1
|
Sulicka-Grodzicka J, Szczepaniak P, Jozefczuk E, Urbanski K, Siedlinski M, Niewiara Ł, Guzik B, Filip G, Kapelak B, Wierzbicki K, Korkosz M, Guzik TJ, Mikolajczyk TP. Systemic and local vascular inflammation and arterial reactive oxygen species generation in patients with advanced cardiovascular diseases. Front Cardiovasc Med 2023; 10:1230051. [PMID: 37745103 PMCID: PMC10513373 DOI: 10.3389/fcvm.2023.1230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Systemic inflammation may cause endothelial activation, mediate local inflammation, and accelerate progression of atherosclerosis. We examined whether the levels of circulating inflammatory cytokines reflect local vascular inflammation and oxidative stress in two types of human arteries. Methods Human internal mammary artery (IMA) was obtained in 69 patients undergoing coronary artery bypass graft (CABG) surgery and left anterior descending (LAD) artery was obtained in 17 patients undergoing heart transplantation (HTx). Plasma levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were measured using ELISA, high-sensitivity C-reactive protein (hs-CRP) was measured using Luminex, and mRNA expression of proinflammatory cytokines in the vascular tissues was assessed. Furthermore, formation of superoxide anion was measured in segments of IMA using 5 uM lucigenin-dependent chemiluminescence. Vascular reactivity was measured using tissue organ bath system. Results TNF-α, IL-6 and IL-1β mRNAs were expressed in all studied IMA and LAD segments. Plasma levels of inflammatory cytokines did not correlate with vascular cytokine mRNA expression neither in IMA nor in LAD. Plasma TNF-α and IL-6 correlated with hs-CRP level in CABG group. Hs-CRP also correlated with TNF-α in HTx group. Neither vascular TNF-α, IL-6 and IL-1β mRNA expression, nor systemic levels of either TNF-α, IL-6 and IL-1β were correlated with superoxide generation in IMAs. Interestingly, circulating IL-1β negatively correlated with maximal relaxation of the internal mammary artery (r = -0.37, p = 0.004). At the same time the mRNA expression of studied inflammatory cytokines were positively associated with each other in both IMA and LAD. The positive correlations were observed between circulating levels of IL-6 and TNF-α in CABG cohort and IL-6 and IL-1β in HTx cohort. Conclusions This study shows that peripheral inflammatory cytokine measurements may not reflect local vascular inflammation or oxidative stress in patients with advanced cardiovascular disease (CVD). Circulating pro-inflammatory cytokines generally correlated positively with each other, similarly their mRNA correlated in the arterial wall, however, these levels were not correlated between the studied compartments.
Collapse
Affiliation(s)
- Joanna Sulicka-Grodzicka
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Karol Urbanski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Niewiara
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Bartłomiej Guzik
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Bogusław Kapelak
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomasz P. Mikolajczyk
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Zhang Z, Chen D, Du K, Huang Y, Li X, Li Q, Lv X. MOTS-c: A potential anti-pulmonary fibrosis factor derived by mitochondria. Mitochondrion 2023:S1567-7249(23)00052-1. [PMID: 37307934 DOI: 10.1016/j.mito.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Dongmei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Quwen Li
- Department of Fujian Zoonosis Research Key Laboratory, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, China
| | - Xiaoting Lv
- Department of respiratory and critical care medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Department of respiratory and critical care medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
3
|
The Clinical Significance of Salusins in Systemic Sclerosis-A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13050848. [PMID: 36899991 PMCID: PMC10001236 DOI: 10.3390/diagnostics13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is a connective tissue disease manifesting with progressive fibrosis of the skin and internal organs. Its pathogenesis is strictly associated with vascular disfunction and damage. Salusin-α and salusin-β, endogenous peptides regulating secretion of pro-inflammatory cytokines and vascular smooth muscle proliferation, may potentially play a role in SSc pathogenesis. Objectives: The aim of this study was to assess the concentration of salusins in sera of patients with SSc and healthy controls and to evaluate correlations between the salusins levels and selected clinical parameters within the study group. Materials and methods: 48 patients with SSc (44 women; mean age, 56.4, standard deviation, 11.4) and 25 adult healthy volunteers (25 women; mean age, 55.2, standard deviation, 11.2) were enrolled. All patients with SSc were treated with vasodilators and twenty-seven of them (56%) also received immunosuppressive therapy. Results: Circulating salusin-α was significantly elevated in patients with SSc in comparison to healthy controls (U = 350.5, p = 0.004). Patients with SSc receiving immunosuppression had higher serum salusin-α concentrations compared with those without immunosuppressive therapy (U = 176.0, p = 0.026). No correlation was observed between salusins concentrations and skin or internal organ involvement parameters. Conclusions: Salusin-α, a bioactive peptide mitigating the endothelial disfunction, was elevated in patients with systemic sclerosis receiving vasodilators and immunosuppressants. Increased salusin-α concertation may be associated with the initiation of atheroprotective processes in patients with SSc managed pharmacologically, which requires verification in future studies.
Collapse
|
4
|
Yang J, Xu X, Han S, Qi J, Li X, Pan T, Zhang R, Han Y. Comparison of multiple treatments in the management of transplant-related thrombotic microangiopathy: a network meta-analysis. Ann Hematol 2023; 102:31-39. [PMID: 36547721 DOI: 10.1007/s00277-022-05069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (TA-TMA) is a fatal post-transplant complication. It has a high mortality rate and worse prognosis, but treatment strategies remain controversial. We screened 6 out of 3453 studies on the treatment of TA-TMA. These investigations compared 5 treatment strategies with a network meta-analysis approach. The final outcome was the proportion of patients who responded to these therapies. There were significant differences in response rates for each treatment. Achieving analysis through direct and indirect evidence in the rank probabilities shows that rTM (recombinant human soluble thrombomodulin) is most likely to be rank 1 (64.98%), Eculizumab intervention rank 2 (48.66%), ISM (immunosuppression manipulation) rank 3 (32.24%), TPE (therapeutic plasma exchange) intervention rank 4 (69.56%), and supportive care intervention rank 5 (70.20%). Eculizumab and ISM have significantly higher efficacy than supportive care (odds ratio (OR): 18.04, 18.21 respectively); and TPE having lower efficacy than all other TA-TMA therapies exception to supportive care. In our study, rTM and Eculizumab may be the best choice when treating TA-TMA.
