1
|
Norris RHC, Bizley JK. Ferret contributions to the business of sensory neurobiology. Curr Opin Neurobiol 2024; 89:102929. [PMID: 39488005 DOI: 10.1016/j.conb.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
In this brief review, we will highlight the ferret Mustela putorius furo as an increasingly utilized animal model for sensory systems and cognitive neuroscience research. In particular, the human like hearing range of the ferret, coupled with their amenability to training, make them an especially useful model for auditory and multisensory neuroscience. These factors, combined with the increasing availability of virally mediated circuit dissection methods, mean they occupy a unique niche as a versatile and valuable research model.
Collapse
Affiliation(s)
- Rebecca H C Norris
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jennifer K Bizley
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
2
|
Nikouei K, Garma L, Memic F, Hjerling-Leffler J, Goldschmidt E. Interhemispheric axonal sprouting occurs after pial removal in mice. Sci Rep 2024; 14:24765. [PMID: 39433546 PMCID: PMC11494079 DOI: 10.1038/s41598-024-75278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
White matter lacks the kind of plasticity that is present in the cortex, and subcortical injuries often result in permanent neurological deficits. Because cortical regions share common subcortical nuclei, creating new intergyral connections may allow for the bypass of subcortical damage. In this manuscript, a surgical interhemispheric bridge is created in mice, providing a model for an intercortical transpial bypass. To model this bypass, a midline craniotomy followed by interhemispheric (IH) pial removal was performed in C57BL/6 mice, allowing for the juxtaposition of the right and left prefrontal cortices. Adeno-associated virus (AAV) expressing tdTomato under a neuronal-specific promoter were injected into the right hemisphere. Animals were sacrificed two and four weeks after surgery, and axonal sprouting and glial changes were assessed in the "bypass" (BP) operation and sham surgery. Surgery did not result in any clear functional impairments. Removing the pia resulted in the formation of a physical connection between the hemispheres and the loss of the normal pial IH barrier. Cortical layer I became thinner with neuronal bodies in closer proximity than in the sham group. New interhemispheric axonal crossings were visible at two and four weeks in the BP group but not in the sham mice. These findings constitute the first step in the development of a cortico-cortico transpial bypass, allowing us to test a new way to surgically restore neurological function.
Collapse
Affiliation(s)
- Kasra Nikouei
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leonardo Garma
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas-CNIO, Madrid, Spain
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ezequiel Goldschmidt
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurosurgery, UCSF Weill Institute for Neurosciences, 400 Parnassus Ave, Suite A808, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Weiler S, Rahmati V, Isstas M, Wutke J, Stark AW, Franke C, Graf J, Geis C, Witte OW, Hübener M, Bolz J, Margrie TW, Holthoff K, Teichert M. A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration. Nat Commun 2024; 15:3081. [PMID: 38594279 PMCID: PMC11003985 DOI: 10.1038/s41467-024-47459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.
Collapse
Affiliation(s)
- Simon Weiler
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Vahid Rahmati
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Marcel Isstas
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Johann Wutke
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Walter Stark
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
| | - Christian Franke
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Straße 6, 07745, Jena, Germany
| | - Jürgen Graf
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Geis
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Otto W Witte
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Jürgen Bolz
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Knut Holthoff
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Manuel Teichert
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
4
|
Coen P, Sit TPH, Wells MJ, Carandini M, Harris KD. Mouse frontal cortex mediates additive multisensory decisions. Neuron 2023; 111:2432-2447.e13. [PMID: 37295419 PMCID: PMC10957398 DOI: 10.1016/j.neuron.2023.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
The brain can combine auditory and visual information to localize objects. However, the cortical substrates underlying audiovisual integration remain uncertain. Here, we show that mouse frontal cortex combines auditory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (secondary motor cortex) additively encodes visual and auditory signals, consistent with the mice's behavioral strategy. An accumulator model applied to these sensory representations reproduced the observed choices and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence across sensory cortices, providing a signal that is transformed into a binary decision by a downstream accumulator.
Collapse
Affiliation(s)
- Philip Coen
- UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy P H Sit
- Sainsbury-Wellcome Center, University College London, London, UK
| | - Miles J Wells
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Franken MK, Liu BC, Ostry DJ. Towards a somatosensory theory of speech perception. J Neurophysiol 2022; 128:1683-1695. [PMID: 36416451 PMCID: PMC9762980 DOI: 10.1152/jn.00381.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Speech perception is known to be a multimodal process, relying not only on auditory input but also on the visual system and possibly on the motor system as well. To date there has been little work on the potential involvement of the somatosensory system in speech perception. In the present review, we identify the somatosensory system as another contributor to speech perception. First, we argue that evidence in favor of a motor contribution to speech perception can just as easily be interpreted as showing somatosensory involvement. Second, physiological and neuroanatomical evidence for auditory-somatosensory interactions across the auditory hierarchy indicates the availability of a neural infrastructure that supports somatosensory involvement in auditory processing in general. Third, there is accumulating evidence for somatosensory involvement in the context of speech specifically. In particular, tactile stimulation modifies speech perception, and speech auditory input elicits activity in somatosensory cortical areas. Moreover, speech sounds can be decoded from activity in somatosensory cortex; lesions to this region affect perception, and vowels can be identified based on somatic input alone. We suggest that the somatosensory involvement in speech perception derives from the somatosensory-auditory pairing that occurs during speech production and learning. By bringing together findings from a set of studies that have not been previously linked, the present article identifies the somatosensory system as a presently unrecognized contributor to speech perception.
