1
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Raulo A, Bürkner PC, Finerty GE, Dale J, Hanski E, English HM, Lamberth C, Firth JA, Coulson T, Knowles SCL. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat Ecol Evol 2024; 8:972-985. [PMID: 38689017 PMCID: PMC11090834 DOI: 10.1038/s41559-024-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Computing, University of Turku, Turku, Finland.
| | | | - Genevieve E Finerty
- Department of Biology, University of Oxford, Oxford, UK
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Jarrah Dale
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Holly M English
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Curt Lamberth
- Department of Biology, University of Oxford, Oxford, UK
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford, UK
- School of Biology, University of Leeds, Leeds, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Hui TKL, Lo ICN, Wong KKW, Tsang CTT, Tsang LM. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs. BMC Microbiol 2024; 24:57. [PMID: 38350856 PMCID: PMC10863281 DOI: 10.1186/s12866-024-03209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Sesarmid crabs dominate mangrove habitats as the major primary consumers, which facilitates the trophic link and nutrient recycling in the ecosystem. Therefore, the adaptations and mechanisms of sesarmid crabs to herbivory are not only crucial to terrestrialization and its evolutionary success, but also to the healthy functioning of mangrove ecosystems. Although endogenous cellulase expressions were reported in crabs, it remains unknown if endogenous enzymes alone can complete the whole lignocellulolytic pathway, or if they also depend on the contribution from the intestinal microbiome. We attempt to investigate the role of gut symbiotic microbes of mangrove-feeding sesarmid crabs in plant digestion using a comparative metagenomic approach. RESULTS Metagenomics analyses on 43 crab gut samples from 23 species of mangrove crabs with different dietary preferences revealed a wide coverage of 127 CAZy families and nine KOs targeting lignocellulose and their derivatives in all species analyzed, including predominantly carnivorous species, suggesting the crab gut microbiomes have lignocellulolytic capacity regardless of dietary preference. Microbial cellulase, hemicellulase and pectinase genes in herbivorous and detritivorous crabs were differentially more abundant when compared to omnivorous and carnivorous crabs, indicating the importance of gut symbionts in lignocellulose degradation and the enrichment of lignocellulolytic microbes in response to diet with higher lignocellulose content. Herbivorous and detritivorous crabs showed highly similar CAZyme composition despite dissimilarities in taxonomic profiles observed in both groups, suggesting a stronger selection force on gut microbiota by functional capacity than by taxonomy. The gut microbiota in herbivorous sesarmid crabs were also enriched with nitrogen reduction and fixation genes, implying possible roles of gut microbiota in supplementing nitrogen that is deficient in plant diet. CONCLUSIONS Endosymbiotic microbes play an important role in lignocellulose degradation in most crab species. Their abundance is strongly correlated with dietary preference, and they are highly enriched in herbivorous sesarmids, thus enhancing their capacity in digesting mangrove leaves. Dietary preference is a stronger driver in determining the microbial CAZyme composition and taxonomic profile in the crab microbiome, resulting in functional redundancy of endosymbiotic microbes. Our results showed that crabs implement a mixed mode of digestion utilizing both endogenous and microbial enzymes in lignocellulose degradation, as observed in most of the more advanced herbivorous invertebrates.
Collapse
Affiliation(s)
- Tom Kwok Lun Hui
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Irene Ching Nam Lo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Karen Ka Wing Wong
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chandler Tsz To Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ling Ming Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
4
|
Rosenberg E. Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The punctuated mode of evolution posits that evolution occurs in rare bursts of rapid evolutionary change followed by long periods of genetic stability (stasis). The accepted cause for the rapid changes in punctuated evolution is special ecological circumstances – selection forces brought about by changes in the environment. This article presents a complementary explanation for punctuated evolution by the rapid formation of genetic variants in animals and plants by the acquisition of microorganisms from the environment into microbiomes and microbial genes into host genomes by horizontal gene transfer. Several examples of major evolutionary events driven by microorganisms are discussed, including the formation of the first eukaryotic cell, the ability of some animals to digest cellulose and other plant cell-wall complex polysaccharides, dynamics of root system architecture, and the formation of placental mammals. These changes by cooperation were quantum leaps in the evolutionary development of complex bilolgical systems and can contribute to an understanding of the mechanisms underlying punctuated evolution.
