1
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Guo T, Zhou L, Xiong M, Xiong J, Huang J, Li Y, Zhang G, Chen G, Wang Z, Xiao T, Hu D, Bao A, Zhang Z. N-homocysteinylation of DJ-1 promotes neurodegeneration in Parkinson's disease. Aging Cell 2024; 23:e14124. [PMID: 38380563 PMCID: PMC11113254 DOI: 10.1111/acel.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lingyan Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jing Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Huang
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yiming Li
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guoxin Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guiqin Chen
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Hao Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tingting Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Dan Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Anyu Bao
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
4
|
Rivai B, Umar AK. Neuroprotective compounds from marine invertebrates. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:71. [DOI: 10.1186/s43088-023-00407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Neuroinflammation is a key pathological feature of a wide variety of neurological disorders, including Parkinson’s, multiple sclerosis, Alzheimer’s, and Huntington’s disease. While current treatments for these disorders are primarily symptomatic, there is a growing interest in developing new therapeutics that target the underlying neuroinflammatory processes.
Main body
Marine invertebrates, such as coral, sea urchins, starfish, sponges, and sea cucumbers, have been found to contain a wide variety of biologically active compounds that have demonstrated potential therapeutic properties. These compounds are known to target various key proteins and pathways in neuroinflammation, including 6-hydroxydopamine (OHDH), caspase-3 and caspase-9, p-Akt, p-ERK, p-P38, acetylcholinesterase (AChE), amyloid-β (Aβ), HSF-1, α-synuclein, cellular prion protein, advanced glycation end products (AGEs), paraquat (PQ), and mitochondria DJ-1.
Short conclusion
This review focuses on the current state of research on the neuroprotective effects of compounds found in marine invertebrates and the potential therapeutic implications of these findings for treating neuroinflammatory disorders. We also discussed the challenges and limitations of using marine-based compounds as therapeutics, such as sourcing and sustainability concerns, and the need for more preclinical and clinical studies to establish their efficacy and safety.
Graphical abstract
Collapse
|
5
|
Liu CX, Wang B, Zhu WP, Xu YF, Yang YY, Qian XH. An Endoplasmic Reticulum (ER)‐Targeting DNA Nanodevice for Autophagy‐Dependent Degradation of Proteins in Membrane‐Bound Organelles. Angew Chem Int Ed Engl 2022; 61:e202205509. [DOI: 10.1002/anie.202205509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Caixia X. Liu
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Bin Wang
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Weiping P. Zhu
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Yufang F. Xu
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yangyang Y. Yang
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Xuhong H. Qian
- Shanghai Key Laboratory of Chemical Biology School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
6
|
Wang XL, Feng ST, Wang YT, Zhang NN, Guo ZY, Yan X, Yuan YH, Wang ZZ, Chen NH, Zhang Y. Mangiferin, a natural glucoxilxanthone, inhibits mitochondrial dynamin-related protein 1 and relieves aberrant mitophagic proteins in mice model of Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154281. [PMID: 35752080 DOI: 10.1016/j.phymed.2022.154281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease featured to mitochondrial dysfunction in neuronal cells. Dynamin-related protein 1 (Drp1) is an important regulator of mitochondrial fission and subsequent mitophagy. Mangiferin (MGF) is a glucosyl xanthone mainly derived from Mangifera indica L., possessing multifaceted properties, e.g., antioxidant, anti-inflammatory, and enhancement of cognitive