Collapse
Affiliation(s)
| | | | - David J Ostry
- McGill University, Montreal, Quebec, Canada
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
6
|
Merrikhi Y, Kok MA, Lomber SG, Meredith MA. A comparison of multisensory features of two auditory cortical areas: primary (A1) and higher-order dorsal zone (DZ). Cereb Cortex Commun 2022; 4:tgac049. [PMID: 36632047 PMCID: PMC9825723 DOI: 10.1093/texcom/tgac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
From myriads of ongoing stimuli, the brain creates a fused percept of the environment. This process, which culminates in perceptual binding, is presumed to occur through the operations of multisensory neurons that occur throughout the brain. However, because different brain areas receive different inputs and have different cytoarchitechtonics, it would be expected that local multisensory features would also vary across regions. The present study investigated that hypothesis using multiple single-unit recordings from anesthetized cats in response to controlled, electronically-generated separate and combined auditory, visual, and somatosensory stimulation. These results were used to compare the multisensory features of neurons in cat primary auditory cortex (A1) with those identified in the nearby higher-order auditory region, the Dorsal Zone (DZ). Both regions exhibited the same forms of multisensory neurons, albeit in different proportions. Multisensory neurons exhibiting excitatory or inhibitory properties occurred in similar proportions in both areas. Also, multisensory neurons in both areas expressed similar levels of multisensory integration. Because responses to auditory cues alone were so similar to those that included non-auditory stimuli, it is proposed that this effect represents a mechanism by which multisensory neurons subserve the process of perceptual binding.
Collapse
Affiliation(s)
- Yaser Merrikhi
- Corresponding authors: Yaser Merrikhi, Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada. and Stephen G Lomber, Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| | - Melanie A Kok
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stephen G Lomber
- Corresponding authors: Yaser Merrikhi, Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada. and Stephen G Lomber, Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
7
|
Lohse M, Zimmer-Harwood P, Dahmen JC, King AJ. Integration of somatosensory and motor-related information in the auditory system. Front Neurosci 2022; 16:1010211. [PMID: 36330342 PMCID: PMC9622781 DOI: 10.3389/fnins.2022.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
An ability to integrate information provided by different sensory modalities is a fundamental feature of neurons in many brain areas. Because visual and auditory inputs often originate from the same external object, which may be located some distance away from the observer, the synthesis of these cues can improve localization accuracy and speed up behavioral responses. By contrast, multisensory interactions occurring close to the body typically involve a combination of tactile stimuli with other sensory modalities. Moreover, most activities involving active touch generate sound, indicating that stimuli in these modalities are frequently experienced together. In this review, we examine the basis for determining sound-source distance and the contribution of auditory inputs to the neural encoding of space around the body. We then consider the perceptual consequences of combining auditory and tactile inputs in humans and discuss recent evidence from animal studies demonstrating how cortical and subcortical areas work together to mediate communication between these senses. This research has shown that somatosensory inputs interface with and modulate sound processing at multiple levels of the auditory pathway, from the cochlear nucleus in the brainstem to the cortex. Circuits involving inputs from the primary somatosensory cortex to the auditory midbrain have been identified that mediate suppressive effects of whisker stimulation on auditory thalamocortical processing, providing a possible basis for prioritizing the processing of tactile cues from nearby objects. Close links also exist between audition and movement, and auditory responses are typically suppressed by locomotion and other actions. These movement-related signals are thought to cancel out self-generated sounds, but they may also affect auditory responses via the associated somatosensory stimulation or as a result of changes in brain state. Together, these studies highlight the importance of considering both multisensory context and movement-related activity in order to understand how the auditory cortex operates during natural behaviors, paving the way for future work to investigate auditory-somatosensory interactions in more ecological situations.