Collapse
Affiliation(s)
- Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shiyu Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Rui Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China. .,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
6
|
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, Ye L. Mechanisms of cardiovascular toxicity induced by PM 2.5: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65033-65051. [PMID: 34617228 DOI: 10.1007/s11356-021-16735-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies have shown that exposure to particulate matter with a diameter ≤ 2.5 μm (PM2.5) could affect the onset and development of cardiovascular diseases. To explore the underlying mechanisms, the studies conducted in vitro investigations using different cell lines. In this review, we examined recently published reports cited by PubMed or Web of Science on the topic of cardiovascular toxicity induced by PM2.5 that carried the term in vitro. Here, we summarized the suggested mechanisms of PM2.5 leading to adverse effects and cardiovascular toxicity including oxidative stress; the increase of vascular endothelial permeability; the injury of vasomotor function and vascular reparative capacity in vascular endothelial cell lines; macrophage polarization and apoptosis in macrophage cell lines; and hypermethylation and apoptosis in the AC16 cell line and the related signaling pathways, which provided a new research direction of cardiovascular toxicity of PM2.5.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| |
Collapse
|
7
|
Lu J, Liu G, Wang Z, Cao J, Chen Y, Dong Y. Restraint stress induces uterine microenvironment disorder in mice during early pregnancy through the β 2-AR/cAMP/PKA pathway. Stress 2021; 24:514-528. [PMID: 33280472 DOI: 10.1080/10253890.2020.1855419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. β-Adrenergic receptor (β-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that β2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than β1-AR and β3-AR in different gestation ages. The β2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after β2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the β2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guanhui Liu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Wang Y, Ruan Y, Wu S. ET-1 regulates the human umbilical vein endothelial cell cycle by adjusting the ERβ/FOXN1 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1499. [PMID: 33313244 PMCID: PMC7729364 DOI: 10.21037/atm-20-6560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Atherosclerosis (AS) is a chronic and progressive disease primarily induced by inflammation of the arterial blood vessel wall. Investigating the function and molecular regulation mechanisms of ET-1, ERβ, and FOXN1 in disease models will provide new targets and means for clinical treatment. Methods The effects of ET-1 on oxidative stress in HUVEC were verified through quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, as well as dual luciferase reporter gene and biochemical assays. Results Compared with the ET-1+ negative control (NC) group, the ERβ messenger ribonucleic acid (mRNA) expression level was significantly reduced, and the FOXN1 mRNA expression level increased markedly in the ET-1 + ERβ small interfering ribonucleic acid (siRNA) group. Meanwhile, the FOXN1 mRNA expression level was significantly reduced in the ET-1 + FOXN1 siRNA group. FOXN1 promoter luciferase reporter gene activity was notably enhanced in the ERβ siRNA group compared with the siRNA control group. Compared with the ET-1 + NC group, the levels of reaction oxygen species (ROS) in the ET-1 + ERβ siRNA group increased considerably, the superoxide dismutase (SOD) level was significantly reduced, and the G0/G1 phase cell ratio was reduced. In addition, the protein expression of ERβ and cyclin B1 (CCNB1) was markedly reduced, whereas the protein expression of cyclin A2 (CCNA2), cyclin D1 (CCND1), and cyclin E1 (CCNE1) increased substantially. The opposite result was observed in the ET-1 + FOXN1 siRNA group. Conclusions ET-1 can contribute to the expression of ERβ and FOXN1. ERβ can inhibit the expression of FOXN1 by regulating promoter activity. The ET-1/ERβ/FOXN1 signaling pathway is involved in the regulation of oxidative stress and cycle progression in HUVEC. This study provides a new mechanism for the regulation of umbilical vein endothelial cells. The ET-1/ERβ/FOXN1 signaling pathway may provide novel therapeutic targets and strategies for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Ruan
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Saizhu Wu
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Xiong C, Du Z, Zhu Y, Xue M, Jiang Y, Zhong Y, Jiang L, Chen H, Shi M. Mycophenolate mofetil preconditioning protects mouse liver against ischemia/reperfusion injury in wild type and toll-like receptor 4 knockout mice. Transpl Immunol 2020; 65:101357. [PMID: 33279598 DOI: 10.1016/j.trim.2020.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mycophenolate mofetil (MMF), an immunosuppressive drug, exerts anti-inflammatory effects on organs during ischemia/reperfusion (I/R) injury. However, the exact function of MMF in hepatic I/R injury remains largely unknown. The purpose of this study was to explore the role and potential mechanism of MMF protection in hepatic I/R injury. METHODS Male wild type (WT) and TLR4 knockout (KO) mice were injected intraperitoneally with MMF or normal saline. Animals underwent 90 min of partial hepatic ischemia, followed by 1, 6, or 24 h of reperfusion. Hepatic histology, serum amiotransferase, inflammatory cytokines, hepatocyte apoptosis, and hepatocyte autophagy were examined to assess liver injury. RESULTS Treatment with MMF significantly decreased hepatic I/R injury as indicated by a reduction in serum aminotransferase levels, Suzuki scores, and the overall degree of necrosis. MMF treatment inhibited TLR4 activation dramatically. MMF administration also significantly inhibited the activation of the NF-κB pathway and the expression of pro-inflammatory cytokines. In TLR4 KO mice, MMF still exerted protection from hepatic I/R injury. MMF treatment inhibited hepatocyte apoptosis, as indicated by reduced TUNEL staining, and reduced the accumulation of cleaved caspase-3. In addition, MMF may induce autophagy and increase autophagic flux before and after hepatic reperfusion by augmenting the expression of LC3-II, P62, and Beclin-1. The induction of autophagy by MMF treatment may be related to TLR4 activation. CONCLUSIONS Our results indicate that MMF treatment ameliorates hepatic I/R injury. The mechanism of action likely involves the ability of MMF to decrease apoptosis and the inflammatory response while inducing autophagy.
Collapse
Affiliation(s)
- Cheng Xiong
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhendong Du
- Department of Laboratory Medicine, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Meilin Xue
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Minmin Shi
- Department of General Surgery, Pancreatic disease center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, China; Institute of Translational Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Taoren Honghua Drug Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and RAW264.7 Cells. Front Pharmacol 2020; 11:1070. [PMID: 32765273 PMCID: PMC7379336 DOI: 10.3389/fphar.2020.01070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Taoren Honghua drug is a traditional Chinese medicinal drug used to treat cardiovascular disease. The aim of the study is to investigate the effects of Taoren Honghua drug on inflammation and atherosclerosis in ApoE knock-out mice and RAW264.7 cells. ApoE knock-out mice fed with high fat diet for 8 weeks were randomly divided into five groups and then continued the high fat diet, or plus Taoren Honghua drug at concentrations of 3.63, 1.815, and 0.9075 g/ml, or plus Simvastatin at 2.57 mg/kg. RAW 264.7 cells were intervened with lipopolysaccharide or lipopolysaccharide plus different concentrations of Taoren Honghua drug. Compared to mice only with high fat diet, mice with high fat diet and Taoren Honghua drug showed lower body weight, triglyceride, cholesterol, IL-6 and TNF-α, smaller plaque sizes, less lymph vessel, and T cell contents of lymph nodes, but higher IL-10 level. In RAW264.7 cells, groups with LPS plus Taoren Honghua drug had lower IL-6 and TNF-α, but higher IL-10 than LPS group, as revealed by PCR or ELISA methods. A decrease of total or phosphorylated ERK1/2, JNK, p38, ERK5, STAT3, and AKT were detected, so was the translocation of NF-κB p65 from nuclear to cytoplasm. These results suggested that Taoren Honghua drug could attenuate atherosclerosis and play an anti-inflammatory role via MAPKs, ERK5/STAT3, and AKT/NF-κB p65 signaling pathways in ApoE knock-out mice and lipopolysaccharide-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Yifan Zhang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wei
- Department of Traditional Chinese Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Uehara M, Bahmani B, Jiang L, Jung S, Banouni N, Kasinath V, Solhjou Z, Jing Z, Ordikhani F, Bae M, Clardy J, Annabi N, McGrath MM, Abdi R. Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS NANO 2019; 13:12393-12407. [PMID: 31518498 PMCID: PMC7247279 DOI: 10.1021/acsnano.9b05115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammation occurring within the transplanted organ from the time of harvest is an important stimulus of early alloimmune reactivity and promotes chronic allograft rejection. Chronic immune-mediated injury remains the primary obstacle to the long-term success of organ transplantation. However, organ transplantation represents a rare clinical setting in which the organ is accessible ex vivo, providing an opportunity to use nanotechnology to deliver therapeutics directly to the graft. This approach facilitates the directed delivery of immunosuppressive agents (ISA) to target local pathogenic immune responses prior to the transplantation. Here, we have developed a system of direct delivery and sustained release of mycophenolate mofetil (MMF) to treat the donor organ prior to transplantation. Perfusion of a donor mouse heart with MMF-loaded PEG-PLGA nanoparticles (MMF-NPs) prior to transplantation abrogated cardiac transplant vasculopathy by suppressing intragraft pro-inflammatory cytokines and chemokines. Our findings demonstrate that ex vivo delivery of an ISA to donor organs using a nanocarrier can serve as a clinically feasible approach to reduce transplant immunity.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhao Jing