ability. Besides, it can cross the blood-brain barrier, thereby exerting a neuroprotective effect. However, so far, MGF's effect in balancing mitochondrial homeostasis via regulation of Drp1 level and mitophagic pathway in PD remains rarely reported. PURPOSE We aimed to investigate the neuroprotective effect of MGF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and examine the possible mechanisms. METHODS We utilized C57BL/6 mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); Behavioral parameters, containing the open field test, balance beam, pole test, and rotarod test, assessed the locomotor activity; immunohistochemistry assessed the number of TH-positive neurons; transmission electron microscopy detected ultrastructural mitochondrial morphology in the dopaminergic neuron; complex I enzymatic activity microplate assay kit measured the mitochondrial complex I activity; ATP determination kit measured ATP levels in mitochondria isolated from cells or striatal tissues; western blot measured the levels of Drp1 and mitophagic proteins. RESULTS We observed that MGF could mitigate motor deficiency and improve the expression of tyrosine hydroxylase in the substantia nigra of MPTP-induced PD mice. Furthermore, MGF not only ameliorated mitochondrial ultrastructure, but also improved mitochondrial ATP content. Within mitochondria, MGF could reduce Drp1 expression and reverse the expressions of mitophagic proteins, including PINK1, Parkin, NIX, BNIP3, FUNDC1, and p62. CONCLUSION Present study indicates that MGF benefits mitochondrial networks by recovering mitochondrial ultrastructure and ATP contents, reducing mitochondrial Drp1, and modulating mitophagic proteins in the MPTP-induced PD mice model, which revealed a novel acting mechanism of MGF in PD's treatment.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Adenosine Triphosphate/metabolism
- Animals
- Disease Models, Animal
- Dopaminergic Neurons
- Dynamins/metabolism
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mitochondria
- Mitochondrial Proteins/metabolism
- Neurodegenerative Diseases/drug therapy
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease/drug therapy
- Parkinson Disease/metabolism
- Xanthones/pharmacology
- Xanthones/therapeutic use
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
7
|
Liu C, Wang B, Zhu W, Xu Y, Yang Y, Qian X. An ER‐targeting DNA Nanodevice for Autophagy‐dependent Degradation of Proteins in Membrane‐bound Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Caixia Liu
- East China University of Science and Technology School of Pharmacy CHINA
| | - Bin Wang
- East China University of Science and Technology School of Pharmacy Shanghai CHINA
| | - Weiping Zhu
- East China University of Science and Technology School of Pharmacy CHINA
| | - Yufang Xu
- East China University of Science and Technology School of Pharmacy School of Pharmacy CHINA
| | - Yangyang Yang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Xuhong Qian
- East China University of Science and Technology School of Pharmacy CHINA
| |
Collapse
|
8
|
Neves M, Grãos M, Anjo SI, Manadas B. Modulation of signaling pathways by DJ-1: An updated overview. Redox Biol 2022; 51:102283. [PMID: 35303520 PMCID: PMC8928136 DOI: 10.1016/j.redox.2022.102283] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Margarida Neves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Mário Grãos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal; Biocant, Technology Transfer Association, Cantanhede, Portugal.
| | - Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal; Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal.
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal.
| |
Collapse
|
9
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021. [PMID: 34674795 PMCID: PMC8728543 DOI: 10.5483/bmbrep.2021.54.12.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021; 54:592-600. [PMID: 34674795 PMCID: PMC8728543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 08/21/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synucleincontaining protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies. [BMB Reports 2021; 54(12): 592-600].