Collapse
|
8
|
Grégoire A, Deggouj N, Dricot L, Decat M, Kupers R. Brain Morphological Modifications in Congenital and Acquired Auditory Deprivation: A Systematic Review and Coordinate-Based Meta-Analysis. Front Neurosci 2022; 16:850245. [PMID: 35418829 PMCID: PMC8995770 DOI: 10.3389/fnins.2022.850245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroplasticity following deafness has been widely demonstrated in both humans and animals, but the anatomical substrate of these changes is not yet clear in human brain. However, it is of high importance since hearing loss is a growing problem due to aging population. Moreover, knowing these brain changes could help to understand some disappointing results with cochlear implant, and therefore could improve hearing rehabilitation. A systematic review and a coordinate-based meta-analysis were realized about the morphological brain changes highlighted by MRI in severe to profound hearing loss, congenital and acquired before or after language onset. 25 papers were included in our review, concerning more than 400 deaf subjects, most of them presenting prelingual deafness. The most consistent finding is a volumetric decrease in gray matter around bilateral auditory cortex. This change was confirmed by the coordinate-based meta-analysis which shows three converging clusters in this region. The visual areas of deaf children is also significantly impacted, with a decrease of the volume of both gray and white matters. Finally, deafness is responsible of a gray matter increase within the cerebellum, especially at the right side. These results are largely discussed and compared with those from deaf animal models and blind humans, which demonstrate for example a much more consistent gray matter decrease along their respective primary sensory pathway. In human deafness, a lot of other factors than deafness could interact on the brain plasticity. One of the most important is the use of sign language and its age of acquisition, which induce among others changes within the hand motor region and the visual cortex. But other confounding factors exist which have been too little considered in the current literature, such as the etiology of the hearing impairment, the speech-reading ability, the hearing aid use, the frequent associated vestibular dysfunction or neurocognitive impairment. Another important weakness highlighted by this review concern the lack of papers about postlingual deafness, whereas it represents most of the deaf population. Further studies are needed to better understand these issues, and finally try to improve deafness rehabilitation.
Collapse
Affiliation(s)
- Anaïs Grégoire
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Naïma Deggouj
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Monique Decat
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ron Kupers
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Ecole d’Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Merrikhi Y, Kok MA, Carrasco A, Meredith MA, Lomber SG. MULTISENSORY RESPONSES IN A BELT REGION OF THE DORSAL AUDITORY CORTICAL PATHWAY. Eur J Neurosci 2021; 55:589-610. [PMID: 34927294 DOI: 10.1111/ejn.15573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
A basic function of the cerebral cortex is to receive and integrate information from different sensory modalities into a comprehensive percept of the environment. Neurons that demonstrate multisensory convergence occur across the necortex, but are especially prevalent in higher-order, association areas. However, a recent study of a cat higher-order auditory area, the dorsal zone (DZ) of auditory cortex, did not observe any multisensory features. Therefore, the goal of the present investigation was to address this conflict using recording and testing methodologies that are established for exposing and studying multisensory neuronal processing. Among the 482 neurons studied, we found that 76.6% were influenced by non-auditory stimuli. Of these neurons, 99% were affected by visual stimulation, but only 11% by somatosensory. Furthermore, a large proportion of the multisensory neurons showed integrated responses to multisensory stimulation, constituted a majority of the excitatory and inhibitory neurons encountered (as identified by the duration of their waveshape), and exhibited a distinct spatial distribution within DZ. These findings demonstrate that the dorsal zone of auditory cortex robustly exhibits multisensory properties and that the proportions of multisensory neurons encountered are consistent with those identified in other higher-order cortices.
Collapse
Affiliation(s)
- Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Melanie A Kok
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Andres Carrasco
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Fletcher MD. Can Haptic Stimulation Enhance Music Perception in Hearing-Impaired Listeners? Front Neurosci 2021; 15:723877. [PMID: 34531717 PMCID: PMC8439542 DOI: 10.3389/fnins.2021.723877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring hearing in severely-to-profoundly hearing-impaired individuals. However, users often struggle to deconstruct complex auditory scenes with multiple simultaneous sounds, which can result in reduced music enjoyment and impaired speech understanding in background noise. Hearing aid users often have similar issues, though these are typically less acute. Several recent studies have shown that haptic stimulation can enhance CI listening by giving access to sound features that are poorly transmitted through the electrical CI signal. This “electro-haptic stimulation” improves melody recognition and pitch discrimination, as well as speech-in-noise performance and sound localization. The success of this approach suggests it could also enhance auditory perception in hearing-aid users and other hearing-impaired listeners. This review focuses on the use of haptic stimulation to enhance music perception in hearing-impaired listeners. Music is prevalent throughout everyday life, being critical to media such as film and video games, and often being central to events such as weddings and funerals. It represents the biggest challenge for signal processing, as it is typically an extremely complex acoustic signal, containing multiple simultaneous harmonic and inharmonic sounds. Signal-processing approaches developed for enhancing music perception could therefore have significant utility for other key issues faced by hearing-impaired listeners, such as understanding speech in noisy environments. This review first discusses the limits of music perception in hearing-impaired listeners and the limits of the tactile system. It then discusses the evidence around integration of audio and haptic stimulation in the brain. Next, the features, suitability, and success of current haptic devices for enhancing music perception are reviewed, as well as the signal-processing approaches that could be deployed in future haptic devices. Finally, the cutting-edge technologies that could be exploited for enhancing music perception with haptics are discussed. These include the latest micro motor and driver technology, low-power wireless technology, machine learning, big data, and cloud computing. New approaches for enhancing music perception in hearing-impaired listeners could substantially improve quality of life. Furthermore, effective haptic techniques for providing complex sound information could offer a non-invasive, affordable means for enhancing listening more broadly in hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Lohse M, Dahmen JC, Bajo VM, King AJ. Subcortical circuits mediate communication between primary sensory cortical areas in mice. Nat Commun 2021; 12:3916. [PMID: 34168153 PMCID: PMC8225818 DOI: 10.1038/s41467-021-24200-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Integration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Sainsbury Wellcome Centre, London, UK.
