1
|
Urban III ET, Hudson HM, Li Y, Nishibe M, Barbay S, Guggenmos DJ, Nudo RJ. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study. Cereb Cortex 2024; 34:bhad530. [PMID: 38265300 PMCID: PMC10839842 DOI: 10.1093/cercor/bhad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.
Collapse
Affiliation(s)
- Edward T Urban III
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M Hudson
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yanming Li
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mariko Nishibe
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David J Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Randolph J Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Lin X, Wang X, Zhang Y, Chu G, Liang J, Zhang B, Lu Y, Steward O, Luo J. Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury. Exp Neurol 2023; 370:114549. [PMID: 37774765 DOI: 10.1016/j.expneurol.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Single therapeutic interventions have not yet been successful in restoring function after spinal cord injury. Accordingly, combinatorial interventions targeting multiple factors may hold greater promise for achieving maximal functional recovery. In this study, we applied a combinatorial approach of chronic chemogenetic neuronal activation and physical exercise including treadmill running and forelimb training tasks to promote functional recovery. In a mouse model of cervical (C5) dorsal hemisection of the spinal cord, which transects almost all descending corticospinal tract axons, combining selective activation of corticospinal motoneurons (CMNs) by intersectional chemogenetics with physical exercise significantly promoted functional recovery evaluated by the grid walking test, grid hanging test, rotarod test, and single pellet-reaching tasks. Electromyography and histological analysis showed increased activation of forelimb muscles via chemogenetic stimuli, and a greater density of vGlut1+ innervation in spinal cord grey matter rostral to the injury, suggesting enhanced neuroplasticity and connectivity. Combined therapy also enhanced activation of mTOR signaling and reduced apoptosis in spinal motoneurons, Counts revealed increased numbers of detectable choline acetyltransferase-positive motoneurons in the ventral horn. Taken together, the findings from this study validate a novel combinatorial approach to enhance motor function after spinal cord injury.
Collapse
Affiliation(s)
- Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuping Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Hayley P, Tuchek C, Dalla S, Borrell J, Murphy MD, Nudo RJ, Guggenmos DJ. Post-ischemic reorganization of sensory responses in cerebral cortex. Front Neurosci 2023; 17:1151309. [PMID: 37332854 PMCID: PMC10272353 DOI: 10.3389/fnins.2023.1151309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Sensorimotor integration is critical for generating skilled, volitional movements. While stroke tends to impact motor function, there are also often associated sensory deficits that contribute to overall behavioral deficits. Because many of the cortico-cortical projections participating in the generation of volitional movement either target or pass-through primary motor cortex (in rats, caudal forelimb area; CFA), any damage to CFA can lead to a subsequent disruption in information flow. As a result, the loss of sensory feedback is thought to contribute to motor dysfunction even when sensory areas are spared from injury. Previous research has suggested that the restoration of sensorimotor integration through reorganization or de novo neuronal connections is important for restoring function. Our goal was to determine if there was crosstalk between sensorimotor cortical areas with recovery from a primary motor cortex injury. First, we investigated if peripheral sensory stimulation would evoke responses in the rostral forelimb area (RFA), a rodent homologue to premotor cortex. We then sought to identify whether intracortical microstimulation-evoked activity in RFA would reciprocally modify the sensory response. Methods We used seven rats with an ischemic lesion of CFA. Four weeks after injury, the rats' forepaw was mechanically stimulated under anesthesia and neural activity was recorded in the cortex. In a subset of trials, a small intracortical stimulation pulse was delivered in RFA either individually or paired with peripheral sensory stimulation. Results Our results point to post-ischemic connectivity between premotor and sensory cortex that may be related to functional recovery. Premotor recruitment during the sensory response was seen with a peak in spiking within RFA after the peripheral solenoid stimulation despite the damage to CFA. Furthermore, stimulation in RFA modulated and disrupted the sensory response in sensory cortex. Discussion The presence of a sensory response in RFA and the sensitivity of S1 to modulation by intracortical stimulation provides additional evidence for functional connectivity between premotor and somatosensory cortex. The strength of the modulatory effect may be related to the extent of the injury and the subsequent reshaping of cortical connections in response to network disruption.