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Guo ZY, Hu JH, Yan X, Chen NH, Zhang Y. Inhibition of dynamin-related protein 1 ameliorates the mitochondrial ultrastructure via PINK1 and Parkin in the mice model of Parkinson's disease. Eur J Pharmacol 2021; 907:174262. [PMID: 34146589 DOI: 10.1016/j.ejphar.2021.174262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the prevalent neurodegenerative disorder characterized by the degeneration of the nigrostriatal neurons. Dynamin-related protein 1 (Drp1) is a key regulator mediating mitochondrial fission and affecting mitophagy in neurons. It has been reported that the inhibition of Drp1 may be beneficial to PD. However, the role of Drp1 and mitophagy in PD remains elusive. Therefore, in this research, we investigated the role of Drp1 and the underlying mechanisms in the mice model of PD. We used the dynasore, a GTPase inhibitor, to inhibit the expression of Drp1. We found that inhibition of Drp1 could ameliorate the motor deficits and the expression of tyrosine hydroxylase in the mice of the PD model. But Drp1 inhibition did not affect mitochondria number and morphological parameters. Moreover, suppression of Drp1 up-regulated the mitochondrial expressions of PINK1 and Parkin while not affected the expressions of NIX and BNIP3. Conclusively, our findings suggest that the inhibition of Drp1 ameliorated the mitochondrial ultrastructure at least via regulating PINK1 and Parkin in the mice of the PD model. This study also implicates that inhibition of Drp1 might impact mitophagy and recover mitochondrial homeostasis in PD.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
12
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
13
|
Ling C, Lei C, Zou M, Cai X, Xiang Y, Xie Y, Li X, Huang D, Wang Y. Neuroprotective effect of apigenin against cerebral ischemia/reperfusion injury. J Int Med Res 2021; 48:300060520945859. [PMID: 32993408 PMCID: PMC7536502 DOI: 10.1177/0300060520945859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The therapeutic efficacy of apigenin in PC12 cells and rats remains
uncertain. The aim of this study was to investigate the neuroprotective
effects of apigenin against cerebral ischemia/reperfusion injury, both
in vitro and in vivo. Methods We first treated PC12 cells with cobalt chloride (CoCl2) to create
a model of oxidative stress injury. Cell viability was then determined using
a multifunctional microplate reader. In addition, reactive oxygen species
(ROS) levels, apoptosis, and mitochondrial membrane potentials (MMPs) were
examined using high-content cytometer analysis. The efficacy of apigenin
treatment was also analyzed in a rat middle cerebral artery occlusion (MCAO)
model using TTC staining and neurological deficit scores. Results The half-inhibitory concentration of CoCl2 was 1.2 mM.
Pretreatment with 10 µg ⋅ mL−1 apigenin significantly enhanced
cell viability, reduced ROS levels, alleviated apoptosis, and improved MMP
in PC12 cells with CoCl2-induced injury in
vitro. In addition, apigenin treatment in vivo
significantly improved neurological deficit scores and reduced infarct areas
in MCAO rats. These results suggest that the neuroprotective mechanisms of
apigenin may be related to mitochondrial activation. Conclusions Apigenin had excellent neuroprotective effects for the treatment of cerebral
ischemia/reperfusion injury in vitro and in
vivo.
Collapse
Affiliation(s)
- Chengli Ling
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Manshu Zou
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Yun Xiang
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Yu Xie
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xuran Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Dan Huang
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Training Base of Province-Ministry Joint State Key Laboratory of Chinese Medicinal Powder and Innovative Medicinals, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
14
|
Lycium barbarum Polysaccharide Ameliorates Heat-Stress-Induced Impairment of Primary Sertoli Cells and the Blood-Testis Barrier in Rat via Androgen Receptor and Akt Phosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5574202. [PMID: 34211569 PMCID: PMC8187067 DOI: 10.1155/2021/5574202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022]
Abstract
Male infertility induced by heat stress has been attracting more and more attention. Heat stress not only causes apoptosis of spermatocytes but also has adverse effects on Sertoli cells, further damaging spermatogenesis. Lycium barbarum polysaccharide (LBP) is the main bioactive component of Lycium barbarum, which has a protective effect on male reproduction, but its mechanism is still unclear. In this study, our results proved that LBP blocked the inhibitory effect on the proliferation activity of Sertoli cells after heat stress, reversed the dedifferentiation of Sertoli cells induced by heat stress, and ameliorated the structural integrity of the blood-testis barrier. In addition, it increased the expression of the androgen receptor and activated Akt signaling pathway to resist heat-stress-induced injury of Sertoli cells.
