1
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
2
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
3
|
Emerson SD, Chevée M, Mews P, Calipari ES. The transcriptional response to acute cocaine is inverted in male mice with a history of cocaine self-administration and withdrawal throughout the mesocorticolimbic system. Mol Cell Neurosci 2023; 125:103823. [PMID: 36868542 PMCID: PMC10247534 DOI: 10.1016/j.mcn.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
A large body of work has demonstrated that cocaine-induced changes in transcriptional regulation play a central role in the onset and maintenance of cocaine use disorder. An underappreciated aspect of this area of research, however, is that the pharmacodynamic properties of cocaine can change depending on an organism's previous drug-exposure history. In this study, we utilized RNA sequencing to characterize how the transcriptome-wide effects of acute cocaine exposure were altered by a history of cocaine self-administration and long-term withdrawal (30 days) in the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC) in male mice. First, we found that the gene expression patterns induced by a single cocaine injection (10 mg/kg) were discordant between cocaine-naïve mice and mice in withdrawal from cocaine self-administration. Specifically, the same genes that were upregulated by acute cocaine in cocaine-naïve mice were downregulated by the same dose of cocaine in mice undergoing long-term withdrawal; the same pattern of opposite regulation was observed for the genes downregulated by initial acute cocaine exposure. When we analyzed this dataset further, we found that the gene expression patterns that were induced by long-term withdrawal from cocaine self-administration showed a high degree of overlap with the gene expression patterns of acute cocaine exposure - even though animals had not consumed cocaine in 30 days. Interestingly, cocaine re-exposure at this withdrawal time point reversed this expression pattern. Finally, we found that this pattern was similar across the VTA, PFC, NAc, and within each brain region the same genes were induced by acute cocaine, re-induced during long-term withdrawal, and reversed by cocaine re-exposure. Together, we identified a longitudinal pattern of gene regulation that is conserved across the VTA, PFC, and NAc, and characterized the genes constituting this pattern in each brain region.
Collapse
Affiliation(s)
- Soren D Emerson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Maxime Chevée
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
George BE, Barth SH, Kuiper LB, Holleran KM, Lacy RT, Raab-Graham KF, Jones SR. Enhanced heroin self-administration and distinct dopamine adaptations in female rats. Neuropsychopharmacology 2021; 46:1724-1733. [PMID: 34040157 PMCID: PMC8358024 DOI: 10.1038/s41386-021-01035-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence suggests that females are more vulnerable to the harmful effects of drugs of abuse, including opioids. Additionally, rates of heroin-related deaths substantially increased in females from 1999 to 2017 [1], underscoring the need to evaluate sex differences in heroin vulnerability. Moreover, the neurobiological substrates underlying sexually dimorphic responding to heroin are not fully defined. Thus, we evaluated male and female Long Evans rats on acquisition, dose-responsiveness, and seeking for heroin self-administration (SA) as well as using a long access model to assess escalation of intake at low and high doses of heroin, 0.025 and 0.1 mg/kg/inf, respectively. We paired this with ex vivo fast-scan cyclic voltammetry (FSCV) in the medial nucleus accumbens (NAc) shell and quantification of mu-opioid receptor (MOR) protein in the ventral tegmental area (VTA) and NAc. While males and females had similar heroin SA acquisition rates, females displayed increased responding and intake across doses, seeking for heroin, and escalation on long access. However, we found that males and females had similar expression levels of MORs in the VTA and NAc, regardless of heroin exposure. FSCV results revealed that heroin exposure did not change single-pulse elicited dopamine release, but caused an increase in dopamine transporter activity in both males and females compared to their naïve counterparts. Phasic-like stimulations elicited robust increases in dopamine release in heroin-exposed females compared to heroin-naïve females, with no differences seen in males. Together, our results suggest that differential adaptations of dopamine terminals may underlie the increased heroin SA behaviors seen in females.