Collapse
Affiliation(s)
- P. Hayley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - C. Tuchek
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - S. Dalla
- University of Kansas, School of Medicine Wichita, Kansas City, KS, United States
| | - J. Borrell
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - M. D. Murphy
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - R. J. Nudo
- Department of Rehabilitation Medicine and the Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States
| | - D. J. Guggenmos
- Department of Rehabilitation Medicine and the Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
4
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
5
|
Post-Ischemic Reorganization of Sensory Responses in Cerebral Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524583. [PMID: 36711682 PMCID: PMC9882270 DOI: 10.1101/2023.01.18.524583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sensorimotor integration is critical for generating skilled, volitional movements. While stroke tends to impact motor function, there are also often associated sensory deficits that contribute to overall behavioral deficits. Because many of the cortico-cortical projections participating in the generation of volitional movement either target or pass-through primary motor cortex (in rats, caudal forelimb area; CFA), any damage to CFA can lead to a subsequent disruption in information flow. As a result, the loss of sensory feedback is thought to contribute to motor dysfunction even when sensory areas are spared from injury. Previous research has suggested that the restoration of sensorimotor integration through reorganization or de novo neuronal connections is important for restoring function. Our goal was to determine if there was crosstalk between sensorimotor cortical areas with recovery from a primary motor cortex injury. First, we investigated if peripheral sensory stimulation would evoke responses in the rostral forelimb area (RFA), a rodent homologue to premotor cortex. We then sought to identify whether intracortical microstimulation-evoked activity in RFA would reciprocally modify the sensory response. We used seven rats with an ischemic lesion of CFA. Four weeks after injury, the rats' forepaw was mechanically stimulated under anesthesia and neural activity was recorded in the cortex. In a subset of trials, a small intracortical stimulation pulse was delivered in RFA either individually or paired with peripheral sensory stimulation. Our results point to post-ischemic connectivity between premotor and sensory cortex that may be related to functional recovery. Premotor recruitment during the sensory response was seen with a peak in spiking within RFA after the peripheral solenoid stimulation despite the damage to CFA. Furthermore, stimulation evoked activity in RFA modulated and disrupted the sensory response in sensory cortex, providing additional evidence for the transmission of premotor activity to sensory cortex and the sensitivity of sensory cortex to premotor cortex's influence. The strength of the modulatory effect may be related to the extent of the injury and the subsequent reshaping of cortical connections in response to network disruption.
Collapse
|
6
|
Resta F, Montagni E, de Vito G, Scaglione A, Allegra Mascaro AL, Pavone FS. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations. Cell Rep 2022; 41:111627. [PMID: 36351410 PMCID: PMC10073205 DOI: 10.1016/j.celrep.2022.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
In rodent motor cortex, the rostral forelimb area (RFA) and the caudal forelimb area (CFA) are major actors in orchestrating the control of complex forelimb movements. However, their intrinsic connectivity and reciprocal functional organization are still unclear, limiting our understanding of how the brain coordinates and executes voluntary movements. Here, we causally probe cortical connectivity and activation patterns triggered by transcranial optogenetic stimulation of ethologically relevant complex movements exploiting a large-scale all-optical method in awake mice. Results show specific activation features for each movement class, providing evidence for a segregated functional organization of CFA and RFA. Importantly, we identify a second discrete lateral grasping representation area, namely the lateral forelimb area (LFA), with unique connectivity and activation patterns. Therefore, we propose the LFA as a distinct forelimb representation in the mouse somatotopic motor map.
Collapse
Affiliation(s)
- Francesco Resta
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Elena Montagni
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Neuroscience Institute, National Research Council, 56124 Pisa, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy; National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Choi S, Zeng H, Chen Y, Sobczak F, Qian C, Yu X. Laminar-specific functional connectivity mapping with multi-slice line-scanning fMRI. Cereb Cortex 2022; 32:4492-4501. [PMID: 35107125 PMCID: PMC9574235 DOI: 10.1093/cercor/bhab497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS.