Collapse
|
15
|
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ, Zhang Y. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cell Mol Neurobiol 2021; 42:1321-1339. [PMID: 33528716 DOI: 10.1007/s10571-021-01039-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder caused by the progressive loss of dopaminergic neurons in the substantia nigra and affects millions of people. Currently, mitochondrial dysfunction is considered as a central role in the pathogenesis of both sporadic and familial forms of PD. Mitophagy, a process that selectively targets damaged or redundant mitochondria to the lysosome for elimination via the autophagy devices, is crucial in preserving mitochondrial health. So far, aberrant mitophagy has been observed in the postmortem of PD patients and genetic or toxin-induced models of PD. Except for mitochondrial dysfunction, mitophagy is involved in regulating several other PD-related pathological mechanisms as well, e.g., oxidative stress and calcium imbalance. So far, the mitophagy mechanisms induced by PD-related proteins, PINK1 and Parkin, have been studied widely, and several other PD-associated genes, e.g., DJ-1, LRRK2, and alpha-synuclein, have been discovered to participate in the regulation of mitophagy as well, which further strengthens the link between mitophagy and PD. Thus, in this view, we reviewed mitophagy pathways in belief and discussed the interactions between mitophagy and several PD's pathological mechanisms and how PD-related genes modulate the mitophagy process.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhi-Peng Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian-Nong-Tan Street, Xi-Cheng District, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
16
|
Vavougios GD, Zarogiannis SG, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Epigenetic regulation of apoptosis via the PARK7 interactome in peripheral blood mononuclear cells donated by tuberculosis patients vs. healthy controls and the response to treatment: A systems biology approach. Tuberculosis (Edinb) 2020; 123:101938. [PMID: 32741527 DOI: 10.1016/j.tube.2020.101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aims of our study were to determine for the first time differentially expressed genes (DEGs) and enriched molecular pathways involving the PARK7 interactome in PBMCs donated from tuberculosis patients. METHODS Data on a previously reconstructed PARK7 interactome (Vavougios et al., 2017) from datasets GDS4966 (Case-Control) and GDS4781 (Treatment Series) were retrieved from the Gene Expression Omnibus (GEO) repository. Gene Enrichment analysis was performed via the STRING algorithm and the GeneTrail2 software. RESULTS 17 and 22 PARK7 interactores were determined as DEGs in the active TB vs HD and Treatment Series subset analyses, correspondingly, associated with significantly enriched pathways (FDR <0.05) involving p53 and PTEN mediated, stress responsive apoptosis regulation pathways. The treatment subset was characterized by the emergence of an additional layer of transcriptional regulation mediated by polycomb proteins among others, as well as TLR-mediated and cytokine survival signaling. Finally, the enrichment of a Parkinson's disease signature including PARK7 interactors was determined by its differential regulation both in the exploratory analyses (FDR = 0.024), as well as the confirmatory analyses (FDR = 1.81e-243). CONCLUSIONS Our in silico analysis revealed for the first time the role of PARK7's interactome in regulating the epigenetics of the PBMC lifecycle and Mtb symbiosis.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21, Athens, Greece; Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece.
| | - Sotirios G Zarogiannis
- Department of Pleural Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41500, Larisa, Greece
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Universitetsvej 1, 28A.1, DK-4000, Roskilde, Denmark
| | - George Stamoulis
- Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41110, Larisa, Greece
| |
Collapse
|
17
|
Xue Y, Wang AZ. DJ-1 plays a neuroprotective role in SH-SY5Y cells by modulating Nrf2 signaling in response to lidocaine-mediated oxidative stress and apoptosis. Kaohsiung J Med Sci 2020; 36:630-639. [PMID: 32363780 DOI: 10.1002/kjm2.12218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
To investigate the effects of DJ-1 on lidocaine-induced cytotoxicity in neurons and the link with Nrf2 signaling, SH-SY5Y cells were treated with 1, 4, 8, and 16 mM lidocaine. Cell viability was measured by MTT assay, and apoptosis was measured by flow cytometry analysis. The mitochondrial membrane potential, reactive oxygen species (ROS) levels, lipid peroxidation (MDA), and GSH/GSSG ratio were determined with specific kits. Expression of DJ-1, Nrf2, and Nrf2 downstream signaling proteins (glutathione peroxidase [GPx], heme oxygenase-1 [HO-1], catalase [CAT], and glutathione reductase [GR]), was determined by western blot and qRT-PCR. The cell viability was dramatically decreased, while levels of apoptosis, ROS and Cys106-oxidized DJ-1 were significantly enhanced following treatment with lidocaine (concentration 4-16 mM), and increases were observed in a dose-dependent manner. After treatment with 8 mM lidocaine, DJ-1, and nuclear Nrf2, as well as antioxidative stress-related proteins, GPx, GR, HO-1, and CAT, were all significantly inhibited. Overexpression of DJ-1 suppressed lidocaine-induced apoptosis and oxidative stress in SH-SY5Y cells and activated Nrf2 signalling at the same time, and these effects were reversed by the inhibition of Nrf2. DJ-1 could protect SH-SY5Y cells from lidocaine-induced apoptosis through inhibition of oxidative stress via Nrf2 signaling.
