenous injection. Intermittent bursts of ultrasound with low frequency and high mechanical index destroys the microbubbles and releases the nanoparticles into targeted organ to transfect local organ cells. Cell-specific promoters can be used to further enhance cell specificity. Here we describe UTMD applied to cardiac gene delivery.
Collapse
Affiliation(s)
- Shuyuan Chen
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA.
| |
Collapse
|
14
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Schlegel P, Huditz R, Meinhardt E, Rapti K, Geis N, Most P, Katus HA, Müller OJ, Bekeredjian R, Raake PW. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model. Hum Gene Ther Methods 2016; 27:71-8. [DOI: 10.1089/hgtb.2015.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philipp Schlegel
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Regina Huditz
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Kleopatra Rapti
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Nicolas Geis
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Kamps JAAM, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016; 8:163-179. [PMID: 26981212 PMCID: PMC4766267 DOI: 10.4330/wjc.v8.i2.163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer neglectable cardiomyogenesis. This has prompted the need for methodological developments that crease de novo cardiomyocytes. Current insights in cardiac development on the processes and regulatory mechanisms in embryonic cardiomyocyte differentiation provide a basis to therapeutically induce these pathways to generate new cardiomyocytes. Here, we discuss the current knowledge on embryonic cardiomyocyte differentiation and the implementation of this knowledge in state-of-the-art protocols to the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on microRNA-mediated reprogramming. Additionally, we discuss current advances on state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue. Together, the advances in our understanding of cardiac development, recent advances in microRNA-based therapeutics, and innovative drug delivery systems, highlight exciting opportunities for effective therapies for myocardial infarction and heart failure.
Collapse
|
17
|
Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1782-90. [PMID: 26851074 DOI: 10.1016/j.bbamcr.2016.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 2015; 22:1000-6. [DOI: 10.1038/gt.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
|