Collapse
Affiliation(s)
- Brianna E. George
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Samuel H. Barth
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Lindsey B. Kuiper
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Katherine M. Holleran
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Ryan T. Lacy
- grid.256069.eDepartment of Psychology, Franklin and Marshall College, Lancaster, PA USA
| | - Kimberly F. Raab-Graham
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Sara R. Jones
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
5
|
Yuferov V, Butelman ER, Randesi M, van den Brink W, Blanken P, van Ree JM, Kreek MJ. Association of Serotonin Transporter (SERT) Polymorphisms with Opioid Dependence and Dimensional Aspects of Cocaine Use in a Caucasian Cohort of Opioid Users. Neuropsychiatr Dis Treat 2021; 17:659-670. [PMID: 33658787 PMCID: PMC7920580 DOI: 10.2147/ndt.s286536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION A functional tandem repeat polymorphism in the promoter of the serotonin transporter (SERT) gene (SLC6A4) has been studied for association to neuropsychiatric conditions, including substance use disorders. Short (S) forms of this repeat result in reduced transcription, and presumably greater synaptic levels of serotonin, which are involved in opioid and cocaine-induced reward. Dual exposure to heroin and cocaine is a common pattern of poly-drug use and is associated with considerable morbidity. We hypothesize that SLC6A4 variants are associated with cocaine exposure in subjects with an opioid dependence diagnosis (OD), and also in non-dependent opioid users (NOD). Other single nucleotide polymorphisms (SNPs) of SLC6A4 may also be likewise associated. MATERIALS AND METHODS This study determined whether variants of the SLC6A4 promoter repeats and two intronic SNPs, rs16965628 and rs2066713, are associated with categorical diagnoses of opioid dependence (DSM-IV criteria) and with dimensional aspects of cocaine use, in a Caucasian cohort (n=591). Three groups of subjects were examined: (1) 276 subjects with opioid dependence diagnosis (OD); (2) 163 subjects who had used opioids for non-medical reasons but never had an opioid dependence diagnosis (NOD); (3) 152 healthy controls (HC). RESULTS Aside from high exposure to heroin in the OD group, relatively high exposure to cocaine was detected in both OD and NOD groups. The SERT repeat genotype (classified as "long-long" [LL] versus "short-long" plus "short-short" [SL+SS]) was not associated with categorical opioid dependence diagnoses. A nominally significant association was identified with the [SL+SS] genotype of SLC6A4 and cocaine KMSK scores ≥"cutpoint" for a cocaine dependence diagnosis (p=0.026). The [SL+SS] genotype was associated with more rapid cocaine escalation than the LL genotype. No significant associations of rs16965628 and rs2066713 SNPs were found overall. CONCLUSION The functional SERT promoter tandem repeat genotype may be associated to heavy cocaine exposure and more rapid escalation of cocaine use, in persons with and without opioid dependence diagnosis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, The Hague, The Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
6
|
Salin A, Lardeux V, Solinas M, Belujon P. Protracted Abstinence From Extended Cocaine Self-Administration Is Associated With Hypodopaminergic Activity in the VTA but Not in the SNc. Int J Neuropsychopharmacol 2020; 24:499-504. [PMID: 33305794 PMCID: PMC8278795 DOI: 10.1093/ijnp/pyaa096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The chronic relapsing nature of cocaine addiction suggests that chronic cocaine exposure produces persistent neuroadaptations that may be temporally and regionally dynamic in brain areas such as the dopaminergic (DA) system. We have previously shown altered metabolism of DA-target structures, the ventral and dorsal striatum, between early and late abstinence. However, specific changes within the midbrain DA system were not investigated. Here, we investigated potential time- and region-specific changes of activity in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) in rats that had extended or limited access to cocaine and later underwent a period of abstinence. We found that DA activity is decreased only in the VTA in rats with extended access to cocaine, with no changes in SNc DA activity. These changes in VTA DA activity may participate in the negative emotional state and the incubation of drug seeking that occur during abstinence from cocaine.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France,Correspondence: Pauline Belujon, PhD, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Université de Poitiers, Pôle Biologie Santé, Bâtiment B36,1, rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France (; )
| |
Collapse
|
7
|
Dokkedal-Silva V, Galduróz JCF, Tufik S, Andersen ML. Combined cocaine and clonazepam administration induces REM sleep loss and anxiety-like withdrawal behaviors in rats. Pharmacol Biochem Behav 2020; 197:173014. [DOI: 10.1016/j.pbb.2020.173014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/09/2020] [Indexed: 01/04/2023]
|
8
|
Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020; 443:131-139. [PMID: 32730947 DOI: 10.1016/j.neuroscience.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