Collapse
Affiliation(s)
- Ying Xue
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. Eur J Neurosci 2020; 53:2946-2959. [PMID: 32031280 DOI: 10.1111/ejn.14699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
The critical role of mitochondrial dysfunction in the pathological mechanisms of neurodegenerative disorders, particularly Parkinson's disease (PD), is well established. Compelling evidence indicates that Parkinson's proteins (e.g., α-synuclein, Parkin, PINK1, DJ-1, and LRRK2) are associated with mitochondrial dysfunction and oxidative stress in PD. Significantly, there is a possible central role of alpha-synuclein (α-Syn) in the occurrence of mitochondrial dysfunction and oxidative stress by the mediation of different signaling pathways. Also, tau, traditionally considered as the main component of neurofibrillary tangles, aggregates and amplifies the neurotoxic effects on mitochondria by interacting with α-Syn. Moreover, oxidative stress caused by mitochondrial dysfunction favors assembly of both α-Syn and tau and also plays a key role in the formation of protein aggregates. In this review, we provide an overview of the relationship between these two pathological proteins and mitochondrial dysfunction in PD, and also summarize the underlying mechanisms in the interplay of α-Syn aggregation and phosphorylated tau targeting the mitochondria, to find new strategies to prevent PD processing.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Furlong RM, Lindsay A, Anderson KE, Hawkins PT, Sullivan AM, O'Neill C. The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P 3. J Cell Sci 2019; 132:jcs.233221. [PMID: 31540955 DOI: 10.1242/jcs.233221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease (PD). Akt activation is reduced in the brain in PD, and by many PD-causing genes, including PINK1 This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1-modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to PINK1 kinase-dependent increases in PI(3,4,5)P3 at both plasma membrane and Golgi being significantly impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P3, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel M Furlong
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland.,Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland .,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| |
Collapse
|
20
|
SC79, a novel Akt activator, protects dopaminergic neuronal cells from MPP + and rotenone. Mol Cell Biochem 2019; 461:81-89. [PMID: 31342299 DOI: 10.1007/s11010-019-03592-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
In pathogenesis of Parkinson's disease (PD), mitochondrial dysfunction causes substantial reactive oxygen species (ROS) production and oxidative stress, leading to dopaminergic (DA) neuronal cell death. Mitochondrial toxins, including MPP+ (1-methyl-4-phenylpyridinium ion) and rotenone, induce oxidative injury in cultured DA neuronal cells. The current study tested the potential effect of SC79, a first-in-class small-molecule Akt activator, against the process. In SH-SY5Y cells and primary murine DA neurons, SC79 significantly attenuated MPP+- and rotenone-induced viability reduction, cell death, and apoptosis. SC79 activated Akt signaling in DA neuronal cells. Akt inhibition (by LY294002 and MK-2206) or CRISPR-Cas9-mediated Akt1 knockout completely abolished SC79-induced DA neuroprotection against MPP+. Further studies demonstrated that SC79 attenuated MPP+- and rotenone-induced ROS production, mitochondrial depolarization, and lipid peroxidation in SH-SY5Y cells and primary DA neurons. Moreover, upregulation of Nrf2-dependent genes (HO1 and NQO1) and Nrf2 protein stabilization were detected in SC79-treated SH-SY5Y cells and primary DA neurons. Together we show that SC79 protects DA neuronal cells from mitochondrial toxins possibly via activation of Akt-Nrf2 signaling.