| | - Johannes C Dahmen
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Fletcher MD, Verschuur CA. Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening. Front Neurosci 2021; 15:581414. [PMID: 34177440 PMCID: PMC8219940 DOI: 10.3389/fnins.2021.581414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring speech perception for severely to profoundly deaf individuals. Despite their success, several limitations remain, particularly in CI users' ability to understand speech in noisy environments, locate sound sources, and enjoy music. A new multimodal approach has been proposed that uses haptic stimulation to provide sound information that is poorly transmitted by the implant. This augmenting of the electrical CI signal with haptic stimulation (electro-haptic stimulation; EHS) has been shown to improve speech-in-noise performance and sound localization in CI users. There is also evidence that it could enhance music perception. We review the evidence of EHS enhancement of CI listening and discuss key areas where further research is required. These include understanding the neural basis of EHS enhancement, understanding the effectiveness of EHS across different clinical populations, and the optimization of signal-processing strategies. We also discuss the significant potential for a new generation of haptic neuroprosthetic devices to aid those who cannot access hearing-assistive technology, either because of biomedical or healthcare-access issues. While significant further research and development is required, we conclude that EHS represents a promising new approach that could, in the near future, offer a non-invasive, inexpensive means of substantially improving clinical outcomes for hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D. Fletcher
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
- Faculty of Engineering and Physical Sciences, Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Carl A. Verschuur
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
13
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
|
15
|
|
16
|
Fletcher MD, Zgheib J. Haptic sound-localisation for use in cochlear implant and hearing-aid users. Sci Rep 2020; 10:14171. [PMID: 32843659 PMCID: PMC7447810 DOI: 10.1038/s41598-020-70379-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Users of hearing-assistive devices often struggle to locate and segregate sounds, which can make listening in schools, cafes, and busy workplaces extremely challenging. A recent study in unilaterally implanted CI users showed that sound-localisation was improved when the audio received by behind-the-ear devices was converted to haptic stimulation on each wrist. We built on this work, using a new signal-processing approach to improve localisation accuracy and increase generalisability to a wide range of stimuli. We aimed to: (1) improve haptic sound-localisation accuracy using a varied stimulus set and (2) assess whether accuracy improved with prolonged training. Thirty-two adults with normal touch perception were randomly assigned to an experimental or control group. The experimental group completed a 5-h training regime and the control group were not trained. Without training, haptic sound-localisation was substantially better than in previous work on haptic sound-localisation. It was also markedly better than sound-localisation by either unilaterally or bilaterally implanted CI users. After training, accuracy improved, becoming better than for sound-localisation by bilateral hearing-aid users. These findings suggest that a wrist-worn haptic device could be effective for improving spatial hearing for a range of hearing-impaired listeners.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK. .,Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Jana Zgheib
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
17
|
Fletcher MD, Thini N, Perry SW. Enhanced Pitch Discrimination for Cochlear Implant Users with a New Haptic Neuroprosthetic. Sci Rep 2020; 10:10354. [PMID: 32587354 PMCID: PMC7316732 DOI: 10.1038/s41598-020-67140-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
The cochlear implant (CI) is the most widely used neuroprosthesis, recovering hearing for more than half a million severely-to-profoundly hearing-impaired people. However, CIs still have significant limitations, with users having severely impaired pitch perception. Pitch is critical to speech understanding (particularly in noise), to separating different sounds in complex acoustic environments, and to music enjoyment. In recent decades, researchers have attempted to overcome shortcomings in CIs by improving implant technology and surgical techniques, but with limited success. In the current study, we take a new approach of providing missing pitch information through haptic stimulation on the forearm, using our new mosaicOne_B device. The mosaicOne_B extracts pitch information in real-time and presents it via 12 motors that are arranged in ascending pitch along the forearm, with each motor representing a different pitch. In normal-hearing subjects listening to CI simulated audio, we showed that participants were able to discriminate pitch differences at a similar performance level to that achieved by normal-hearing listeners. Furthermore, the device was shown to be highly robust to background noise. This enhanced pitch discrimination has the potential to significantly improve music perception, speech recognition, and speech prosody perception in CI users.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom.