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Martina M. McGrath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
13
|
Zhou Z, Chen Y, Ni W, Liu T. Upregulation of Nuclear Factor IA Suppresses Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Umbilical Vein Endothelial Cells. Med Sci Monit 2019; 25:1009-1016. [PMID: 30721172 PMCID: PMC6373224 DOI: 10.12659/msm.912132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is part of the cardiovascular pathological processes, including atherosclerosis. Nuclear factor IA (NFIA) influences atherosclerosis development; however, its effects on ERS remain unknown. This study investigated the effect of NFIA on oxidized low-density lipoprotein (ox-LDL)-induced ERS and apoptosis in endothelial cells. Material/Methods Ox-LDL was used to induce lipotoxicity in human umbilical vein endothelial cells (HUVECs) to establish an in vitro oxidative injury model transfected with pcDNA3.0-NFIA. The cytotoxic response was detected using an assay to determine the release of lactate dehydrogenase (LDH). Morphological changes in cell apoptosis were detected using Hoechst 33258 staining. The proportion of apoptotic cells, releases of reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression levels of apoptosis- and ERS-related molecules were detected through Western blotting. Results NFIA expression was downregulated in the in vitro oxidative cell-injury model. Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis, decrease in ROS levels, and loss of ΔΨm. Overexpression of NFIA remarkably inhibited ERS and mitochondrial-mediated apoptosis induced by ox-LDL in HUVECs by reversing the effect of ox-LDL on the expression of JNK1, p-JNK1, CHOP, Cyt C, and Bax. Conclusions These results demonstrated that NFIA might have beneficial effects in the prevention of ox-LDL-induced ERS and apoptosis in vascular endothelial cells. This study provided new insights into the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Yu Chen
- Comprehensive Ward, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Wei Ni
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tao Liu
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| |
Collapse
|
14
|
Zhang S, Chen L, Zhou Z, Fan W, Liu S. Effects of Puerarin on Clinical Parameters, Vascular Endothelial Function, and Inflammatory Factors in Patients with Coronary Artery Disease. Med Sci Monit 2019; 25:402-408. [PMID: 30636768 PMCID: PMC6342064 DOI: 10.12659/msm.911108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background The aim of this study was to investigate the effects of puerarin on vascular endothelial function and inflammatory factors in coronary artery disease (CAD) patients with stable angina pectoris (SAP). Material/Methods To evaluate the effects of angina pectoris, the differences of scores of the Seattle angina questionnaire (SAQ), vascular endothelial function [endothelial progenitor cells (EPCs), nitric oxide (NO) and endothelin 1 (ET-1)], and inflammatory factors [tumor necrosis factor α (TNF-α), hypersensitive C-reactive protein (hs-CRP), interleukin-6 (IL-6)] in 2 groups were assessed before and after treatment. Results Regarding the curative effect of angina pectoris, the total effective rate of the treatment group was significantly superior to that of the control group (89% vs. 65%, P<0.05). The duration of angina pectoris, the number of abnormal leads, the improvement of the ST segment depression of electrocardiogram, and the scores of SAQ life quality indexes in the treatment group were better than those of the control group (P<0.05). In the 2 groups, EPCs and NO were both elevated, while ET-1 was decreased, and the improvements of the treatment group were superior to those of the control group (P<0.05). After treatment, the average levels of serum TNF-α, hs-CRP and IL-6 in the 2 groups were all decreased, which the treatment group showed a much sharper decrease than in the control group (P<0.05). Conclusions Puerarin effectively improves clinical symptoms and vascular endothelial function and reduces the levels of inflammatory factors in patients with CAD.
Collapse
Affiliation(s)
- Shiliang Zhang
- Department of Internal Medicine - Cardiovascular Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Lei Chen
- First Clinical Medical School, Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Zhongyun Zhou
- Department of Internal Medicine - Cardiovascular Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Wenhui Fan
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Sijia Liu
- Department of Comprehensive Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
15
|
Patel G, Biswas K, Patil MD, Chisti Y, Banerjee UC. Bioreactor studies of production of mycophenolic acid by Penicillium brevicompactum. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Jiang X, Gu S, Liu D, Zhao L, Xia S, He X, Chen H, Ge J. Lactobacillus brevis 23017 Relieves Mercury Toxicity in the Colon by Modulation of Oxidative Stress and Inflammation Through the Interplay of MAPK and NF-κB Signaling Cascades. Front Microbiol 2018; 9:2425. [PMID: 30369917 PMCID: PMC6194351 DOI: 10.3389/fmicb.2018.02425] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Aims: Lactobacillus strains have protective effects against heavy metals while relieving oxidative stress and modulating the immune response. Mechanisms that ameliorate heavy metal toxicity and the relationship between probiotics and gut barrier protection in the process of heavy metal pathogenesis was poorly understood. Methods and Results: In this study, Lactobacillus brevis 23017 (LAB, L. brevis 23017), a selected probiotics strain with strong mercury binding capacities, was applied to evaluate the efficiency against mercury toxicity in a mouse model. Histopathological results along with HE stains show that L. brevis 23017 protects the integrity of the small intestinal villus, which slows weight loss in response to Hg exposure. The qRT-PCR results demonstrate that L. brevis 23017 maintains a normal mucosal barrier via modulation of tight junction proteins. Importantly, the present study demonstrates that L. brevis 23017 effectively ameliorates injury of the small intestine by reducing intestinal inflammation and alleviating oxidative stress in animal models. Moreover, L. brevis 23017 blocks oxidative stress and inflammation through MAPK and NF-κB pathways, as shown by western blot. Conclusions: Together, these results reveal that L. brevis 23017 may have applications in the prevention and treatment of oral Hg exposure with fermented functional foods by protecting gut health in daily life.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shanshan Gu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin, China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin, China
| | - Shuang Xia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin, China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin, China
| | - Junwei Ge
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
MOTS-c attenuates endothelial dysfunction via suppressing the MAPK/NF-κB pathway. Int J Cardiol 2018; 268:40. [DOI: 10.1016/j.ijcard.2018.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/27/2022]
|
18
|
Zenata O, Dvorak Z, Vrzal R. Mycophenolate Mofetil induces c-Jun-N-terminal kinase expression in 22Rv1 cells: an impact on androgen receptor signaling. J Cancer 2018; 9:1915-1924. [PMID: 29896275 PMCID: PMC5995952 DOI: 10.7150/jca.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/17/2018] [Indexed: 11/30/2022] Open
Abstract
Mycophenolate Mofetil (MYC) is a transplant drug used to prevent rejection in heart and kidneys transplant patients. Inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in de novo synthesis of guanosine nucleotides, was considered as a primary target for MYC. Recently, we described that MYC was activates aryl hydrocarbon receptor and it antagonizes glucocorticoid receptor. Here we describe an androgen receptor (AR) as another off-target for MYC. We found that MYC increased basal and dihydrotestosterone (DHT)-inducible AR-dependent luciferase activity in AIZ-AR cells. In the same manner it induced or augmented mRNA level of KLK3 (prostate specific antigen; PSA) in 22Rv1 cells. Herein it displayed a hormetic effect on proliferation activity, since it significantly stimulated proliferation in lower concentrations but inhibited in higher (>1 µg/ml) concentrations in the presence of DHT. In contrast, MYC suppressed DHT-inducible KLK3 mRNA expression and cell proliferation in androgen-dependent LNCaP cells. MYC augmented DHT-inducible nuclear translocation of AR and increased the expression of MAPK8/9 (JNK46/54) resulting in the drop of their phosphorylation status. Moreover, MYC sensitized DHT-treated 22Rv1 cells to JNK-IN-8 mediated growth inhibition with the drop of IC50 from 1425 nM to 84 nM within 24 hrs. In conclusion, we suggest that, castrate-resistant prostate cancers progression might be retarded with the combination of MYC and chemical JNK inhibitors, involving AR-dependent mechanism.