The brain opioid system plays an important role in cocaine reward. Altered signaling in the opioid system by chronic cocaine exposure contributes to cocaine-seeking and taking behavior. The current study investigated concurrent changes in the gene expression of multiple components in rat brain opioid system following cocaine self-administration. Animals were limited to 40 infusions (1.5 mg/kg/infusion) within 6 h per day for five consecutive days. We then examined the mRNA levels of opioid receptors including mu (Oprm), delta (Oprd), and kappa (Oprk), and their endogenous opioid peptide precursors including proopiomelanocortin (Pomc), proenkephalin (Penk), prodynorphin (Pdyn) in the dorsal striatum (CPu) and the prefrontal cortex (PFC) 18 h after the last cocaine infusion. We found that cocaine self-administration significantly increased the mRNA levels of Oprm and Oprd in both the CPu and PFC, but had no effect on Oprk mRNA levels in either brain region. Moreover, cocaine had a greater influence on the mRNA levels of opioid peptide precursors in rat CPu than in the PFC. In the CPu, cocaine self-administration significantly increased the mRNA levels of Penk and Pdyn and abolished the mRNA levels of Pomc. In the PFC, cocaine self-administration only increased Pdyn mRNA levels without changing the mRNA levels of Pomc and Penk. These data suggest that cocaine self-administration influences the expression of multiple genes in the brain opioid system, and the concurrent changes in these targets may underlie cocaine-induced reward and habitual drug-seeking behavior.
Collapse
|
9
|
Lepack AE, Werner CT, Stewart AF, Fulton SL, Zhong P, Farrelly LA, Smith ACW, Ramakrishnan A, Lyu Y, Bastle RM, Martin JA, Mitra S, O'Connor RM, Wang ZJ, Molina H, Turecki G, Shen L, Yan Z, Calipari ES, Dietz DM, Kenny PJ, Maze I. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 2020; 368:197-201. [PMID: 32273471 DOI: 10.1126/science.aaw8806] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Vulnerability to relapse during periods of attempted abstinence from cocaine use is hypothesized to result from the rewiring of brain reward circuitries, particularly ventral tegmental area (VTA) dopamine neurons. How cocaine exposures act on midbrain dopamine neurons to precipitate addiction-relevant changes in gene expression is unclear. We found that histone H3 glutamine 5 dopaminylation (H3Q5dop) plays a critical role in cocaine-induced transcriptional plasticity in the midbrain. Rats undergoing withdrawal from cocaine showed an accumulation of H3Q5dop in the VTA. By reducing H3Q5dop in the VTA during withdrawal, we reversed cocaine-mediated gene expression changes, attenuated dopamine release in the nucleus accumbens, and reduced cocaine-seeking behavior. These findings establish a neurotransmission-independent role for nuclear dopamine in relapse-related transcriptional plasticity in the VTA.
Collapse
Affiliation(s)
- Ashley E Lepack
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Andrew F Stewart
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasha L Fulton
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Lorna A Farrelly
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander C W Smith
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Lyu
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan M Bastle
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Richard M O'Connor
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Li Shen
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Erin S Calipari
- Department of Pharmacology, Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Paul J Kenny
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Limanaqi F, Busceti CL, Biagioni F, Fornai F, Puglisi-Allegra S. Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Front Psychiatry 2020; 11:569248. [PMID: 33093837 PMCID: PMC7527533 DOI: 10.3389/fpsyt.2020.569248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Stressful events, similar to abused drugs, significantly affect the homeostatic balance of the catecholamine brain systems while activating compensation mechanisms to restore balance. In detail, norepinephrine (NE)- and dopamine (DA)-containing neurons within the locus coeruleus (LC) and ventral tegmental area (VTA), are readily and similarly activated by psychostimulants and stressful events involving neural processes related to perception, reward, cognitive evaluation, appraisal, and stress-dependent hormonal factors. Brain catecholamine response to stress results in time-dependent regulatory processes involving mesocorticolimbic circuits and networks, where LC-NE neurons respond more readily than VTA-DA neurons. LC-NE projections are dominant in controlling the forebrain DA-targeted areas, such as the nucleus accumbens (NAc) and medial pre-frontal cortex (mPFC). Heavy and persistent coping demand could lead to sustained LC-NE and VTA-DA neuronal activity, that, when persisting chronically, is supposed to alter LC-VTA synaptic connections. Increasing evidence has been provided indicating a role of autophagy in modulating DA neurotransmission and synaptic plasticity. This alters behavior, and emotional/cognitive experience in response to drug abuse and occasionally, to psychological stress. Thus, relevant information to address the role of stress and autophagy can be drawn from psychostimulants research. In the present mini-review we discuss the role of autophagy in brain catecholamine response to stress and its dysregulation. The findings here discussed suggest a crucial role of regulated autophagy in the response and adaptation of LC-NE and VTA-DA systems to stress.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