| | - Nour Thini
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Electro-Haptic Enhancement of Spatial Hearing in Cochlear Implant Users. Sci Rep 2020; 10:1621. [PMID: 32005889 PMCID: PMC6994470 DOI: 10.1038/s41598-020-58503-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/15/2020] [Indexed: 11/08/2022] Open
Abstract
Cochlear implants (CIs) have enabled hundreds of thousands of profoundly hearing-impaired people to perceive sounds by electrically stimulating the auditory nerve. However, CI users are often very poor at locating sounds, which leads to impaired sound segregation and threat detection. We provided missing spatial hearing cues through haptic stimulation to augment the electrical CI signal. We found that this "electro-haptic" stimulation dramatically improved sound localisation. Furthermore, participants were able to effectively integrate spatial information transmitted through these two senses, performing better with combined audio and haptic stimulation than with either alone. Our haptic signal was presented to the wrists and could readily be delivered by a low-cost wearable device. This approach could provide a non-invasive means of improving outcomes for the vast majority of CI users who have only one implant, without the expense and risk of a second implantation.
Collapse
|
20
|
Meredith MA, Keniston LP, Prickett EH, Bajwa M, Cojanu A, Clemo HR, Allman BL. What is a multisensory cortex? A laminar, connectional, and functional study of a ferret temporal cortical multisensory area. J Comp Neurol 2020; 528:1864-1882. [PMID: 31955427 DOI: 10.1002/cne.24859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023]
Abstract
Now that examples of multisensory neurons have been observed across the neocortex, this has led to some confusion about the features that actually designate a region as "multisensory." While the documentation of multisensory effects within many different cortical areas is clear, often little information is available about their proportions or net functional effects. To assess the compositional and functional features that contribute to the multisensory nature of a region, the present investigation used multichannel neuronal recording and tract tracing methods to examine the ferret temporal region: the lateral rostral suprasylvian sulcal area. Here, auditory-tactile multisensory neurons were predominant and constituted the majority of neurons across all cortical layers whose responses dominated the net spiking activity of the area. These results were then compared with a literature review of cortical multisensory data and were found to closely resemble multisensory features of other, higher-order sensory areas. Collectively, these observations argue that multisensory processing presents itself in hierarchical and area-specific ways, from regions that exhibit few multisensory features to those whose composition and processes are dominated by multisensory activity. It seems logical that the former exhibit some multisensory features (among many others), while the latter are legitimately designated as "multisensory."
Collapse
Affiliation(s)
- M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Leslie P Keniston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Elizabeth H Prickett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Moazzum Bajwa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Alexandru Cojanu
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - H Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Brian L Allman
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
21
|
Abstract
Over the past decade, there has been an unprecedented level of interest and progress into understanding visual processing in the brain of the deaf. Specifically, when the brain is deprived of input from one sensory modality (such as hearing), it often compensates with supranormal performance in one or more of the intact sensory systems (such as vision). Recent psychophysical, functional imaging, and reversible deactivation studies have converged to define the specific visual abilities that are enhanced in the deaf, as well as the cortical loci that undergo crossmodal plasticity in the deaf and are responsible for mediating these superior visual functions. Examination of these investigations reveals that central visual functions, such as object and facial discrimination, and peripheral visual functions, such as motion detection, visual localization, visuomotor synchronization, and Vernier acuity (measured in the periphery), are specifically enhanced in the deaf, compared with hearing participants. Furthermore, the cortical loci identified to mediate these functions reside in deaf auditory cortex: BA 41, BA 42, and BA 22, in addition to the rostral area, planum temporale, Te3, and temporal voice area in humans; primary auditory cortex, anterior auditory field, dorsal zone of auditory cortex, auditory field of the anterior ectosylvian sulcus, and posterior auditory field in cats; and primary auditory cortex and anterior auditory field in both ferrets and mice. Overall, the findings from these studies show that crossmodal reorganization in auditory cortex of the deaf is responsible for the superior visual abilities of the deaf.