Collapse
Affiliation(s)
- Ondrej Zenata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
19
|
Hu C, Huang S, Wu F, Ding H. miR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Exp Ther Med 2018; 15:2755-2760. [PMID: 29456679 PMCID: PMC5795499 DOI: 10.3892/etm.2018.5735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of current study was to explore the role of microRNA (miR)-98 in atherosclerosis. Human vascular endothelial cells (HVECs) were isolated from the peripheral blood of healthy volunteers and patients with atherosclerosis. Compared with endothelial cells from the healthy control group, the expression level of mitogen activated protein kinase (MAPK)6 was significantly upregulated and miR-98 was downregulated in the endothelial cells of patients with atherosclerosis. The human umbilical vein endothelial cell line (HUVEC) was adopted to perform in vitro studies. Overexpression of miR-98 reduced the proliferation and induced the apoptosis of HUVECs, which were revealed using an MTT assay, and flow cytometry assay, respectively. The aforementioned influences of miR-98 on HUVECs were mediated by targeting MAPK6, which was verified using luciferase assays. Additionally, the overexpression of miR-98 reduced the protein level of apoptosis regulator Bcl-2 and MAPK6; however, it induced the protein expression of caspase-3 and apoptosis regulator Bax. In conclusion, these findings demonstrate that miR-98 is an important regulator of atherosclerosis, suggesting that miR-98 may be a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Chuanxian Hu
- Cardiopulmonary Surgery, Huai'an First People's Hospital, Jiangsu, Huai'an 223300, P.R. China
| | - Su Huang
- Cardiopulmonary Surgery, Huai'an First People's Hospital, Jiangsu, Huai'an 223300, P.R. China
| | - Fafu Wu
- Cardiopulmonary Surgery, Huai'an First People's Hospital, Jiangsu, Huai'an 223300, P.R. China
| | - Hui Ding
- Cardiopulmonary Surgery, Huai'an First People's Hospital, Jiangsu, Huai'an 223300, P.R. China
| |
Collapse
|
20
|
Lion J, Burbach M, Cross A, Poussin K, Taflin C, Kaveri S, Haziot A, Glotz D, Mooney N. Endothelial Cell Amplification of Regulatory T Cells Is Differentially Modified by Immunosuppressors and Intravenous Immunoglobulin. Front Immunol 2017; 8:1761. [PMID: 29312302 PMCID: PMC5735077 DOI: 10.3389/fimmu.2017.01761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Immunosuppressive treatment is a prerequisite for both organ transplantation and tolerance of the allograft. However, long-term immunosuppression has been associated with a higher incidence of malignancies and infections. Immunosuppressors mainly target circulating immune cells and little is known of their “off-target” effects, such as their impact on endothelial cells (ECs). In chronic antibody-mediated rejection (AMR), the allograft endothelium is a target of damage, histologically detected as transplant glomerulopathy, and which correlates with poor graft survival. Under inflammatory conditions, EC expression of HLA class II antigens can lead to CD4+-T lymphocyte alloactivation and selective expansion of pro-inflammatory Th17 and pro-tolerance Treg subsets. This response can be modified and preactivation of the EC by HLA-DR antibody binding promoted a proinflammatory Th17 response. However, whether or not immunosuppressors alter EC immunogenicity has not been examined. In alloimmunized patients with AMR, cyclosporine A (CsA) and mycophenolic acid (MPA) are often combined with intravenous immunoglobulins (IVIgs). This study reports changes in the microvascular EC phenotype and function after treatment with CsA, MPA, or IVIg. Both CsA and MPA decreased HLA-DR and increased CD54 expression, whereas IVIg increased HLA-DR expression. Interleukin 6 secretion was reduced by all three immunomodulators. Preincubation of ECs with CsA or MPA limited, while IVIg amplified, Treg expansion. Because CsA, MPA, and IVIg are known for their ability to act upon leukocytes, we confirmed that ECs maintained their immunoregulatory role when allogeneic leukocytes were pretreated with CsA, MPA, or IVIg. The results reveal that individual immunosuppressors, used in the induction and maintenance of renal allograft tolerance, had direct and distinct effects on ECs. Results of experiments associating IVIg with either CsA or MPA underlined the differences observed using individual immunosuppressors. Paradoxically, CsA or MPA may increase EC mediated inflammatory responses and long-term exposure may contribute to limitation of allograft tolerance. In contrast, IVIg interaction with the endothelium may mediate some of its immunosuppressive effects through promotion of Treg expansion, contributing to the maintenance of allograft tolerance.
Collapse
Affiliation(s)
- Julien Lion
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Maren Burbach
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France
| | - Amy Cross
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Karine Poussin
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Cécile Taflin
- Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France
| | - Srini Kaveri
- U1138, Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Paris, France
| | - Alain Haziot
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Denis Glotz
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, Strasbourg, France
| | - Nuala Mooney
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, Strasbourg, France
| |
Collapse
|
21
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Differential T Cell Signaling Pathway Activation by Tacrolimus and Belatacept after Kidney Transplantation: Post Hoc Analysis of a Randomised-Controlled Trial. Sci Rep 2017; 7:15135. [PMID: 29123208 PMCID: PMC5680251 DOI: 10.1038/s41598-017-15542-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Pharmacokinetic immunosuppressive drug monitoring poorly correlates with clinical outcomes after solid organ transplantation. A promising method for pharmacodynamic monitoring of tacrolimus (TAC) in T cell subsets of transplant recipients might be the measurement of (phosphorylated) p38MAPK, ERK1/2 and Akt (activated downstream of the T cell receptor) by phospho-specific flow cytometry. Here, blood samples from n = 40 kidney transplant recipients (treated with either TAC-based or belatacept (BELA)-based immunosuppressive drug therapy) were monitored before and throughout the first year after transplantation. After transplantation and in unstimulated samples, p-p38MAPK and p-Akt were inhibited in CD8+ T cells and p-ERK in CD4+ T cells but only in patients who received TAC-based therapy. After activation with PMA/ionomycin, p-p38MAPK and p-AKT were significantly inhibited in CD4+ and CD8+ T cells when TAC was given, compared to pre-transplantation. Eleven BELA-treated patients had a biopsy-proven acute rejection, which was associated with higher p-ERK levels in both CD4+ and CD8+ T cells compared to patients without rejection. In conclusion, phospho-specific flow cytometry is a promising tool to pharmacodynamically monitor TAC-based therapy. In contrast to TAC-based therapy, BELA-based immunosuppression does not inhibit key T cell activation pathways which may contribute to the high rejection incidence among BELA-treated transplant recipients.