Collapse
|
5
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
6
|
Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio 2022; 13:e0369121. [PMID: 35073753 PMCID: PMC8787481 DOI: 10.1128/mbio.03691-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diverse insects host specific microbial symbionts that play important roles for their growth, survival, and reproduction. They often develop specialized symbiotic organs for harboring the microbial partners. While such intimate associations tend to be stably maintained over evolutionary time, the microbial symbionts may have been lost or replaced occasionally. How symbiont acquisitions, replacements, and losses are linked to the development of the host's symbiotic organs is an important but poorly understood aspect of microbial symbioses. Cassidine leaf beetles are associated with a specific gammaproteobacterial lineage, Stammera, whose reduced genome is streamlined for producing pectin-degrading enzymes to assist the host's digestion of food plants. We investigated the symbiotic system of 24 Japanese cassidine species and found that (i) most species harbored Stammera within paired symbiotic organs located at the foregut-midgut junction, (ii) the host phylogeny was largely congruent with the symbiont phylogeny, indicating stable host-symbiont association over evolutionary time, (iii) meanwhile, the symbiont was not detected in three distinct host lineages, uncovering recurrent losses of the ancient microbial mutualist, (iv) the symbiotic organs were vestigial but present in the symbiont-free lineages, indicating evolutionary persistence of the symbiotic organs even in the absence of the symbiont, and (v) the number of the symbiotic organs was polymorphic among the cassidine species, either two or four, unveiling a dynamic evolution of the host organs for symbiosis. These findings are discussed as to what molecular mechanisms and evolutionary trajectories underpin the recurrent symbiont losses and the morphogenesis of the symbiotic organs in the herbivorous insect group. IMPORTANCE Insects represent the biodiversity of the terrestrial ecosystem, and their prosperity is attributable to their association with symbiotic microorganisms. By sequestering microbial functionality into their bodies, organs, tissues, or cells, diverse insects have successfully exploited otherwise inaccessible ecological niches and resources, including herbivory enabled by utilization of indigestible plant cell wall components. In leaf beetles of the subfamily Cassininae, an ancient symbiont lineage, Stammera, whose genome is extremely reduced and specialized for encoding pectin-degrading enzymes, is hosted in gut-associated symbiotic organs and contributes to the host's food plant digestion. Here, we demonstrate that multiple symbiont losses and recurrent structural switching of the symbiotic organs have occurred in the evolutionary course of cassidine leaf beetles, which sheds light on the evolutionary and developmental dynamics of the insect's symbiotic organs and provides a model system to investigate how microbial symbionts affect the host's development and morphogenesis and vice versa.
Collapse
|
7
|
Silica Particles Trigger the Exopolysaccharide Production of Harsh Environment Isolates of Growth-Promoting Rhizobacteria and Increase Their Ability to Enhance Wheat Biomass in Drought-Stressed Soils. Int J Mol Sci 2021; 22:ijms22126201. [PMID: 34201354 PMCID: PMC8229586 DOI: 10.3390/ijms22126201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural laboratory, ‘The Evolution Canyon’, Israel, (EC), from the wild progenitors of cereals, where they have been co-habituating with their hosts for long periods of time. The study revealed that commercial TM50 silica particles (SN) triggered the PGPR production of exopolysaccharides (EPS) containing D-glucuronate (D-GA). The increased EPS content increased the PGPR water-holding capacity (WHC) and osmotic pressure of the biofilm matrix, which led to enhanced plant biomass in drought-stressed growth environments. Light- and cryo-electron- microscopic studies showed that, in the presence of silica (SN) particles, bacterial morphology is changed, indicating that SNs are associated with significant reprogramming in bacteria. The findings encourage the development of large-scale methods for isolate formulation with natural silicas that ensure higher WHC and hyperosmolarity under field conditions. Osmotic pressure involvement of holobiont cohabitation is also discussed.