Collapse
|
22
|
Schormans AL, Typlt M, Allman BL. Adult-Onset Hearing Impairment Induces Layer-Specific Cortical Reorganization: Evidence of Crossmodal Plasticity and Central Gain Enhancement. Cereb Cortex 2019; 29:1875-1888. [PMID: 29668848 PMCID: PMC6458918 DOI: 10.1093/cercor/bhy067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/22/2018] [Indexed: 11/14/2022] Open
Abstract
Adult-onset hearing impairment can lead to hyperactivity in the auditory pathway (i.e., central gain enhancement) as well as increased cortical responsiveness to nonauditory stimuli (i.e., crossmodal plasticity). However, it remained unclear to what extent hearing loss-induced hyperactivity is relayed beyond the auditory cortex, and thus, whether central gain enhancement competes or coexists with crossmodal plasticity throughout the distinct layers of the audiovisual cortex. To that end, we investigated the effects of partial hearing loss on laminar processing in the auditory, visual and audiovisual cortices of adult rats using extracellular electrophysiological recordings performed 2 weeks after loud noise exposure. Current-source density analyses revealed that central gain enhancement was not relayed to the audiovisual cortex (V2L), and was instead restricted to the granular layer of the higher order auditory area, AuD. In contrast, crossmodal plasticity was evident across multiple cortical layers within V2L, and also manifested in AuD. Surprisingly, despite this coexistence of central gain enhancement and crossmodal plasticity, noise exposure did not disrupt the responsiveness of these neighboring cortical regions to combined audiovisual stimuli. Overall, we have shown for the first time that adult-onset hearing impairment causes a complex assortment of intramodal and crossmodal changes across the layers of higher order sensory cortices.
Collapse
Affiliation(s)
- Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marei Typlt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Human olfactory-auditory integration requires phase synchrony between sensory cortices. Nat Commun 2019; 10:1168. [PMID: 30858379 PMCID: PMC6411726 DOI: 10.1038/s41467-019-09091-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
Multisensory integration is particularly important in the human olfactory system, which is highly dependent on non-olfactory cues, yet its underlying neural mechanisms are not well understood. In this study, we use intracranial electroencephalography techniques to record neural activity in auditory and olfactory cortices during an auditory-olfactory matching task. Spoken cues evoke phase locking between low frequency oscillations in auditory and olfactory cortices prior to odor arrival. This phase synchrony occurs only when the participant's later response is correct. Furthermore, the phase of low frequency oscillations in both auditory and olfactory cortical areas couples to the amplitude of high-frequency oscillations in olfactory cortex during correct trials. These findings suggest that phase synchrony is a fundamental mechanism for integrating cross-modal odor processing and highlight an important role for primary olfactory cortical areas in multisensory integration with the olfactory system.
Collapse
|
24
|
Bieler M, Xu X, Marquardt A, Hanganu-Opatz IL. Multisensory integration in rodent tactile but not visual thalamus. Sci Rep 2018; 8:15684. [PMID: 30356135 PMCID: PMC6200796 DOI: 10.1038/s41598-018-33815-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Behavioural performance requires a coherent perception of environmental features that address multiple senses. These diverse sensory inputs are integrated in primary sensory cortices, yet it is still largely unknown whether their convergence occurs even earlier along the sensory tract. Here we investigate the role of putatively modality-specific first-order (FO) thalamic nuclei (ventral posteromedial nucleus (VPM), dorsal lateral geniculate nucleus (dLGN)) and their interactions with primary sensory cortices (S1, V1) for multisensory integration in pigmented rats in vivo. We show that bimodal stimulation (i.e. simultaneous light flash and whisker deflection) enhances sensory evoked activity in VPM, but not dLGN. Moreover, cross-modal stimuli reset the phase of thalamic network oscillations and strengthen the coupling efficiency between VPM and S1, but not between dLGN and V1. Finally, the information flow from VPM to S1 is enhanced. Thus, FO tactile, but not visual, thalamus processes and relays sensory inputs from multiple senses, revealing a functional difference between sensory thalamic nuclei during multisensory integration.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany. .,Laboratory for Neural Computation, Department of Physiology, University of Oslo, 0372, Oslo, Norway.
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Annette Marquardt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
25
|
Chaplin TA, Allitt BJ, Hagan MA, Rosa MGP, Rajan R, Lui LL. Auditory motion does not modulate spiking activity in the middle temporal and medial superior temporal visual areas. Eur J Neurosci 2018; 48:2013-2029. [PMID: 30019438 DOI: 10.1111/ejn.14071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/07/2018] [Indexed: 12/29/2022]
Abstract
The integration of multiple sensory modalities is a key aspect of brain function, allowing animals to take advantage of concurrent sources of information to make more accurate perceptual judgments. For many years, multisensory integration in the cerebral cortex was deemed to occur only in high-level "polysensory" association areas. However, more recent studies have suggested that cross-modal stimulation can also influence neural activity in areas traditionally considered to be unimodal. In particular, several human neuroimaging studies have reported that extrastriate areas involved in visual motion perception are also activated by auditory motion, and may integrate audiovisual motion cues. However, the exact nature and extent of the effects of auditory motion on the visual cortex have not been studied at the single neuron level. We recorded the spiking activity of neurons in the middle temporal (MT) and medial superior temporal (MST) areas of anesthetized marmoset monkeys upon presentation of unimodal stimuli (moving auditory or visual patterns), as well as bimodal stimuli (concurrent audiovisual motion). Despite robust, direction selective responses to visual motion, none of the sampled neurons responded to auditory motion stimuli. Moreover, concurrent moving auditory stimuli had no significant effect on the ability of single MT and MST neurons, or populations of simultaneously recorded neurons, to discriminate the direction of motion of visual stimuli (moving random dot patterns with varying levels of motion noise). Our findings do not support the hypothesis that direct interactions between MT, MST and areas low in the hierarchy of auditory areas underlie audiovisual motion integration.