11
|
Abstract
Addiction to substances such as alcohol, cocaine, opioids, and methamphetamine poses a continuing clinical and public challenge globally. Despite progress in understanding substance use disorders, challenges remain in their treatment. Some of these challenges include limited ability of therapeutics to reach the brain (blood-brain barrier), adverse systemic side effects of current medications, and importantly key aspects of addiction not addressed by currently available treatments (such as cognitive impairment). Inability to sustain abstinence or seek treatment due to cognitive deficits such as poor decision-making and impulsivity is known to cause poor treatment outcomes. In this review, we provide an evidenced-based rationale for intranasal drug delivery as a viable and safe treatment modality to bypass the blood-brain barrier and target insulin to the brain to improve the treatment of addiction. Intranasal insulin with improvement of brain cell energy and glucose metabolism, stress hormone reduction, and improved monoamine transmission may be an ideal approach for treating multiple domains of addiction including memory and impulsivity. This may provide additional benefits to enhance current treatment approaches.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA.
- HealthPartners Institute, Bloomington, Minnesota, USA.
| | - Leah R Hanson
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - William H Frey Ii
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| |
Collapse
|
12
|
Orsini CA, Hernandez CM, Bizon JL, Setlow B. Deconstructing value-based decision making via temporally selective manipulation of neural activity: Insights from rodent models. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:459-476. [PMID: 30341621 PMCID: PMC6472996 DOI: 10.3758/s13415-018-00649-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to choose among options that differ in their rewards and costs (value-based decision making) has long been a topic of interest for neuroscientists, psychologists, and economists alike. This is likely because this is a cognitive process in which all animals (including humans) engage on a daily basis, be it routine (which road to take to work) or consequential (which graduate school to attend). Studies of value-based decision making (particularly at the preclinical level) often treat it as a uniform process. The results of such studies have been invaluable for our understanding of the brain substrates and neurochemical systems that contribute to decision making involving a range of different rewards and costs. Value-based decision making is not a unitary process, however, but is instead composed of distinct cognitive operations that function in concert to guide choice behavior. Within this conceptual framework, it is therefore important to consider that the known neural substrates supporting decision making may contribute to temporally distinct and dissociable components of the decision process. This review will describe this approach for investigating decision making, drawing from published studies that have used techniques that allow temporal dissection of the decision process, with an emphasis on the literature in animal models. The review will conclude with a discussion of the implications of this work for understanding pathological conditions that are characterized by impaired decision making.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
13
|
Barbosa Méndez S, Salazar-Juárez A. Mirtazapine attenuates anxiety- and depression-like behaviors in rats during cocaine withdrawal. J Psychopharmacol 2019; 33:589-605. [PMID: 31012359 DOI: 10.1177/0269881119840521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anxiety and depression, key symptoms of the cocaine withdrawal syndrome in human addicts, are considered the main factors that precipitate relapse in chronic cocaine addiction. Preclinical studies have found that rodents exposed to different withdrawal periods show an increase in anxiety and depressive-like behavior. Mirtazapine - a tetracyclic medication - is used primarily to treat depression and, sometimes, anxiety. It has also successfully improved withdrawal symptoms in drug-dependent patients. AIM This study sought to determine whether chronic dosing of mirtazapine during cocaine withdrawal reduced depression- and anxiety-like behaviors that characterize cocaine withdrawal in animals. METHODS Cocaine pre-treated Wistar rats were subjected to a 60-day cocaine withdrawal period during which depression- and anxiety-like behaviors were evaluated in open field tests (OFT), the elevated plus-maze (EPM), the light-dark box test (LDT), the forced swimming test (FST) and spontaneous locomotor activity (SLA). RESULTS We found that chronic dosing with different doses of mirtazapine (30 and 60 mg/kg) decreased depression- and anxiety-like behaviors induced by different doses of cocaine (10, 20 and 40 mg/kg) during the 60-day cocaine withdrawal. INTERPRETATION Our results suggest that the pharmacological effect of mirtazapine on its target sites of action (α2-adrenergic and 5-HT2A and 5-HT3 receptors) within the brain may improve depression- and anxiety-like behaviors for long periods. CONCLUSION Therefore, the findings support the use of mirtazapine as a potentially effective therapy to reduce anxiety and depressive-like behavior during cocaine withdrawal.