Collapse
|
8
|
Aalami AH, Abdeahad H, Mesgari M, Sathyapalan T, Sahebkar A. Urinary Angiogenin as a Marker for Bladder Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5557309. [PMID: 33997007 PMCID: PMC8099530 DOI: 10.1155/2021/5557309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
AIMS Bladder cancer (BCa) is a common cancer in North America and Europe that carries considerable morbidity and mortality. A reliable biomarker for early detection of the bladder is crucial for improving the prognosis of BCA. In this meta-analysis, we examine the diagnostic role of the angiogenin (ANG) protein in patients' urine with bladder neoplasm. METHODS We performed a systematic literature search using ScienceDirect, Web of Science, PubMed/MEDLINE, Scopus, Google Scholar, and Embase, up to 10th October 2020 databases. Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.2.2 software calculated the pooled specificity, sensitivity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (LR+), negative likelihood ratio (LR-), Q ∗ index, and summary receiver-operating characteristic (SROC) for the role of ANG as a urinary biomarker for BCa patients. RESULTS Four case-control studies were included with 656 participants (417 cases and 239 controls) in this meta-analysis. The pooled sensitivity of 0.71 (95% CI: 0.66-0.75), specificity of 0.78 (95% CI: 0.73-0.81), LR+ of 3.34 (95% CI: 2.02-5.53), LR- of 0.37 (95% CI: 0.32-0.44), DOR of 9.99 (95% CI: 4.69-21.28), and AUC of 0.789 and Q ∗ index of 0.726 demonstrate acceptable diagnostic precision of ANG in identifying BCa. CONCLUSION This meta-analysis showed that ANG could be a fair biomarker for the diagnosis of BCa patients.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, Collogue of Health, University of Utah, Salt Lake City, UT, USA
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Stencel A, Suárez J. Do Somatic Cells Really Sacrifice Themselves? Why an Appeal to Coercion May be a Helpful Strategy in Explaining the Evolution of Multicellularity. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s13752-021-00376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn understanding of the factors behind the evolution of multicellularity is one of today’s frontiers in evolutionary biology. This is because multicellular organisms are made of one subset of cells with the capacity to transmit genes to the next generation (germline cells) and another subset responsible for maintaining the functionality of the organism, but incapable of transmitting genes to the next generation (somatic cells). The question arises: why do somatic cells sacrifice their lives for the sake of germline cells? How is germ/soma separation maintained? One conventional answer refers to inclusive fitness theory, according to which somatic cells sacrifice themselves altruistically, because in so doing they enhance the transmission of their genes by virtue of their genetic relatedness to germline cells. In the present article we will argue that this explanation ignores the key role of policing mechanisms in maintaining the germ/soma divide. Based on the pervasiveness of the latter, we argue that the role of altruistic mechanisms in the evolution of multicellularity is limited and that our understanding of this evolution must be enriched through the consideration of coercion mechanisms.
Collapse
|
10
|
Ronai I, Greslehner GP, Boem F, Carlisle J, Stencel A, Suárez J, Bayir S, Bretting W, Formosinho J, Guerrero AC, Morgan WH, Prigot-Maurice C, Rodeck S, Vasse M, Wallis JM, Zacks O. "Microbiota, symbiosis and individuality summer school" meeting report. MICROBIOME 2020; 8:117. [PMID: 32795355 PMCID: PMC7427737 DOI: 10.1186/s40168-020-00898-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 05/13/2023]
Abstract
How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on "Microbiota, symbiosis and individuality: conceptual and philosophical issues" (July 2019), which was supported by a European Research Council starting grant project "Immunity, DEvelopment, and the Microbiota" (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of incorporating into meetings experts from other disciplines, such as philosophy and history of science. Video Abstract.
Collapse
Affiliation(s)
- Isobel Ronai
- Columbia University, 1200 Amsterdam Ave, New York, 10027 NY USA
| | - Gregor P. Greslehner
- ImmunoConcept, UMR5164, CNRS & University of Bordeaux, 146 Rue Léo Saignat, Bordeaux, 33076 France
| | - Federico Boem
- Dipartimento di Filosofia e Scienze dell’Educazione, Università degli Studi di Torino, Palazzo Nuovo, Via Sant’Ottavio, 20, Torino, 10124 Italy
| | - Judith Carlisle
- Washington University in St. Louis, Department of Philosophy, One Brookings Drive, St. Louis, 63130-4899 MO USA
| | - Adrian Stencel
- Institute of Philosophy, Jagiellonian University, Grodzka 52, Kraków, 33-332 Poland
| | - Javier Suárez
- Abteilung Philosophie, Universität Bielefeld, Universitätsstraße 25, Bielefeld, 33615 Germany
| | - Saliha Bayir
- Institut für Philosophie,Universität Kassel, Henschelstr. 2, Kassel, 34127 Germany
| | - Wiebke Bretting
- ImmunoConcept, UMR5164, CNRS & University of Bordeaux, 146 Rue Léo Saignat, Bordeaux, 33076 France
| | - Joana Formosinho
- Medical Museion, Department of Public Health, University of Copenhagen, Fredericiagade 18, Copenhagen, 1310 Denmark
| | - Anna C. Guerrero
- Arizona State University, Center for Biology and Society, 427 E Tyler Mall, Tempe, 85281 AZ USA
| | - William H. Morgan
- The University of Sheffield, Department of Philosophy, 45 Victoria Street, Sheffield, S3 7QB UK
| | - Cybèle Prigot-Maurice
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Bâtiment B35, 5 rue Albert Turpain, TSA 51106, Poitiers Cedex 9, 86073 France
| | - Salome Rodeck
- Leibniz Center for Literary and Cultural Research, Schützenstr. 18, Berlin, 10117 Germany
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, 8092 Switzerland