Collapse
|
21
|
Zhang XL, Wang ZZ, Shao QH, Zhang Z, Li L, Guo ZY, Sun HM, Zhang Y, Chen NH. RNAi-mediated knockdown of DJ-1 leads to mitochondrial dysfunction via Akt/GSK-3ß and JNK signaling pathways in dopaminergic neuron-like cells. Brain Res Bull 2019; 146:228-236. [PMID: 30634017 DOI: 10.1016/j.brainresbull.2019.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/27/2022]
Abstract
Deletions or some mutations in the gene encoding the multifunctional protein, DJ-1, have been considered to be linked with autosomal recessive early onset Parkinson's disease (PD). Current emerging evidence suggests that DJ-1 is involved in the protection against oxidative stress-induced mitochondrial damage. However, the exact molecular mechanisms underlying this are not completely clear. The aim of this study was to investigate the effects of DJ-1 on the Akt pathway, nuclear factor erythroid 2-related factor (Nrf2), and c-Jun N-terminal kinase (JNK) with regard to modulating mitochondrial function. Here we showed that knockdown of DJ-1 resulted in mitochondrial dysfunction, including a decrease in active mitochondrial mass, complex I deficits, and inhibition of cellular adenosine 5'-triphosphate (ATP) content in the dopaminergic neuron-like cells PC12 and SH-SY5Y. Additionally, loss of DJ-1 impaired Akt signaling, and reduced nuclear translocation of Nrf2, thereby inhibiting activity of Nrf2-regulated downstream antioxidant enzymes such as heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. Moreover, DJ-1 knockdown also led to a significant increase in the mitochondrial reactive oxygen species, and then promoted the activation of JNK pathways. Furthermore, oxidative stress and mitochondrial dysfunction induced by knockdown of DJ-1 were blocked by a JNK inhibitor, which confirmed the important role of JNK activation in mitochondrial dysfunction. In conclusion, the present study indicates that DJ-1 knockdown leads to mitochondrial dysfunction in dopaminergic neuron-like cells, at least in part, through suppressing the Akt/GSK3β pathway and impairing the oxidative stress response, as well as through the subsequent increased JNK activation in dopaminergic neuron-like cells.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Li
- Key Laboratory of Neurodegenerative Diseases of Ministry of Education, Capital Medical University, Beijing 100053, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
22
|
Gao L, Zhang Z, Xu W, Li T, Ying G, Qin B, Li J, Zheng J, Zhao T, Yan F, Zhu Y, Chen G. Natrium Benzoate Alleviates Neuronal Apoptosis via the DJ-1-Related Anti-oxidative Stress Pathway Involving Akt Phosphorylation in a Rat Model of Traumatic Spinal Cord Injury. Front Mol Neurosci 2019; 12:42. [PMID: 30853891 PMCID: PMC6395451 DOI: 10.3389/fnmol.2019.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the neuroprotective effects and mechanisms of natrium benzoate (NaB) and DJ-1 in attenuating reactive oxygen species (ROS)-induced neuronal apoptosis in traumatic spinal cord injury (t-SCI) in rats. T-SCI was induced by clip compression. The protein expression and neuronal apoptosis was evaluated by Western blotting, double immunofluorescence staining and transmission electron microscope (TEM). ROS level, spinal cord water content (SCWC) and Evans blue (EB) extravasation was also examined. Locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) and inclined plane test (IPT) scores. We found that DJ-1 is expressed in spinal cord neurons and increased after t-SCI. At 24 h post-injury, the levels of DJ-1, p-Akt, SOD2, ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3 increased, while the Bcl-2/Bax ratio decreased. NaB upregulated DJ-1, p-Akt, and SOD2, decreased ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3, and increased the Bcl-2/Bax ratio, which were reversed by DJ-1 siRNA. The proportion of CC-3- and TUNEL-positive neurons also increased after t-SCI and was reduced by NaB. These effects were reversed by MK2206. Moreover, the level of oxDJ-1 increased after t-SCI, which was decreased by DJ-1 siRNA, NaB or the combination of them. NaB also reduced mitochondrial vacuolization, SCWC and EB extravasation, and improved locomotor function assessed by the BBB and IPT scores. In conclusion, NaB increased DJ-1, and thus reduced ROS and ROS-induced neuronal apoptosis by promoting Akt phosphorylation in t-SCI rats. NaB shows potential as a therapeutic agent for t-SCI, with DJ-1 as its main target.