Collapse
Affiliation(s)
- Susana Barbosa Méndez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, cuidad de México, Mexico
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, cuidad de México, Mexico
| |
Collapse
|
14
|
Yaw AM, Prosser RA, Jones PC, Garcia BJ, Jacobson DA, Glass JD. Epigenetic effects of paternal cocaine on reward stimulus behavior and accumbens gene expression in mice. Behav Brain Res 2019; 367:68-81. [PMID: 30910707 DOI: 10.1016/j.bbr.2019.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Paternal cocaine use causes phenotypic alterations in offspring behavior and associated neural processing. In rodents, changes in first generation (F1) offspring include drug reward behavior, circadian timing, and anxiety responses. This study, utilizing a murine (C57BL/6J) oral cocaine model, examines the effects of paternal cocaine exposure on fundamental characteristics of offspring reward responses, including: 1) the extent of cocaine-induced effects after different durations of sire drug withdrawal; 2) sex- and drug-dependent differences in F1 reward preference; 3) effects on second generation (F2) cocaine preference; and 4) corresponding changes in reward area (nucleus accumbens) mRNA expression. We demonstrate that paternal cocaine intake over a single ˜40-day spermatogenic cycle significantly decreased cocaine (but not ethanol or sucrose) preference in a sex-specific manner in F1 mice from sires mated 24 h after drug withdrawal. However, F1 offspring of sires bred 4 months after withdrawal did not exhibit altered cocaine preference. Altered cocaine preference also was not observed in F2's. RNASeq analyses of F1 accumbens tissue revealed changes in gene expression in male offspring of cocaine-exposed sires, including many genes not previously linked to cocaine addiction. Enrichment analyses highlight genes linked to CNS development, synaptic signaling, extracellular matrix, and immune function. Expression correlation analyses identified a novel target, Fam19a4, that may negatively regulate many genes in the accumbens, including genes already identified in addiction. Collectively, these results reveal that paternal cocaine effects in F1 offspring may involve temporally limited epigenetic germline effects and identify new genetic targets for addiction research.
Collapse
Affiliation(s)
- Alexandra M Yaw
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States
| | - Rebecca A Prosser
- Dept. of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States; NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States
| | - Benjamin J Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Daniel A Jacobson
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States; Department of Psychology, University of Tennessee, Knoxville, TN, 37996, United States
| | - J David Glass
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States.
| |
Collapse
|
15
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
16
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
17
|
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks. eNeuro 2018; 5:eN-NWR-0081-18. [PMID: 30073194 PMCID: PMC6071197 DOI: 10.1523/eneuro.0081-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.
Collapse
|
18
|
Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast 2017; 2017:5720842. [PMID: 29359051 PMCID: PMC5735684 DOI: 10.1155/2017/5720842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food) and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.