Collapse
Affiliation(s)
- Nynke M Kannegieter
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gretchen N de Graav
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Tang F, Yang TL, Zhang Z, Li XG, Zhong QQ, Zhao TT, Gong L. MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: Involvement in promotion of lysosomal function. Exp Cell Res 2017; 359:374-383. [PMID: 28823833 DOI: 10.1016/j.yexcr.2017.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/02/2017] [Accepted: 08/13/2017] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a common pathological basis of cardiovascular disease and remains the leading cause of mortality. Endothelial cell (EC) injury and autophagy dysfunction have been proved to contribute to the development of atherosclerosis. Recently, accumulating evidence confirms that microRNAs (miRNAs) have emerged as vital regulators and fine-tuners of various pathophysiological cellular impacts and molecular signaling pathways involved in atherosclerosis. Herein, the objective of the present study was to explore the biological function of miR-21 in oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs) injury and the underlying molecular mechanism. The results showed that ox-LDL treatment significantly decreased HAECs viability, increased caspase-3 activity, apoptosis ratio and Bax protein expression, and reduced Bcl-2 protein expression resulting in EC injuries. Simultaneously, ox-LDL treatment obviously reduced miR-21 level in a time-and dose-dependent manner. Notably, ox-LDL-induced EC injuries were abolished by miR-21 mimics transfection. In addition, miR-21 mimics alleviated ox-LDL-induced impaired autophagic flux as illustrated by the increases in LC3-II/LC3-I ratio and Beclin-1 protein expression, and the decrease in p62 protein expression in HAECs. Moreover, ox-LDL suppressed the expressions of lysosomal membrane protein (LAMP1) and cathepsin D proteins, and attenuated cathepsin D activity in HAECs, leading to lysosomal dysfunction, while these effects were also blocked by miR-21 mimics. These findings indicated that miR-21 restored impaired autophagic flux and lysosomal dysfunction, thereby attenuating ox-LDL-induced HAECs injuries.
Collapse
Affiliation(s)
- Feng Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, PR China
| | - Tian-Lun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhen Zhang
- Department of Centre for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Xiao-Gang Li
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha 410008, Hunan, PR China
| | - Qiao-Qing Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Ting-Ting Zhao
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Gong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| |
Collapse
|
23
|
Shi L, Ji Y, Liu D, Liu Y, Xu Y, Cao Y, Jiang X, Xu C. Sitagliptin attenuates high glucose-induced alterations in migration, proliferation, calcification and apoptosis of vascular smooth muscle cells through ERK1/2 signal pathway. Oncotarget 2017; 8:77168-77180. [PMID: 29100378 PMCID: PMC5652771 DOI: 10.18632/oncotarget.20417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Aims This study investigated the effects of sitagliptin on migration, proliferation, calcification and apoptosis of vascular smooth muscle cells (VSMCs) under high glucose (HG) conditions. Methods VSMCs were isolated from the thoracic aorta of Sprague Dawley rats. The cultured VSMCs were subjected to control medium, mannitol medium, HG medium (25 mM), pretreatment with 200 nM sitagliptin in control or HG medium, or the ERK1/2 inhibitor PD98059 in HG medium. Cell proliferation, migration, apoptosis and calcification were determined. Results HG conditions promoted the proliferation, migration, calcification and impairment of apoptosis in VSMCs compared with controls (P<0.05). Pretreatment with sitagliptin effectively attenuated proliferation, migration, calcification of cells and increased apoptosis of HG-cultured VSMCs as compared with the HG group (P<0.05). Culture with HG resulted in the up-regulation of p-ERK1/2 in VSMCs, whereas sitagliptin pretreatment could inhibit HG-induced p-ERK1/2 expression. In addition, the ERK1/2 inhibitor PD98059, inhibited proliferation, migration, calcification and promoted the apoptosis of HG-cultured VSMCs compared with the HG group (P<0.05). Conclusion The effects of sitagliptin on VSMC under high glucose condition were achieved through ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Lili Shi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ye Ji
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dandan Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Cao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoyan Jiang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
24
|
Hackl A, Ehren R, Weber LT. Effect of mycophenolic acid in experimental, nontransplant glomerular diseases: new mechanisms beyond immune cells. Pediatr Nephrol 2017; 32:1315-1322. [PMID: 27312386 DOI: 10.1007/s00467-016-3437-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 01/27/2023]
Abstract
Mycophenolic acid (MPA) was introduced into clinical practice as immunosuppressive drug therapy to prevent allograft rejection. Since then, its clinical application has widened. Our goal was to review the lessons learned from experimental nontransplant glomerular disease models on the mechanisms of MPA therapy. T and B lymphocytes are preferentially dependent on de novo purine synthesis. By inhibiting the rate-limiting enzyme of de novo purine synthesis, MPA depletes the pool of deoxyguanosine triphosphate (dGTP) and inhibits proliferation of these immune cells. Furthermore, MPA can also induce apoptosis of immune cells and is known to inhibit synthesis of fucose- and mannose-containing membrane glycoproteins altering the surface expression and binding ability of adhesion molecules. However, MPA exerts a direct effect also on nonimmune cells. Mesangial cells are partially dependent on de novo purine biosynthesis and are thus susceptible to MPA treatment. Additionally, MPA can inhibit apoptosis in podocytes and seems to be beneficial in preserving the expression of nephrin and podocin, and by attenuation of urokinase receptor expression leads to decreased foot-process effacement. In summary, our manuscript sheds light on the molecular mechanisms underlying the antiproteinuric effect of MPA. Overall, MPA is an excellent treatment option in many immunologic glomerulopathies because it possesses immunosuppressive properties, has a remarkable effect on nonimmune cells and counteracts the proliferation of mesangial cells, expansion of mesangial matrix, and foot-process effacement of podocytes combined with a low systemic toxicity.
Collapse
Affiliation(s)
- Agnes Hackl
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Rasmus Ehren
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Kerpener Street 62, 50937, Cologne, Germany
| | - Lutz Thorsten Weber
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
25
|
Yang PF, Song XY, Zeng T, Ai QD, Liu DD, Zuo W, Zhang S, Xia CY, He X, Chen NH. IMM-H004, a coumarin derivative, attenuated brain ischemia/reperfusion injuries and subsequent inflammation in spontaneously hypertensive rats through inhibition of VCAM-1. RSC Adv 2017. [DOI: 10.1039/c7ra02154b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the effect of IMM-H004 in treating brain I/R injury in spontaneously hypertensive rats and showed that IMM-H004 could efficiently ameliorate neurological defects and infarct volume in a time and dose dependent manner.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xiu-Yun Song
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ting Zeng
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Qi-Di Ai
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Dan-Dan Liu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Wei Zuo
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Shuai Zhang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Cong-Yuan Xia
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xin He
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Nai-Hong Chen
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
26
|