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tengfei Zhao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Zhang Y, Gong XG, Sun HM, Guo ZY, Hu JH, Wang YY, Feng WD, Li L, Li P, Wang ZZ, Chen NH. Da-Bu-Yin-Wan Improves the Ameliorative Effect of DJ-1 on Mitochondrial Dysfunction Through Augmenting the Akt Phosphorylation in a Cellular Model of Parkinson's Disease. Front Pharmacol 2018; 9:1206. [PMID: 30405418 PMCID: PMC6200911 DOI: 10.3389/fphar.2018.01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Da-Bu-Yin-Wan (DBYW) is recorded originally in China over six centuries ago, and it is used to treat Parkinson’s disease (PD) clinically in recent decades. DJ-1 is a homodimeric protein linked to early-onset PD, and found in the mitochondria. In addition, DJ-1 could protect the cells by regulating gene transcription and modulating the Akt signal pathways. Therefore, in this research, we aimed to investigate the ameliorative effect of DBYW on mitochondria in the view of the DJ-1 and Akt signaling. Rat adrenal pheochromocytoma cell line PC-12 was transfected with the plasmid pcDNA3-Flag-DJ-1 (pDJ-1). Subsequently, PC-12 cells were exposed to the PD-related mitochondrial toxin (1-methyl-4-phenylpyridinium) without/with the DBYW. After transfected with the plasmid pDJ-1, the 1-methyl-4-phenylpyridinium-induced toxicity was decreased, and the DJ-1 expression in protein level was increased. DJ-1 overexpression not only increased the mitochondrial mass, but also improved the total ATP content. Moreover, Akt phosphorylation was augmented by DJ-1 overexpression. Additionally, DBYW enhanced the above effects. Conclusively, these findings indicate that DBYW promotes the ameliorative effects of DJ-1 on mitochondrial dysfunction at least through augmenting the Akt phosphorylation in 1-methyl-4-phenylpyridinium-treated PC-12 cells.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Gang Gong
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,College of Special Education, Beijing Union University, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-Di Feng
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Neuroscience Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Neuroscience Center, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
24
|
Seabra G, Falvella ACB, Guest PC, Martins-de-Souza D, de Almeida V. Proteomics and Lipidomics in the Elucidation of Endocannabinoid Signaling in Healthy and Schizophrenia Brains. Proteomics 2018; 18:e1700270. [DOI: 10.1002/pmic.201700270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Ana Caroline B. Falvella
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Paul C. Guest
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico; São Paulo Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics; Department of Biochemistry and Tissue Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas Brazil
| |
Collapse
|
25
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
27
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 DOI: 10.3389/fnagi.2018.00109if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2024] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
28
|
Kahremany S, Babaev I, Hasin P, Tamir TY, Ben-Zur T, Cohen G, Jiang Z, Weintraub S, Offen D, Rahimipour S, Major MB, Senderowitz H, Gruzman A. Computer-Aided Design and Synthesis of 1-{4-[(3,4-Dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic Acid as an Nrf2 Enhancer. Chempluschem 2018; 83:320-333. [PMID: 31957349 DOI: 10.1002/cplu.201700539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/12/2022]
Abstract
The design and synthesis of a novel nuclear factor erythroid 2-related factor 2 (Nrf2) enhancer is reported. Using a structure-based virtual screening approach, several commercially available compounds were identified as having high probability to interact with the Nrf2-binding pocket in the Kelch-like ECH-associated protein 1 (Keap1). Keap1 is an adaptor protein that recruits Nrf2 to a cullin-3-dependent ubiquitin ligase complex. The identified compounds were tested against rat pheochromocytoma PC-12 cells for their cytoprotective activity, and one compound (SKT359126) demonstrated an Nrf2-mediated cell-protective effect. Based on the structure of SKT359126, 23 novel derivatives were synthesized and evaluated. Of the screened derivatives, 1-{4-[(3,4-dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic acid demonstrated better activity than the parent molecules in activating the Nrf2 transduction pathway in a dose- and time-dependent manner. This compound represents a promising starting point for the development of therapeutics for the treatment of oxidative-stress-related diseases.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ilana Babaev