Collapse
|
19
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
20
|
Nicolas C, Tauber C, Lepelletier FX, Chalon S, Belujon P, Galineau L, Solinas M. Longitudinal Changes in Brain Metabolic Activity after Withdrawal from Escalation of Cocaine Self-Administration. Neuropsychopharmacology 2017; 42:1981-1990. [PMID: 28553833 PMCID: PMC5561337 DOI: 10.1038/npp.2017.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The chronic and relapsing nature of addiction suggests that drugs produce persistent adaptations in the brain that make individuals with drug addiction particularly sensitive to drug-related cues and stress and incapable of controlling drug-seeking and drug-taking behavior. In animal models, several long-lasting neuroadaptations have been described. However, few studies have used brain-imaging techniques to provide a complete picture of brain functioning in the course of withdrawal from cocaine. In this study, we allowed rats to self-administer cocaine under short-access (1-h/day) or long-access (6-h/day) conditions and used 2-deoxy-2-(18F)fluoro-d-glucose (18FDG) positron emission tomography scanning to investigate the longitudinal changes in metabolic activity 1 and 4 weeks after discontinuation of cocaine self-administration. We found that compared to naive rats, both long-access and short-access rats showed significant disruptions in basal brain metabolic activity. However, compared to short-access, long-access rats showed more intense, and long-lasting neuroadaptations in a network of brain areas. In particular, abstinence from extended access to cocaine was associated with decreased metabolic activity in the anterior cingulate cortex, the insular cortex, and the dorsolateral striatum, and increased metabolic activity in the mesencephalon, amygdala, and hippocampus. This pattern is strikingly similar to that described in humans that has led to the proposal of the Impaired Response Inhibition and Salience Attribution model of addiction. These results demonstrate that extended access to cocaine leads to persistent neuroadaptations in brain regions involved in motivation, salience attribution, memory, stress, and inhibitory control that may underlie increased risks of relapse.
Collapse
Affiliation(s)
- Céline Nicolas
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France
| | - Clovis Tauber
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | | | - Sylvie Chalon
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Pauline Belujon
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France
| | - Laurent Galineau
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Marcello Solinas
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France,Neurobiology and Neuropharmacology of Addiction Team, Laboratory of Experimental and Clinical Neurosciences, INSERM U1084, University of Poitiers, Bât. B36—Pôle Biologie Santé, 1, rue Georges Bonnet—BP 633, Poitiers 86022, France, Tel: +33 5 49 366343, Fax: +33 5 49 454014, E-mail:
| |
Collapse
|
21
|
Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine. J Neurosci 2017; 36:7807-16. [PMID: 27466327 DOI: 10.1523/jneurosci.4652-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/11/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a "primed" state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action, the dopamine transporter (DAT). Preclinical literature has shown that reduced cocaine potency at the DAT increases cocaine taking, highlighting the key role of tolerance in addiction. Addiction is characterized by cycles of abstinence, often for many months, followed by relapse, making it important to determine possible interactions between abstinence and subsequent drug re-exposure. Using a rodent model of cocaine abuse, we found long-lasting, possibly permanent, cocaine-induced alterations to the DAT, whereby cocaine tolerance is reinstated by minimal drug exposure, even after recovery of DAT function over prolonged abstinence periods.
Collapse
|
22
|
Koenig S, Wolf R, Heisenberg M. Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing. PLoS One 2016; 11:e0161412. [PMID: 27571359 PMCID: PMC5003349 DOI: 10.1371/journal.pone.0161412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells.
Collapse
Affiliation(s)
- Sebastian Koenig
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Joseph-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Reinhard Wolf
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Joseph-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Martin Heisenberg
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Joseph-Schneider-Straße 2, 97080, Würzburg, Germany
| |
Collapse
|
23
|
Calipari ES, Siciliano CA, Zimmer BA, Jones SR. Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacology 2015; 40:728-35. [PMID: 25212486 PMCID: PMC4289961 DOI: 10.1038/npp.2014.238] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
Although traditional sensitization paradigms, which result in an augmentation of cocaine-induced locomotor behavior and dopamine (DA) overflow following repeated experimenter-delivered cocaine injections, are often used as a model to study drug addiction, similar effects have been difficult to demonstrate following cocaine self-administration. We have recently shown that intermittent access (IntA) to cocaine can result in increased cocaine potency at the DA transporter (DAT); however, traditional sensitization paradigms often show enhanced effects following withdrawal/abstinence periods. Therefore, we determined a time course of IntA-induced sensitization by examining the effects of 1 or 3 days of IntA, as well as a 7-day abstinence period on DA function, cocaine potency, and reinforcement. Here we show that cocaine potency is increased following as little as 3 days of IntA and further augmented following an abstinence period. In addition, IntA plus abstinence produced greater evoked DA release in the presence of cocaine as compared with all other groups, demonstrating that following abstinence, both cocaine's ability to increase DA release and inhibit uptake at the DAT, two separate mechanisms for increasing DA levels, are enhanced. Finally, we found that IntA-induced sensitization of the DA system resulted in an increased reinforcing efficacy of cocaine, an effect that was augmented after the 7-day abstinence period. These results suggest that sensitization of the DA system may have an important role in the early stages of drug abuse and may drive the increased drug seeking and taking that characterize the transition to uncontrolled drug use. Human data suggest that intermittency, sensitization, and periods of abstinence have an integral role in the process of addiction, highlighting the importance of utilizing pre-clinical models that integrate these phenomena, and suggesting that IntA paradigms may serve as novel models of human addiction.