Collapse
Affiliation(s)
- Tristan A Chaplin
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria, Australia
| | - Benjamin J Allitt
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Maureen A Hagan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria, Australia
| | - Ramesh Rajan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria, Australia
| | - Leo L Lui
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Cardon G, Sharma A. Somatosensory Cross-Modal Reorganization in Adults With Age-Related, Early-Stage Hearing Loss. Front Hum Neurosci 2018; 12:172. [PMID: 29773983 PMCID: PMC5943502 DOI: 10.3389/fnhum.2018.00172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/12/2018] [Indexed: 02/04/2023] Open
Abstract
Under conditions of profound sensory deprivation, the brain has the propensity to reorganize. For example, intact sensory modalities often recruit deficient modalities' cortices for neural processing. This process is known as cross-modal reorganization and has been shown in congenitally and profoundly deaf patients. However, much less is known about cross-modal cortical reorganization in persons with less severe cases of age-related hearing loss (ARHL), even though such cases are far more common. Thus, we investigated cross-modal reorganization between the auditory and somatosensory modalities in older adults with normal hearing (NH) and mild-moderate ARHL in response to vibrotactile stimulation using high density electroencephalography (EEG). Results showed activation of the somatosensory cortices in adults with NH as well as those with hearing loss (HL). However, adults with mild-moderate ARHL also showed robust activation of auditory cortical regions in response to somatosensory stimulation. Neurophysiologic data exhibited significant correlations with speech perception in noise outcomes suggesting that the degree of cross-modal reorganization may be associated with functional performance. Our study presents the first evidence of somatosensory cross-modal reorganization of the auditory cortex in adults with early-stage, mild-moderate ARHL. Our findings suggest that even mild levels of ARHL associated with communication difficulty result in fundamental cortical changes.
Collapse
Affiliation(s)
- Garrett Cardon
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Anu Sharma
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
27
|
Konerding WS, Froriep UP, Kral A, Baumhoff P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep 2018; 8:3825. [PMID: 29491453 PMCID: PMC5830616 DOI: 10.1038/s41598-018-22051-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7 mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously.
Collapse
Affiliation(s)
- W S Konerding
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany.
| | - U P Froriep
- Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - A Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| | - P Baumhoff
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
28
|
Meredith MA, Wallace MT, Clemo HR. Do the Different Sensory Areas Within the Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent a Network Multisensory Hub? Multisens Res 2018; 31:793-823. [PMID: 31157160 PMCID: PMC6542292 DOI: 10.1163/22134808-20181316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian Sulcus - FAES) and somatosensory (Fourth somatosensory representation - SIV). To better understand the nature of cortical network hubs, the present report reviews the biological features of the AESc. Within the AESc, each area has extensive external cortical connections as well as among one another. Each of these core representations is separated by a transition zone characterized by bimodal neurons that share sensory properties of both adjoining core areas. Finally, core and transition zones are underlain by a continuous sheet of layer 5 neurons that project to common output structures. Altogether, these shared properties suggest that the collective AESc region represents a multiple sensory/multisensory cortical network hub. Ultimately, such an interconnected, composite structure adds complexity and biological detail to the understanding of cortical network hubs and their function in cortical processing.
Collapse
Affiliation(s)
- M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University,
Nashville, TN 37240 USA
| | - H. Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
29
|
Cuppini C, Ursino M, Magosso E, Ross LA, Foxe JJ, Molholm S. A Computational Analysis of Neural Mechanisms Underlying the Maturation of Multisensory Speech Integration in Neurotypical Children and Those on the Autism Spectrum. Front Hum Neurosci 2017; 11:518. [PMID: 29163099 PMCID: PMC5670153 DOI: 10.3389/fnhum.2017.00518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Failure to appropriately develop multisensory integration (MSI) of audiovisual speech may affect a child's ability to attain optimal communication. Studies have shown protracted development of MSI into late-childhood and identified deficits in MSI in children with an autism spectrum disorder (ASD). Currently, the neural basis of acquisition of this ability is not well understood. Here, we developed a computational model informed by neurophysiology to analyze possible mechanisms underlying MSI maturation, and its delayed development in ASD. The model posits that strengthening of feedforward and cross-sensory connections, responsible for the alignment of auditory and visual speech sound representations in posterior superior temporal gyrus/sulcus, can explain behavioral data on the acquisition of MSI. This was simulated by a training phase during which the network was exposed to unisensory and multisensory stimuli, and projections were crafted by Hebbian rules of potentiation and depression. In its mature architecture, the network also reproduced the well-known multisensory McGurk speech effect. Deficits in audiovisual speech perception in ASD were well accounted for by fewer multisensory exposures, compatible with a lack of attention, but not by reduced synaptic connectivity or synaptic plasticity.