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Pinhas Hasin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Tigist Y Tamir
- Department of Pharmacology, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tali Ben-Zur
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Rabin Medical Center-Beilinson Campus, Petah Tikva, 49100, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea & Arava Science Center, Tamar Regional Council, Dead Sea Mobile Post, 86910, Israel
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing, Jiangsu, 210008, P. R. China
| | - Sagiv Weintraub
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Daniel Offen
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Rabin Medical Center-Beilinson Campus, Petah Tikva, 49100, Israel
| | - Shai Rahimipour
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - M Ben Major
- Department of Pharmacology, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanoch Senderowitz
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
29
|
Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, Calap-Quintana P, Moltó MD, Paricio N. Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models. Free Radic Biol Med 2017; 108:683-691. [PMID: 28455141 DOI: 10.1016/j.freeradbiomed.2017.04.364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1β gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Pablo Calap-Quintana
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
| | - María Dolores Moltó
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; CIBERSAM, INCLIVA. Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
30
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|
31
|
Zhang Y, Gong XG, Wang ZZ, Sun HM, Guo ZY, Gai C, Hu JH, Ma L, Li P, Chen NH. Protective effects of DJ-1 medicated Akt phosphorylation on mitochondrial function are promoted by Da-Bu-Yin-Wan in 1-methyl-4-phenylpyridinium-treated human neuroblastoma SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:83-93. [PMID: 27114059 DOI: 10.1016/j.jep.2016.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/11/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Bu-Yin-Wan (DBYW), a historically traditional Chinese medicine formula, was originally defined over 600 years ago. In recent decades, DBYW was clinically employed to treat Parkinson's disease (PD). AIM OF THE STUDY To explore the underlying mechanism of DBYW on mitochondrial function, we investigated the effect of DBYW on mitochondrial function from the perspectives of DJ-1 and Akt signaling. MATERIALS AND METHODS Human derived neuroblastoma SH-SY5Y cells were transiently transfected with the plasmid pcDNA3-Flag-DJ-1 aimed to overexpress the DJ-1 protein. Transfected cells were treated with 1-methyl-4-phenylpyridinium (MPP(+)), a PD-related mitochondrial complex I inhibitor, in the absence and presence of DBYW. The cell viability was assessed by Cell Counting Kit-8 assay. The protein expressions of DJ-1 and Akt signaling were examined by western blotting. The mitochondrial mass was evaluated by confocal fluorescence microscopy. The mitochondrial complex I activity and cellular ATP content were measured by commercial kits. RESULTS Transfection with pcDNA3-Flag-DJ-1 decreased the MPP(+)-induced toxicity and overexpressed the DJ-1. In DJ-1 overexpressed cells, the mitochondrial mass was raised, mitochondrial complex I activity was improved, and cellular ATP content was increased. In addition, overexpression of DJ-1 augmented the Akt phosphorylation on threonine 308 and serine 473. Moreover, DBYW promoted the above effects in DJ-1 expressed cells. CONCLUSIONS These data suggest that DJ-1 protects the mitochondrial function by medicating Akt phosphorylation in MPP(+)-treated SH-SY5Y cells. Moreover, DBYW enhances the protective effect of DJ-1 medicated Akt phosphorylation on mitochondrial function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiao-Gang Gong
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; College of Special Education, Beijing Union University, Beijing 100075, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong Gai
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Ma
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|