Collapse
Affiliation(s)
- Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cody A Siciliano
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Benjamin A Zimmer
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Neuroscience, The Medical University of South Carolina, Charleston, SC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA, Tel: 336 716 8533, Fax: 336 716 8501, E-mail:
| |
Collapse
|
24
|
Siciliano CA, Calipari ES, Ferris MJ, Jones SR. Adaptations of presynaptic dopamine terminals induced by psychostimulant self-administration. ACS Chem Neurosci 2015; 6:27-36. [PMID: 25491345 PMCID: PMC4304501 DOI: 10.1021/cn5002705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/04/2014] [Indexed: 12/27/2022] Open
Abstract
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction.
Collapse
Affiliation(s)
- Cody A. Siciliano
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Erin S. Calipari
- Fishberg
Department of Neuroscience, Icahn School
of Medicine at Mount Sinai, New
York, New York 10029, United States
| | - Mark J. Ferris
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
25
|
Calipari ES, Ferris MJ, Siciliano CA, Jones SR. Differential influence of dopamine transport rate on the potencies of cocaine, amphetamine, and methylphenidate. ACS Chem Neurosci 2015; 6:155-62. [PMID: 25474655 PMCID: PMC4304485 DOI: 10.1021/cn500262x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
![]()
Dopamine
transporter (DAT) levels vary across brain regions and
individuals, and are altered by drug history and disease states; however,
the impact of altered DAT expression on psychostimulant effects in
brain has not been systematically explored. Using fast scan cyclic
voltammetry, we measured the effects of elevated DAT levels on presynaptic
dopamine parameters as well as the uptake inhibition potency of the
blockers cocaine and methylphenidate (MPH) and the releaser amphetamine
(AMPH) in the nucleus accumbens core. Here we found that increases
in DAT levels, resulting from either genetic overexpression or MPH
self-administration, caused markedly increased maximal rates of uptake
(Vmax) that were positively correlated
with the uptake inhibition potency of AMPH and MPH, but not cocaine.
AMPH and MPH were particularly sensitive to DAT changes, with a 100%
increase in Vmax resulting in a 200% increase
in potency. The relationship between Vmax and MPH potency was the same as that for AMPH, but was different
from that for cocaine, indicating that MPH more closely resembles
a releaser with regard to uptake inhibition. Conversely, the effects
of MPH on stimulated dopamine release were similar to those of cocaine,
with inverted U-shaped increases in release over a concentration–response
curve. This was strikingly different from the release profile of AMPH,
which showed only reductions at high concentrations, indicating that
MPH is not a pure releaser. These data indicate that although MPH
is a DAT blocker, its uptake-inhibitory actions are affected by DAT
changes in a similar manner to releasers. Together, these data show
that fluctuations in DAT levels alter the potency of releasers and
MPH but not blockers and suggest an integral role of the DAT in the
addictive potential of AMPH and related compounds.
Collapse
Affiliation(s)
- Erin S. Calipari
- Department
of Physiology
and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mark J. Ferris
- Department
of Physiology
and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Cody A. Siciliano
- Department
of Physiology
and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology
and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
26
|
Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure. Psychopharmacology (Berl) 2014; 231:4489-501. [PMID: 24800898 PMCID: PMC4224606 DOI: 10.1007/s00213-014-3598-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. OBJECTIVES The objective of the present study is to determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. METHODS Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11-13 sessions. RESULTS Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion, and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. CONCLUSIONS Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders).