Collapse
Affiliation(s)
- Cristiano Cuppini
- Department of Electric, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Mauro Ursino
- Department of Electric, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Elisa Magosso
- Department of Electric, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Lars A. Ross
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John J. Foxe
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neuroscience and The Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY, United States
| | - Sophie Molholm
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Pernia M, Estevez S, Poveda C, Plaza I, Carro J, Juiz JM, Merchan MA. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats. J Comp Neurol 2017; 525:2677-2689. [PMID: 28472857 DOI: 10.1002/cne.24233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 02/03/2023]
Abstract
Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex.
Collapse
Affiliation(s)
- M Pernia
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - S Estevez
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - C Poveda
- School of Medicine of Albacete, Institute for Research in Neurological Disabilities (Instituto de Investigación en Discapacidades Neurológicas - IDINE), University of Castilla-La Mancha (Universidad de Castilla La Mancha - UCLM), Albacete, Spain
| | - I Plaza
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - J Carro
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| | - J M Juiz
- School of Medicine of Albacete, Institute for Research in Neurological Disabilities (Instituto de Investigación en Discapacidades Neurológicas - IDINE), University of Castilla-La Mancha (Universidad de Castilla La Mancha - UCLM), Albacete, Spain
| | - M A Merchan
- Laboratory of Neurobiology of Hearing, Institute of Neurosciences of Castilla y León (Instituto de Neurociencias de Castilla y León - INCYL), University of Salamanca (Universidad de Salamanca - US), Salamanca, Spain
| |
Collapse
|
31
|
Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices. eNeuro 2017; 4:eN-NWR-0037-17. [PMID: 28374008 PMCID: PMC5362936 DOI: 10.1523/eneuro.0037-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing.
Collapse
|
32
|
Auditory-visual integration in fields of the auditory cortex. Hear Res 2017; 346:25-33. [PMID: 28115229 DOI: 10.1016/j.heares.2017.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 11/21/2022]
Abstract
While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields.
Collapse
|
33
|
Zhou ZC, Salzwedel AP, Radtke-Schuller S, Li Y, Sellers KK, Gilmore JH, Shih YYI, Fröhlich F, Gao W. Resting state network topology of the ferret brain. Neuroimage 2016; 143:70-81. [PMID: 27596024 DOI: 10.1016/j.neuroimage.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Andrew P Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yen-Yu Ian Shih
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Small Animal Imaging Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States.
| |
Collapse
|
34
|
Meredith MA, Lomber SG. Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hear Res 2016; 343:83-91. [PMID: 27292113 DOI: 10.1016/j.heares.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
When a major sense is lost, crossmodal plasticity substitutes functional processing from the remaining, intact senses. Recent studies of deafness-induced crossmodal plasticity in different subregions of auditory cortex indicate that the phenomenon is largely based on the "unmasking" of existing inputs. However, there is not yet a consensus on the sources or effects of crossmodal inputs to primary sensory cortical areas. In the present review, a rigorous re-examination of the experimental literature indicates that connections between different primary sensory cortices consistently occur in rodents, while primary-to-primary projections are absent/inconsistent in non-rodents such as cats and monkeys. These observations suggest that crossmodal plasticity that involves primary sensory areas are likely to exhibit species-specific distinctions.
Collapse
Affiliation(s)
- M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA.
| | - Stephen G Lomber
- Department of Physiology & Pharmacology, University of Western Ontario, London, N6A 5B7 Canada; Cerebral Systems Laboratory, University of Western Ontario, London, N6A 5B7 Canada; Department of Psychology, University of Western Ontario, London, N6A 5B7 Canada; National Centre for Audiology, University of Western Ontario, London, N6A 5B7 Canada.
| |
Collapse
|
35
|
Butler BE, Chabot N, Lomber SG. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 2016; 524:3042-63. [DOI: 10.1002/cne.24005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6G 1H1
| |
Collapse
|
36
|
Meredith MA, Clemo HR, Corley SB, Chabot N, Lomber SG. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity. Hear Res 2015; 333:25-36. [PMID: 26724756 DOI: 10.1016/j.heares.2015.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/31/2023]
Abstract
Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices.
Collapse
Affiliation(s)
- M Alex Meredith
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA.
| | - H Ruth Clemo
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA
| | - Sarah B Corley
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole Chabot
- Cerebral Systems Laboratory, The Brain and Mind Institute, Natural Sciences Centre, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephen G Lomber
- Cerebral Systems Laboratory, The Brain and Mind Institute, Natural Sciences Centre, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|