Wu R, Tang S, Wang M, Xu X, Yao C, Wang S. MicroRNA-497 Induces Apoptosis and Suppresses Proliferation via the Bcl-2/Bax-Caspase9-Caspase3 Pathway and Cyclin D2 Protein in HUVECs. PLoS One 2016; 11:e0167052. [PMID: 27918592 PMCID: PMC5137897 DOI: 10.1371/journal.pone.0167052] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION MicroRNAs play crucial roles in various types of diseases. However, to date, no information about the role of miR-497 in the development of atherosclerosis has been reported. This study investigated the possible role of miR-497 in vascular endothelial cell injury during the early stage of atherosclerosis. MATERIALS AND METHODS The expression level of miR-497 in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL was detected using qRT-PCR. To perform gain of function and loss of function analyses, miR-497 mimics were transfected into HUVECs, and miR-497 inhibitors were transfected into HUVECs stimulated with ox-LDL. Flow cytometry was used to analyze cell cycle progression and apoptosis. EdU and CCK-8 assays were employed to detect DNA synthesis and cell proliferation, respectively. After bioinformatics prediction, a dual Luciferase Reporter assay was used to analyze the direct target genes of miR-497. The mRNA and protein levels of the target genes were detected using qRT-PCR and western blot analyses, respectively. Caspase-9/3 activity was analyzed to determine the mechanism of endothelial dysfunction. RESULTS We showed that miR-497 was significantly upregulated in HUVECs stimulated with ox-LDL. Ectopic expression of miR-497 suppressed cell proliferation, induced apoptosis and increased the activity of caspase-9/3. After verification, Bcl2 and CCND2 were shown to be direct target genes of miR-497 in HUVECs. MiR-497 significantly suppressed cell proliferation by arresting the cell cycle through the CCND2 protein and induced apoptosis through the Bcl2/Bax-caspase9-caspase3 pathway. CONCLUSION Overall, our study shows that miR-497 might play a role in the development of atherosclerosis by inducing apoptosis and suppressing the proliferation of vascular endothelial cells. Therefore, miR-497 could be a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ridong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Shi Tang
- Department of Breast Surgery, Dongguan Maternal & Children Health Hospital, Dongguan, P. R. China
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiangdong Xu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Chen Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (CY); (SW)
| | - Shenming Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (CY); (SW)
| |
Collapse
|
27
|
Zhao H, Xue Y, Guo Y, Sun Y, Liu D, Wang X. Inhibition of endocan attenuates monocrotaline-induced connective tissue disease related pulmonary arterial hypertension. Int Immunopharmacol 2016; 42:115-121. [PMID: 27912147 DOI: 10.1016/j.intimp.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
Connective tissue disease related pulmonary arterial hypertension (CTD-PAH) is characterized by vascular remodeling, endothelial dysfunction and inflammation. Endocan is a novel endothelial dysfunction marker. The aim of the present study was to investigate the role of endocan in CTD-PAH. Monocrotaline (MCT)-induced PAH rats were used as the CTD-PAH model. Short hairpin RNA packed in a lentiviral vector used to inhibit endocan expression was intratracheally instilled in rats prior to the MCT injection. Endocan was found to be increased in the serum and lung of MCT-induced PAH rats. Short hairpin RNA mediated knockdown of endocan significantly decreased right ventricular systolic pressure, attenuated pulmonary remodeling and inflammatory responses in the lung. In the in vitro study, tumor necrosis factor-α (TNF-α) exposure caused increased endocan expression in the primary cultured rat pulmonary microvascular endothelial cells (RPMECs). Endocan knockdown inhibited the permeability increase and adhesion molecules secretion in RPMECs induced by TNF-α. In addition, TNF-α induced MAPK activation was blocked when endocan gene was knocked down. These data demonstrate that endocan may play an important role in the development of CTD-PAH. This study provides novel evidence to better understand the pathogenesis of CTD-PAH, which may be beneficial for the treatment of this disease.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxin Xue
- Department of Respiration, Liaoning Jinqiu Hospital, Shenyang 110016, People's Republic of China
| | - Yun Guo
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yue Sun
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Dongmei Liu
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaofei Wang
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
28
|
Zhang Q, Zhu L, Wang G, Zhao Y, Xiong N, Bao H, Jin W. Ionizing radiation promotes CCL27 secretion from keratinocytes through the cross talk between TNF-α and ROS. J Biochem Mol Toxicol 2016; 31. [PMID: 27879026 DOI: 10.1002/jbt.21868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 01/17/2023]
Abstract
The skin-associated chemokine CCL27 and its receptor CCR10 mediate the immune response of skin-homing T cells. The CCL27 secreted from keratinocytes was reportedly involved in inflammatory skin diseases such as atopic dermatitis, contact dermatitis, and psoriasis. However, whether ionizing radiation increases the levels of CCL27 secretion still remains unclear. In HaCaT cells, a human keratinocyte cell line, CCL27 secretion was markedly increased after X-ray irradiation. We further found that irradiation boosted the generation of reactive oxygen species (ROS), which was concomitant with the release of tumor necrosis factor-alpha (TNF-α). Moreover, alteration of ROS in irradiated HaCaT cells correlated with TNF-α secretion, indicating a positive loop of TNF-α secretion and ROS generation. This positive loop regulated the secretion of CCL27 from irradiated cells. We therefore concluded that the cross talk between TNF-α and ROS after keratinocytes was exposed to radiation, triggered CCL27 secretion for subsequent inflammation response.
Collapse
Affiliation(s)
- Qian Zhang
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Linlin Zhu
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Gang Wang
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Ye Zhao
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Na Xiong
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hegang Bao
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Wensen Jin
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
29
|
Huang M, Zeng S, Zou Y, Shi M, Qiu Q, Xiao Y, Chen G, Yang X, Liang L, Xu H. The suppression of bromodomain and extra-terminal domain inhibits vascular inflammation by blocking NF-κB and MAPK activation. Br J Pharmacol 2016; 174:101-115. [PMID: 27774624 DOI: 10.1111/bph.13657] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE There is increasing evidence indicating that bromodomain and extra-terminal domain (BET) proteins play a critical role in the regulation of immune and inflammatory responses; however, their contribution to vascular inflammation has not yet been elucidated. In this study, we investigated the effect of inhibiting BET bromodomain on vascular inflammation and the underlying mechanisms. EXPERIMENTAL APPROACH HUVECs were isolated from fresh umbilical cords. JQ1, a specific BET bromodomain inhibitor, and Brd shRNA were used to evaluate the regulation of the BET proteins in vascular inflammation. Leukocyte adhesion to HUVECs was measure by an adhesion assay. Western blot or immunohistochemical analysis was used to detect the protein expression. Real-time PCR was used to evaluate mRNA expression. Leukocyte accumulation in vivo was determined by an acute lung inflammation model. KEY RESULTS BET bromodomain inhibition suppressed the expression of adhesion molecules induced by TNF-α- or LPS, including ICAM-1, VCAM-1 and E-selectin, and inhibited leukocyte adhesion to activated HUVEC monolayers. Treatment with JQ1 also attenuated the LPS-induced accumulation of leukocytes and expression of endothelial adhesion molecules in the acute lung inflammation model in vivo. Furthermore, BET bromodomain inhibition reduced the activity of p38 and JNK MAPKs and NF-κB in TNF-α-stimulated HUVECs. TNF-α-induced NF-κB activation was also blocked by inhibitors of p38 (SB203580) or JNK (SP600125). CONCLUSIONS AND IMPLICATIONS BET bromodomain is important for regulating endothelial inflammation. Strategies targeting endothelial BET bromodomain may provide a new therapeutic approach for controlling inflammatory-related diseases.
Collapse
Affiliation(s)
- Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guoqiang Chen
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Xu C, Tang F, Lu M, Yang J, Han R, Mei M, Hu J, Wang H. Pretreatment with Astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase - ROS - NF-κB pathway. Can J Physiol Pharmacol 2016; 94:1132-1140. [PMID: 27453997 DOI: 10.1139/cjpp-2015-0572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular disorders. Astragaloside IV (AsIV) possesses potent antioxidant properties against oxidative stress through undefined mechanism(s). We sought to investigate whether AsIV protects human umbilical vein endothelial cells (HUVECs) from hydrogen peroxide (H2O2) induced oxidative stress focusing on eNOS uncoupling and the NADPH oxidase - ROS - NF-κB pathway. Compared with HUVECs incubated with H2O2 alone, pretreatment with AsIV significantly increased the viability of HUVECs, which was accompanied with apparent increase in nitric oxide (NO) production and decrease in intracellular superoxide anion production. Furthermore, pretreatment with AsIV increased endothelial nitric oxide synthase (eNOS) dimer/monomer ratio and its critical cofactor tetrahydrobiopterin (BH4) content, decreased Nox4 protein expression (the most abundant Nox isoform in HUVECs), inhibited translocation of NF-κB p65 subunit into nuclear fraction while enhanced the protein expression of IκB-α (the inhibitor of NF-κB p65), reduced the levels of IL-1β, IL-6, and TNF-α in HUVECs medium, and decreased iNOS protein expression. These results suggest that AsIV may protect HUVECs from H2O2-induced oxidative stress via inhibiting NADPH oxidase - ROS - NF-κB pathway and eNOS uncoupling.