| | - Jacqueline M. Wallis
- University of Bristol, Department of Philosophy, Cotham House, Bristol, BS6 6JL UK
| | - Oryan Zacks
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801 Israel
| |
Collapse
|
11
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
12
|
Suárez J, Triviño V. What Is a Hologenomic Adaptation? Emergent Individuality and Inter-Identity in Multispecies Systems. Front Psychol 2020; 11:187. [PMID: 32194470 PMCID: PMC7064717 DOI: 10.3389/fpsyg.2020.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/09/2023] Open
Abstract
Contemporary biological research has suggested that some host-microbiome multispecies systems (referred to as "holobionts") can in certain circumstances evolve as unique biological individual, thus being a unit of selection in evolution. If this is so, then it is arguably the case that some biological adaptations have evolved at the level of the multispecies system, what we call hologenomic adaptations. However, no research has yet been devoted to investigating their nature, or how these adaptations can be distinguished from adaptations at the species-level (genomic adaptations). In this paper, we cover this gap by investigating the nature of hologenomic adaptations. By drawing on the case of the evolution of sanguivory diet in vampire bats, we argue that a trait constitutes a hologenomic adaptation when its evolution can only be explained if the holobiont is considered the biological individual that manifests this adaptation, while the bacterial taxa that bear the trait are only opportunistic beneficiaries of it. We then use the philosophical notions of emergence and inter-identity to explain the nature of this form of individuality and argue why it is special of holobionts. Overall, our paper illustrates how the use of philosophical concepts can illuminate scientific discussions, in the trend of what has recently been called metaphysics of biology.
Collapse
Affiliation(s)
- Javier Suárez
- LOGOS/BIAP, Department of Philosophy, University of Barcelona, Barcelona, Spain
- Egenis, The Centre for the Study of Life Sciences, Department of Sociology, Philosophy and Anthropology, University of Exeter, Exeter, United Kingdom
| | - Vanessa Triviño
- Department of History of Science, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
13
|
Suárez J. The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2020; 42:11. [PMID: 32103386 DOI: 10.1007/s40656-020-00305-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
Bourrat and Griffiths (Hist Philos Life Sci 40(2):33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories is fitness alignment, presenting the notion of fitness boundedness as a criterion that allows divorcing true multispecies evolutionary individuals from other multispecies assemblages and provides an adequate criterion to single out genuine evolutionary multispecies assemblages. A consequence of their criterion is that holobionts, as conventionally defined by hologenome defenders, are not evolutionary individuals except in very rare cases, and for very specific host-symbiont associations. This paper is a critical response to Bourrat and Griffiths' arguments and a defence of the arguments presented by holobiont defenders. Drawing upon the case of the hologenomic basis of the evolution of sanguivory in vampire bats (Nat Ecol Evol 2:659-668, 2018), I argue that Bourrat and Griffiths overlook some aspects of the biological nature of the microbiome that justifies the thesis that holobionts are evolutionarily different to other multispecies assemblages. I argue that the hologenome theory of evolution should not define the hologenome as a collection of genomes, but as the sum of the host genome plus some traits of the microbiome which together constitute an evolutionary individual, a conception I refer to as the stability of traits conception of the hologenome. Based on that conception I argue that the evidence presented by holobiont defenders is to the point, and supports the thesis that holobionts are evolutionary individuals. In this sense, the paper offers an account of the holobiont that aims to foster a dialogue between hologenome advocates and hologenome critics.
Collapse
Affiliation(s)
- Javier Suárez
- Logos - Barcelona Institute for Analytic Philosophy, University of Barcelona, Barcelona, Spain.
- Egenis - The Centre for the Study of Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
14
|
Bredon M, Herran B, Bertaux J, Grève P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:49. [PMID: 32190114 PMCID: PMC7071664 DOI: 10.1186/s13068-020-01683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
15
|
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
16
|
Gilbert SF. Evolutionary transitions revisited: Holobiont evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:307-314. [PMID: 31565856 DOI: 10.1002/jez.b.22903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
John T. Bonner lists four essential transformations in the evolution of life: the emergence of the eukaryotic cell, meiosis, multicellularity, and the nervous system. This paper analyses the mechanisms for those transitions in light of three of Dr. Bonner's earlier hypotheses: (a) that the organism is its life cycle, (b) that evolution consists of alterations of the life cycle, and (c) that development extends beyond the body and into interactions with other organisms. Using the notion of the holobiont life cycle, this paper attempts to show that these evolutionary transitions can be accomplished through various means of symbiosis. Perceiving the organism both as an interspecies consortium and as a life cycle supports a twofold redefinition of the organism as a holobiont constructed by integrating together the life cycles of several species. These findings highlight the importance of symbiosis and the holobiont development in analyses of evolution.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|