Collapse
|
27
|
Calipari ES, Sun H, Eldeeb K, Luessen DJ, Feng X, Howlett AC, Jones SR, Chen R. Amphetamine self-administration attenuates dopamine D2 autoreceptor function. Neuropsychopharmacology 2014; 39:1833-42. [PMID: 24513972 PMCID: PMC4059891 DOI: 10.1038/npp.2014.30] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Khalil Eldeeb
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA,The Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA,The Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, USA,The Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine, Winston Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA, Tel: +336 716 8605, Fax: +336 713 1545, E-mail:
| |
Collapse
|
28
|
Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations. Neuropharmacology 2014; 87:66-80. [PMID: 24662599 DOI: 10.1016/j.neuropharm.2014.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/26/2014] [Accepted: 03/12/2014] [Indexed: 01/09/2023]
Abstract
Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
29
|
Calipari ES, Jones SR. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration. Neuropharmacology 2014; 82:1-10. [PMID: 24632529 DOI: 10.1016/j.neuropharm.2014.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
30
|
Calipari ES, Ferris MJ, Siciliano CA, Zimmer BA, Jones SR. Intermittent cocaine self-administration produces sensitization of stimulant effects at the dopamine transporter. J Pharmacol Exp Ther 2014; 349:192-8. [PMID: 24566123 DOI: 10.1124/jpet.114.212993] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous literature investigating neurobiological adaptations following cocaine self-administration has shown that high, continuous levels of cocaine intake (long access; LgA) results in reduced potency of cocaine at the dopamine transporter (DAT), whereas an intermittent pattern of cocaine administration (intermittent access; IntA) results in sensitization of cocaine potency at the DAT. Here, we aimed to determine whether these changes are specific to cocaine or translate to other psychostimulants. Psychostimulant potency was assessed by fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens following IntA, short access, and LgA cocaine self-administration, as well as in brain slices from naive animals. We assessed the potency of amphetamine (a releaser), and methylphenidate (a DAT blocker, MPH). MPH was selected because it is functionally similar to cocaine and structurally related to amphetamine. We found that MPH and amphetamine potencies were increased following IntA, whereas neither was changed following LgA or short access cocaine self-administration. Therefore, whereas LgA-induced tolerance at the DAT is specific to cocaine as shown in previous work, the sensitizing effects of IntA apply to cocaine, MPH, and amphetamine. This demonstrates that the pattern with which cocaine is administered is important in determining the neurochemical consequences of not only cocaine effects but potential cross-sensitization/cross-tolerance effects of other psychostimulants as well.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
31
|
Calipari ES, Ferris MJ, Jones SR. Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine. J Neurochem 2013; 128:224-32. [PMID: 24102293 DOI: 10.1111/jnc.12452] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
Abstract
Tolerance to the neurochemical and psychoactive effects of cocaine after repeated use is a hallmark of cocaine addiction in humans. However, comprehensive studies on tolerance to the behavioral, psychoactive, and neurochemical effects of cocaine following contingent administration in rodents are lacking. We outlined the consequences of extended access cocaine self-administration as it related to tolerance to the psychomotor activating, dopamine (DA) elevating, and DA transporter (DAT) inhibiting effects of cocaine. Cocaine self-administration (1.5 mg/kg/inj; 40 inj; 5 days), which resulted in escalation of first hour intake, caused reductions in evoked DA release and reduced maximal rates of uptake through the DAT as measured by slice voltammetry in the nucleus accumbens core. Furthermore, we report reductions in cocaine-induced uptake inhibition and a corresponding increase in the dose of cocaine required for 50% inhibition of DA uptake (Ki ) at the DAT. Cocaine tolerance at the DAT translated to reductions in cocaine-induced DA overflow as measured by microdialysis. In addition, cocaine-induced elevations in locomotor activity and stereotypy were reduced, while rearing behavior was enhanced in animals with a history of cocaine self-administration. Here, we demonstrate both neurochemical and behavioral cocaine tolerance in an extended-access rodent model of cocaine abuse, which allows for a better understanding of the neurochemical and psychomotor tolerance that develops to cocaine in human addicts. We demonstrate tolerance to the neurochemical and behavioral effects of cocaine following extended-access cocaine self-administration. With respect to neurochemistry, we show reduced cocaine-induced dopamine uptake inhibition, an increased dose of cocaine required for 50% inhibition of the dopamine transporter, and reduced cocaine-induced dopamine overflow. In addition, we show escalation of cocaine intake and reduced cocaine-induced locomotor activity following cocaine self-administration.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | | | | |
Collapse
|