Collapse
Affiliation(s)
- Sangcheon Choi
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Hang Zeng
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Filip Sobczak
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
8
|
Rhee JK, Iwamoto Y, Baker BJ. Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Front Neuroanat 2021; 15:741711. [PMID: 34795565 PMCID: PMC8592998 DOI: 10.3389/fnana.2021.741711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a “hot spot” for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Bradley J Baker
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
9
|
Changes in dendritic arborization related to the estrous cycle in pyramidal neurons of layer V of the motor cortex. J Chem Neuroanat 2021; 119:102042. [PMID: 34800658 DOI: 10.1016/j.jchemneu.2021.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Many studies on neuronal plasticity have been conducted in the hippocampus and sensory cortices. In female rats in the estrus phase, when there is a low concentration of estradiol in the blood, there is a reduction in the dendritic spine density of CA1 neurons, while an increase in dendritic spines has been observed during metestrus, when progesterone levels are high. In comparison with the hippocampus, less information is known about dendritic remodeling of the motor cortex. Thus, the objective of the present study was to evaluate the neuronal morphology of pyramidal cells of layer V of the motor cortex in each phase of the estrous cycle. For this, we used Long-Evans strain rats and formed 4 experimental groups according to the phase of the estrous cycle at the moment of sacrifice: proestrus, estrus, metestrus, or diestrus. All animals were gently monitored regarding the expression of one estrous cycle in order to determine the regularity of the cycle. We obtained the brains in order to evaluate the neuronal morphology of neurons of layer V of the primary motor cortex following the Golgi-Cox method and Sholl analysis. Our results show that the dendritic arborization of neurons of rats sacrificed in the metestrus phase is reduced compared to the other phases of the estrous cycle. However, we did not find changes in dendritic spine density between experimental groups. When comparing our results with previous data, we can suggest that estrogens and progesterone differentially promote plasticity events in pyramidal neurons between different brain regions.
Collapse
|
10
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
11
|
The causal interaction in human basal ganglia. Sci Rep 2021; 11:12989. [PMID: 34155321 PMCID: PMC8217174 DOI: 10.1038/s41598-021-92490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
The experimental study of the human brain has important restrictions, particularly in the case of basal ganglia, subcortical centers whose activity can be recorded with fMRI methods but cannot be directly modified. Similar restrictions occur in other complex systems such as those studied by Earth system science. The present work studied the cause/effect relationships between human basal ganglia with recently introduced methods to study climate dynamics. Data showed an exhaustive (identifying basal ganglia interactions regardless of their linear, non-linear or complex nature) and selective (avoiding spurious relationships) view of basal ganglia activity, showing a fast functional reconfiguration of their main centers during the execution of voluntary motor tasks. The methodology used here offers a novel view of the human basal ganglia which expands the perspective provided by the classical basal ganglia model and may help to understand BG activity under normal and pathological conditions.
Collapse
|
12
|
Kunori N, Takashima I. Cortical direct current stimulation improves signal transmission between the motor cortices of rats. Neurosci Lett 2021; 741:135492. [PMID: 33171210 DOI: 10.1016/j.neulet.2020.135492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Transcranial direct current (DC) stimulation is a noninvasive brain stimulation technique that is now widely used to improve motor and cognitive function. The neuromodulatory effects of DC is considered to extend to nearby as well as remote brain areas from the site of stimulation because of current flowing into the brain and/or signal transmission in neuronal networks. However, the effects of DC on cortico-cortical neuronal transmission are not well known. In the present study, we focused on signal transmission from the primary (M1) to secondary (M2) motor cortex of rats. Intra-cortical microstimulation (ICMS) was applied to the M1 under DC conditions, and changes in synaptic activity in the M2 were examined using current-source density analyses. The synaptic input to the M2 superficial layers was enhanced during DC stimulation, while the synaptic input to the M2 deeper layers was increased after DC stimulation. These results suggest that DC stimulation improves cortico-cortical neuronal transmission from M1 to M2, and that the effectiveness of DC may be different among different projection neuron types in the M1.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.
