1
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
2
|
Angelakos CC, Girven KS, Liu Y, Gonzalez OC, Murphy KR, Jennings KJ, Giardino WJ, Zweifel LS, Suko A, Palmiter RD, Clark SD, Krasnow MA, Bruchas MR, de Lecea L. A cluster of neuropeptide S neurons regulates breathing and arousal. Curr Biol 2023; 33:5439-5455.e7. [PMID: 38056461 PMCID: PMC10842921 DOI: 10.1016/j.cub.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.
Collapse
Affiliation(s)
- Christopher Caleb Angelakos
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yin Liu
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar C Gonzalez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kim J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mark A Krasnow
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Xiang G, Liu X, Wang J, Lu S, Yu M, Zhang Y, Sun B, Huang B, Lu XY, Li X, Zhang D. Peroxisome proliferator-activated receptor-α activation facilitates contextual fear extinction and modulates intrinsic excitability of dentate gyrus neurons. Transl Psychiatry 2023; 13:206. [PMID: 37322045 DOI: 10.1038/s41398-023-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus encodes contextual information associated with fear, and cell activity in the DG is required for acquisition and extinction of contextual fear. However, the underlying molecular mechanisms are not fully understood. Here we show that mice deficient for peroxisome proliferator-activated receptor-α (PPARα) exhibited a slower rate of contextual fear extinction. Furthermore, selective deletion of PPARα in the DG attenuated, while activation of PPARα in the DG by local infusion of aspirin facilitated extinction of contextual fear. The intrinsic excitability of DG granule neurons was reduced by PPARα deficiency but increased by activation of PPARα with aspirin. Using RNA-Seq transcriptome we found that the transcription level of neuropeptide S receptor 1 (Npsr1) was tightly correlated with PPARα activation. Our results provide evidence that PPARα plays an important role in regulating DG neuronal excitability and contextual fear extinction.
Collapse
Affiliation(s)
- Guo Xiang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Jiangong Wang
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Shunshun Lu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Meng Yu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China.
| |
Collapse
|
4
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
5
|
Garau C, Liu X, Calo G, Schulz S, Reinscheid RK. Neuropeptide S Encodes Stimulus Salience in the Paraventricular Thalamus. Neuroscience 2022; 496:83-95. [PMID: 35710064 DOI: 10.1016/j.neuroscience.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Evaluation of stimulus salience is critical for any higher organism, as it allows for prioritizing of vital information, preparation of responses, and formation of valuable memory. The paraventricular nucleus of the thalamus (PVT) has recently been identified as an integrator of stimulus salience but the neurochemical basis and afferent input regarding salience signaling have remained elusive. Here we report that neuropeptide S (NPS) signaling in the PVT is necessary for stimulus salience encoding, including aversive, neutral and reinforcing sensory input. Taking advantage of a striking deficit of both NPS receptor (NPSR1) and NPS precursor knockout mice in fear extinction or novel object memory formation, we demonstrate that intra-PVT injections of NPS can rescue the phenotype in NPS precursor knockout mice by increasing the salience of otherwise low-intensity stimuli, while intra-PVT injections of NPSR1 antagonist in wild type mice partially replicates the knockout phenotype. The PVT appears to provide stimulus salience encoding in a dose- and NPS-dependent manner. PVT NPSR1 neurons recruit the nucleus accumbens shell and structures in the prefrontal cortex and amygdala, which were previously linked to the brain salience network. Overall, these results demonstrate that stimulus salience encoding is critically associated with NPS activity in the PVT.