Collapse
Affiliation(s)
- Chonghua Xu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Jing Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Ronghui Han
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Meng Mei
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Jin Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China.,Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou 121001, China
| |
Collapse
|
31
|
Barsalou J, Bradley TJ, Tyrrell PN, Slorach C, Ng LWK, Levy DM, Silverman ED. Impact of Disease Duration on Vascular Surrogates of Early Atherosclerosis in Childhood-Onset Systemic Lupus Erythematosus. Arthritis Rheumatol 2016; 68:237-46. [PMID: 26361097 DOI: 10.1002/art.39423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To determine whether longer disease duration negatively impacts carotid intima-media thickness (CIMT), flow-mediated dilation (FMD), and pulse wave velocity (PWV) in a cohort of patients with childhood-onset systemic lupus erythematosus (SLE), and to compare CIMT, FMD, and PWV in patients with childhood-onset SLE with those in healthy children and explore determinants of vascular test results in childhood-onset SLE. METHODS Cross-sectional analysis was performed in a prospective longitudinal cohort of patients with childhood-onset SLE at the latest followup visit. Clinical and laboratory data were collected for patients with childhood-onset SLE. CIMT, FMD, and PWV were measured using standardized protocols in patients with childhood-onset SLE and healthy children. Correlations between disease duration and results of the 3 vascular tests were performed. Vascular data in patients with childhood-onset SLE were compared with those in healthy children. Multivariable linear regression was used to identify determinants of CIMT, FMD, and PWV in childhood-onset SLE. RESULTS Patients with childhood-onset SLE (n = 149) and healthy controls (n = 178) were enrolled. The median age of the patients was 17.2 years (interquartile range [IQR] 15.7-17.9 years), and their median disease duration was 3.2 years (IQR 1.8-4.9 years). The median age of the healthy children was 14.7 years (IQR 13.1-15.9 years). Longer disease duration correlated with worse FMD (r = -0.2, P = 0.031) in patients with childhood-onset SLE. Patients with childhood-onset SLE had smaller (better) CIMT, higher (better) FMD, and similar PWV compared with healthy controls. Linear regression analysis explained <24% of the variation in vascular test results in patients with childhood-onset SLE, suggesting that other variables should be explored as important determinants of CIMT, FMD, and PWV. CONCLUSION In this cohort of 149 patients with childhood-onset SLE, patients did not have worse CIMT, FMD, or PWV than did healthy controls. Longer disease duration was associated with worse FMD, suggesting progressive endothelial dysfunction over time.
Collapse
Affiliation(s)
- Julie Barsalou
- Centre Hospitalier Universitaire St. Justine, University of Montreal, Montreal, Quebec, Canada), Timothy J. Bradley, MBChB, FRACP, Cameron Slorach, RDCS, Lawrence W. K. Ng, BSc, Deborah M. Levy, MD, MS, FRCPC: The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Timothy J Bradley
- Centre Hospitalier Universitaire St. Justine, University of Montreal, Montreal, Quebec, Canada), Timothy J. Bradley, MBChB, FRACP, Cameron Slorach, RDCS, Lawrence W. K. Ng, BSc, Deborah M. Levy, MD, MS, FRCPC: The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Cameron Slorach
- Centre Hospitalier Universitaire St. Justine, University of Montreal, Montreal, Quebec, Canada), Timothy J. Bradley, MBChB, FRACP, Cameron Slorach, RDCS, Lawrence W. K. Ng, BSc, Deborah M. Levy, MD, MS, FRCPC: The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lawrence W K Ng
- Centre Hospitalier Universitaire St. Justine, University of Montreal, Montreal, Quebec, Canada), Timothy J. Bradley, MBChB, FRACP, Cameron Slorach, RDCS, Lawrence W. K. Ng, BSc, Deborah M. Levy, MD, MS, FRCPC: The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Deborah M Levy
- Centre Hospitalier Universitaire St. Justine, University of Montreal, Montreal, Quebec, Canada), Timothy J. Bradley, MBChB, FRACP, Cameron Slorach, RDCS, Lawrence W. K. Ng, BSc, Deborah M. Levy, MD, MS, FRCPC: The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Earl D Silverman
- The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Warner EF, Zhang Q, Raheem KS, O'Hagan D, O'Connell MA, Kay CD. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells. J Nutr 2016; 146:465-73. [PMID: 26843586 PMCID: PMC4763483 DOI: 10.3945/jn.115.217943] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. OBJECTIVE We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). METHOD Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM-100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. RESULTS Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (-17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2-36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2-54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive activity at 1 μM. CONCLUSIONS The present findings suggest that metabolism of flavonoids increases their vascular efficacy, resulting in a diversity of structures of varying bioactivity in human endothelial cells.
Collapse
Affiliation(s)
| | - Qingzhi Zhang
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and
| | - K Saki Raheem
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Colin D Kay
- Department of Nutrition, Norwich Medical School, and
| |
Collapse
|
33
|
Rui W, Guan L, Zhang F, Zhang W, Ding W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 2016; 36:48-59. [PMID: 25876056 DOI: 10.1002/jat.3143] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study was to explore the intracellular mechanisms underlying the cardiovascular toxicity of air particulate matter (PM) with an aerodynamic diameter of less than 2.5 µm (PM2.5) in a human umbilical vein cell line, EA.hy926. We found that PM2.5 exposure triggered reactive oxygen species (ROS) generation, resulting in a significant decrease in cell viability. Data from Western blots showed that PM2.5 induced phosphorylation of Jun N-terminal kinase (JNK), extracellular signal regulatory kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), and activation of nuclear factor kappa B (NF-κB). We further observed a significant increase in expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in a time- and dose-dependent manner. Moreover, the adhesion of monocytic THP-1 cells to EA.hy926 cells was greatly enhanced in the presence of PM2.5 . However, N-acetylcysteine (NAC), a scavenger of ROS, prevented the increase of ROS generation, attenuated the phosphorylation of the above kinases, and decreased the NF-κB activation as well as the expression of ICAM-1 and VCAM-1. Furthermore, ERK inhibitor (U0126), AKT inhibitor (LY294002) and NF-κB inhibitor (BAY11-7082) significantly down-regulated PM2.5 -induced ICAM-1 and VCAM-1 expression as well as adhesion of THP-1 cells, but not JNK inhibitor (SP600125) and p38 MAPK inhibitor (SB203580), indicating that ERK/AKT/NF-κB is involved in the signaling pathway that leads to PM2.5 -induced ICAM-1 and VCAM-1 expression. These findings suggest PM2.5 -induced ROS may function as signaling molecules triggering ICAM-1 and VCAM-1 expressions through activating the ERK/AKT/NF-κB-dependent pathway, and further promoting monocyte adhesion to endothelial cells.
Collapse
Affiliation(s)
- Wei Rui
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Longfei Guan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
34
|
Abstract
Atherosclerotic lesions initiate in regions characterized by low shear stress and reduced activity of endothelial atheroprotective molecules such as nitric oxide, which is the key molecule managing vascular homeostasis. The generation of reactive oxygen species from the vascular endothelium is strongly related to various enzymes, such as xanthine oxidase, endothelial nitric oxide synthase and nicotinamide-adenine dinucleotide phosphate oxidase. Several pharmaceutical agents, including angiotensin converting enzyme inhibitors, angiotensin receptors blockers and statins, along with a variety of other agents, have demonstrated additional antioxidant properties beyond their principal role. Reports regarding the antioxidant role of vitamins present controversial results, especially those based on large scale studies. In addition, there is growing interest on the role of dietary flavonoids and their potential to improve endothelial function by modifying the oxidative stress status. However, the vascular-protective role of flavonoids and especially their antioxidant properties are still under investigation. Indeed, further research is required to establish the impact of the proposed new therapeutic strategies in atherosclerosis.