| |
Collapse
|
13
|
Dezawa S, Nagasaka K, Watanabe Y, Takashima I. Lesions of the nucleus basalis magnocellularis (Meynert) induce enhanced somatosensory responses and tactile hypersensitivity in rats. Exp Neurol 2020; 335:113493. [PMID: 33011194 DOI: 10.1016/j.expneurol.2020.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We used the immunotoxin 192 immunoglobulin G-saporin to produce a selective cholinergic lesion in the nucleus basalis of Meynert (NBM) of rats and investigated whether the NBM lesion led to tactile hypersensitivity in the forepaw. The paw mechanical threshold test showed that the lesioned rats had a decreased threshold compared to the control. Surprisingly, there was a significant positive correlation between mechanical threshold and survival rate of NBM cholinergic neurons. Furthermore, using local field potential (LFP) recordings and voltage-sensitive dye (VSD) imaging, we found that the forepaw-evoked response in the primary somatosensory cortex (S1) was significantly enhanced in both amplitude and spatial extent in the NBM-lesioned rats. The neurophysiological measures of S1 response, such as LFP amplitude and maximal activated cortical area depicted by VSD, were also correlated with withdrawal behavior. Additional pharmacological experiments demonstrated that forepaw-evoked responses were increased in naive rats by blocking S1 cholinergic receptors with mecamylamine and scopolamine, while the response decreased in NBM-lesioned rats with the cholinergic agonist carbachol. In addition, NBM burst stimulation, which facilitates acetylcholine release in the S1, suppressed subsequent sensory responses to forepaw stimulation. Taken together, these results suggest that neuronal loss in the NBM diminishes acetylcholine actions in the S1, thereby enhancing the cortical representation of sensory stimuli, which may in turn lead to behavioral hypersensitivity.
Collapse
Affiliation(s)
- Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
14
|
Kunori N, Takashima I. An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging. MICROMACHINES 2019; 10:E789. [PMID: 31752106 PMCID: PMC6915684 DOI: 10.3390/mi10110789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
Incorporating optical methods into implantable neural sensing devices is a challenging approach for brain-machine interfacing. Specifically, voltage-sensitive dye (VSD) imaging is a powerful tool enabling visualization of the network activity of thousands of neurons at high spatiotemporal resolution. However, VSD imaging usually requires removal of the dura mater for dye staining, and thereafter the exposed cortex needs to be protected using an optically transparent artificial dura. This is a major disadvantage that limits repeated VSD imaging over the long term. To address this issue, we propose to use an atelocollagen membrane as the dura substitute. We fabricated a small cranial chamber device, which is a tubular structure equipped with a collagen membrane at one end of the tube. We implanted the device into rats and monitored neural activity in the frontal cortex 1 week following surgery. The results indicate that the collagen membrane was chemically transparent, allowing VSD staining across the membrane material. The membrane was also optically transparent enough to pass light; forelimb-evoked neural activity was successfully visualized through the artificial dura. Because of its ideal chemical and optical manipulation capability, this collagen membrane may be widely applicable in various implantable neural sensors.
Collapse
Affiliation(s)
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| |
Collapse
|
15
|
Evaluation of acute anodal direct current stimulation-induced effects on somatosensory-evoked responses in the rat. Brain Res 2019; 1720:146318. [DOI: 10.1016/j.brainres.2019.146318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
|
16
|
Nagasaka K, Watanabe Y, Takashima I. Topographical projections from the nucleus basalis magnocellularis (Meynert) to the frontal cortex: A voltage-sensitive dye imaging study in rats. Brain Stimul 2017; 10:977-980. [PMID: 28709847 DOI: 10.1016/j.brs.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The nucleus basalis magnocellularis/Meynert (NBM) has been explored as a new target for deep brain stimulation for neurological disorders. Although anatomical studies suggest the existence of cholinergic topographical projections of the NBM, it is still unknown whether NBM subregions differentially activate the frontal cortex. OBJECTIVE To investigate the topography between the NBM and frontal cortex. METHODS Electrical stimulation was applied to the anterior and posterior sites of the NBM in rats, and the evoked frontal activity was investigated using voltage-sensitive dye (VSD) imaging. RESULTS VSD imaging revealed the functional topography of the NBM and frontal cortex: the anteroposterior axis of the NBM corresponded to the mediolateral axis of the dorsal frontal cortex. CONCLUSION The present results suggest site-specific control of frontal neuronal activity by the NBM. These findings have practical implications, as the anterior and posterior parts of the NBM could be targeted to improve cognitive and motor function, respectively.
Collapse
Affiliation(s)
- Kazuaki Nagasaka
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-9577, Japan
| | - Yumiko Watanabe
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-9577, Japan.
| |
Collapse
|