Collapse
Affiliation(s)
- Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Girolamo' Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany
| | - Rainer K Reinscheid
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Lalonde R, Strazielle C. The Hole-Board Test in Mutant Mice. Behav Genet 2022; 52:158-169. [PMID: 35482162 DOI: 10.1007/s10519-022-10102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
First described by Boissier and Simon in (Ther Recreat J 17:1225-1232, 1962), the hole-board has become a recognized test of anxiety and spatial memory. Benzodiazepines acting at the GABAA-BZD site increase hole-pokes in rats and mice, indicating a loss in behavioral inhibition concordant with the behavior of mutant mice deficient in the GABA transporter. Hole-poking also depends on arousal mechanisms dependent on dopaminergic transmission, as indicated by drug and null mutant studies. In addition, the behavior is modified in natural and null mutants affecting the cerebellum as well as null mutants affecting neuropeptides, growth factors, cell adhesion, and inflammation. Further research is required to determine convergences between genetic and pharmacological effects.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France. .,CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
7
|
Bülbül M, Sinen O. The influence of early-life and adulthood stressors on brain neuropeptide-S system. Neuropeptides 2022; 92:102223. [PMID: 34982971 DOI: 10.1016/j.npep.2021.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Central administered neuropeptide-S (NPS) was shown to reduce stress response in rodents. This study aimed to investigate the alterations in NPS system upon chronic exposure to early-life and adulthood stressors. Newborn pups underwent maternal separation (MS) from postnatal day 1 to 14 comprised of daily 3-h separations. In the adulthood, 90-min of restraint stress was loaded to males as an acute stress (AS) model. For chronic homotypic stress (CHS), same stressor was applied for 5 consecutive days. The changes in the expression and the release of NPS were monitored by immunohistochemistry and microdialysis, respectively. Throughout the CHS, heart rate variability (HRV) was analyzed on a daily basis. The immunoreactivity for NPS receptor (NPSR) was detected in basolateral amygdala (BLA) and hypothalamic paraventricular nucleus (PVN) by immunofluorescence staining. The NPS expression in the brainstem was increased upon AS which was more prominent following CHS, whereas these responses were found to be blunted in MS counterparts. Similar to histological data, the stress-induced release of NPS in BLA was attenuated in MS rats. CHS-induced elevations in sympatho-vagal balance were alleviated in control rats; which was not observed in MS rats. The expression of NPSR in BLA and PVN was down-regulated in MS rats. The brain NPS/NPSR system appears to be susceptible to the early-life stressors and the subsequent chronic stress exposure in adulthood which results in altered autonomic outflow.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Shao YF, Wang C, Rao XP, Wang HD, Ren YL, Li J, Dong CY, Xie JF, Yang XW, Xu FQ, Hou YP. Neuropeptide S Attenuates the Alarm Pheromone-Evoked Defensive and Risk Assessment Behaviors Through Activation of Cognate Receptor-Expressing Neurons in the Posterior Medial Amygdala. Front Mol Neurosci 2022; 14:752516. [PMID: 35002616 PMCID: PMC8739225 DOI: 10.3389/fnmol.2021.752516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide S (NPS) acts by activating its cognate receptor (NPSR). High level expression of NPSR in the posterior medial amygdala suggests that NPS-NPSR system should be involved in regulation of social behaviors induced by social pheromones. The present study was undertaken to investigate the effects of central administration of NPS or with NPSR antagonist on the alarm pheromone (AP)-evoked defensive and risk assessment behaviors in mice. Furthermore, H129-H8, a novel high-brightness anterograde multiple trans-synaptic virus, c-Fos and NPSR immunostaining were employed to reveal the involved neurocircuits and targets of NPS action. The mice exposed to AP displayed an enhancement in defensive and risk assessment behaviors. NPS (0.1–1 nmol) intracerebroventricular (i.c.v.) injection significantly attenuated the AP-evoked defensive and risk assessment behaviors. NPSR antagonist [D-Val5]NPS at the dose of 40 nmol completely blocked the effect of 0.5 nmol of NPS which showed the best effective among dose range. The H129-H8-labeled neurons were observed in the bilateral posterodorsal medial amygdala (MePD) and posteroventral medial amygdala (MePV) 72 h after the virus injection into the unilateral olfactory bulb (OB), suggesting that the MePD and MePV receive olfactory information inputs from the OB. The percentage of H129-H8-labeled neurons that also express NPSR were 90.27 ± 3.56% and 91.67 ± 2.46% in the MePD and MePV, respectively. NPS (0.5 nmol, i.c.v.) remarkably increased the number of Fos immunoreactive (-ir) neurons in the MePD and MePV, and the majority of NPS-induced Fos-ir neurons also expressed NPSR. The behavior characteristic of NPS or with [D-Val5]NPS can be better replicated in MePD/MePV local injection within lower dose. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the posterior medial amygdala, attenuates the AP-evoked defensive and risk assessment behaviors in mice.