Collapse
|
35
|
Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci A, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-110. [PMID: 26106145 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| |
Collapse
|
36
|
Lisboa LF, Egli A, Fairbanks J, O'Shea D, Manuel O, Husain S, Kumar D, Humar A. CCL8 and the Immune Control of Cytomegalovirus in Organ Transplant Recipients. Am J Transplant 2015; 15:1882-92. [PMID: 25764912 DOI: 10.1111/ajt.13207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/03/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023]
Abstract
Monitoring of cytomegalovirus cell-mediated immunity is a promising tool for the refinement of preventative and therapeutic strategies posttransplantation. Typically, the interferon-γ response to T cell stimulation is measured. We evaluated a broad range of cytokine and chemokines to better characterize the ex vivo host-response to CMV peptide stimulation. In a cohort of CMV viremic organ transplant recipients, chemokine expression-specifically CCL8 (AUC 0.849 95% CI 0.721-0.978; p = 0.003) and CXCL10 (AUC 0.841, 95% CI 0.707-0.974; p = 0.004)-was associated with control of viral replication. In a second cohort of transplant recipients at high-risk for CMV, the presence of a polymorphism in the CCL8 promoter conferred an increased risk of viral replication after discontinuation of antiviral prophylaxis (logrank hazard ratio 3.6; 95% CI 2.077-51.88). Using cell-sorting experiments, we determined that the primary cell type producing CCL8 in response to CMV peptide stimulation was the monocyte fraction. Finally, in vitro experiments using standard immunosuppressive agents demonstrated a dose-dependent reduction in CCL8 production. Chemokines appear to be important elements of the cell-mediated response to CMV infection posttransplant, as here suggested for CCL8, and translation of this knowledge may allow for the tailoring and improvement of preventative strategies.
Collapse
Affiliation(s)
- L F Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Egli
- Infection Biology Lab, Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - J Fairbanks
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - O Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - S Husain
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - D Kumar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - A Humar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Zhou CH, Pan J, Huang H, Zhu Y, Zhang M, Liu L, Wu Y. Salusin-β, but not salusin-α, promotes human umbilical vein endothelial cell inflammation via the p38 MAPK/JNK-NF-κB pathway. PLoS One 2014; 9:e107555. [PMID: 25210730 PMCID: PMC4161457 DOI: 10.1371/journal.pone.0107555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Recently, salusin-β has been reported to have pro-atherosclerotic effects, but salusin-α has anti-atherosclerotic effects. Our previous study has shown that salusin-β but not salusin-α promotes vascular inflammation in apoE-deficient mice. However, the underlying mechanism remains unknown. In this study, we observed the effect of salusins on inflammatory responses and the MAPK-NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS HUVECs were incubated with different concentrations of salusin-α and salusin-β. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were quantified using quantitative real-time polymerase chain reaction (PCR). The protein expressions of VCAM-1, MCP-1, I-κBα, NF-κB, p-JNK and p-p38 MAPK were measured using western blotting analysis. Our results showed that in HUVECs, salusin-β could up-regulate the levels of IL-6, TNF-α, VCAM-1 and MCP-1, promote I-κBα degradation and NF-κB activation, and increase the phosphorylation of JNK and p38 MAPK. These effects could be inhibited by p38 MAPK inhibitor SB203580 and/or JNK inhibitor SP600125. In contrast, salusin-α could selectively decrease VCAM-1 protein, but did not show any effect on the expressions of VCAM-1 mRNA, TNF-α, IL-6, MCP-1, I-κBα, NF-κB, p-JNK or p-p38 MAPK. CONCLUSION Salusin-β was able to promote inflammatory responses in HUVECs via the p38 MAPK-NF-κB and JNK-NF-κB pathways. In contrast, salusin-α failed to show any significant effects on the inflammatory responses in HUVECs. These results provide further insight into the mechanisms behind salusins in vascular inflammation and offer a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cheng-Hua Zhou
- School of Pharmacy, Xuzhou Medical College, Xuzhou, China
- * E-mail: (YQW); (CHZ)
| | - Jin Pan
- School of Pharmacy, Xuzhou Medical College, Xuzhou, China
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Yangzi Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Mingxing Zhang
- School of Pharmacy, Xuzhou Medical College, Xuzhou, China
| | - Lian Liu
- School of Pharmacy, Xuzhou Medical College, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
- Department of Anesthetic Pharmacology, Xuzhou Medical College, Xuzhou, China
- * E-mail: (YQW); (CHZ)
| |
Collapse
|
38
|
Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W, Wang L, He F, Xue Y. The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol 2014; 13:32. [PMID: 24490809 PMCID: PMC3916068 DOI: 10.1186/1475-2840-13-32] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The dipeptidyl peptidase-4 inhibitor sitagliptin, a new anti-diabetic medicine, is effective in treating type 2 diabetes mellitus by increasing the activation and duration of action of glucagon-like peptide-1. Since atherosclerosis is the main pathological feature of diabetic cardiovascular complications, it is important to investigate the anti-atherosclerotic effect of sitagliptin and explore the relevant mechanisms. METHODS Male apolipoprotein-E-knockout mice were randomly divided into two groups and fed either high-fat diet (HFD) or HFD plus sitagliptin at a concentration of 0.3% for 16 weeks. Body weight, food intake, blood glucose, serum lipids and adhesion molecules were measured. The atherosclerotic plaque area and its histological composition were analyzed using Sudan staining and immunohistochemistry. The expression of inflammatory cytokines (monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6) and the activation of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase (MAPK) in the aortas were determined using quantitative polymerase chain reaction and western blot, respectively. RESULTS Mice treated with sitagliptin developed fewer atherosclerotic plaques than the control group (7.64 ± 1.98% vs 12.91 ± 1.15%, p < 0.001), particularly in the aortic arch and abdominal aorta, where plaques were decreased 1.92- and 2.74-fold, respectively (p < 0.05 and p < 0.01). Sitagliptin significantly reduced the content of collagen fiber in plaques 1.2-fold (p < 0.05). Moreover, sitagliptin significantly reduced the expression of monocyte chemoattractant protein-1 and interleukin-6 in the aorta (p < 0.01 and p < 0.05), as well as the serum levels of soluble vascular cell adhesion molecule-1 and P-selectin (both p < 0.05). In addition, Sitagliptin induced phosphorylation of AMPK and Akt (p < 0.05 and p < 0.01), while suppressed phosphorylation of p38 and extracellular signal-regulated kinase (Erk) 1/2 (p < 0.05 and p < 0.01) in aortas. CONCLUSIONS Our present study indicates that sitagliptin can reduce the area of the atherosclerotic lesion, possibly by regulating the AMPK and MAPK pathways and then reducing leukocyte -endothelial cell interaction and inflammation reactions. These actions are independent of weight loss and glucose-reducing effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510150, China.
| |
Collapse
|
39
|
Maguire O, Tario JD, Shanahan TC, Wallace PK, Minderman H. Flow cytometry and solid organ transplantation: a perfect match. Immunol Invest 2014; 43:756-74. [PMID: 25296232 PMCID: PMC4357273 DOI: 10.3109/08820139.2014.910022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the field of transplantation, flow cytometry serves a well-established role in pre-transplant crossmatching and monitoring immune reconstitution following hematopoietic stem cell transplantation. The capabilities of flow cytometers have continuously expanded and this combined with more detailed knowledge of the constituents of the immune system, their function and interaction and newly developed reagents to study these parameters have led to additional utility of flow cytometry-based analyses, particularly in the post-transplant setting. This review discusses the impact of flow cytometry on managing alloantigen reactions, monitoring opportunistic infections and graft rejection and gauging immunosuppression in the context of solid organ transplantation.
Collapse
Affiliation(s)
- Orla Maguire
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Joseph D. Tario
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Thomas C. Shanahan
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul K. Wallace
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Hans Minderman
- Laboratory of Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|