Collapse
Affiliation(s)
- Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hua-Dong Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fu-Qiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
10
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
11
|
Dissociative Effects of Neuropeptide S Receptor Deficiency and Nasal Neuropeptide S Administration on T-Maze Discrimination and Reversal Learning. Pharmaceuticals (Basel) 2021; 14:ph14070643. [PMID: 34358069 PMCID: PMC8308873 DOI: 10.3390/ph14070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cognitive flexibility refers to the ability to modify learned behavior in response to changes in the environment. In laboratory rodents, cognitive flexibility can be assessed in reversal learning, i.e., the change of contingencies, for example in T-maze discrimination learning. The present study investigated the role of the neuropeptide S (NPS) system in cognitive flexibility. In the first experiment, mice deficient of NPS receptors (NPSR) were tested in T-maze discrimination and reversal learning. In the second experiment, C57BL/6J mice were tested in the T-maze after nasal administration of NPS. Finally, the effect of nasal NPS on locomotor activity was evaluated. NPSR deficiency positively affected the acquisition of T-maze discrimination but had no effects on reversal learning. Nasal NPS administration facilitated reversal learning and supported an allocentric learning strategy without affecting acquisition of the task or locomotor activity. Taken together, the present data show that the NPS system is able to modulate both acquisition of T-maze discrimination and its reversal learning. However, NPSR deficiency only improved discrimination learning, while nasal NPS administration only improved reversal learning, i.e., cognitive flexibility. These effects, which at first glance appear to be contradictory, could be due to the different roles of the NPS system in the brain regions that are important for learning and cognitive flexibility.
Collapse
|
12
|
Park S, Flüthmann P, Wolany C, Goedecke L, Spenner HM, Budde T, Pape HC, Jüngling K. Neuropeptide S Receptor Stimulation Excites Principal Neurons in Murine Basolateral Amygdala through a Calcium-Dependent Decrease in Membrane Potassium Conductance. Pharmaceuticals (Basel) 2021; 14:ph14060519. [PMID: 34072275 PMCID: PMC8230190 DOI: 10.3390/ph14060519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
Background: The neuropeptide S system, consisting of the 20 amino acid neuropeptide NPS and its G-protein-coupled receptor (GPCR) neuropeptide S receptor 1 (NPSR1), has been studied intensively in rodents. Although there is a lot of data retrieved from behavioral studies using pharmacology or genetic interventions, little is known about intracellular signaling cascades in neurons endogenously expressing the NPSR1. Methods: To elucidate possible G-protein-dependent signaling and effector systems, we performed whole-cell patch-clamp recordings on principal neurons of the anterior basolateral amygdala of mice. We used pharmacological interventions to characterize the NPSR1-mediated current induced by NPS application. Results: Application of NPS reliably evokes inward-directed currents in amygdalar neurons recorded in brain slice preparations of male and female mice. The NPSR1-mediated current had a reversal potential near the potassium reversal potential (EK) and was accompanied by an increase in membrane input resistance. GDP-β-S and BAPTA, but neither adenylyl cyclase inhibition nor 8-Br-cAMP, abolished the current. Intracellular tetraethylammonium or 4-aminopyridine reduced the NPS-evoked current. Conclusion: NPSR1 activation in amygdalar neurons inhibits voltage-gated potassium (K+) channels, most likely members of the delayed rectifier family. Intracellularly, Gαq signaling and calcium ions seem to be mandatory for the observed current and increased neuronal excitability.
Collapse
|
13
|
Si W, Liu X, Pape HC, Reinscheid RK. Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention. Pharmaceuticals (Basel) 2021; 14:489. [PMID: 34065431 PMCID: PMC8160819 DOI: 10.3390/ph14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.
Collapse
Affiliation(s)
- Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
| | - Rainer K. Reinscheid
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, 07747 Jena, Germany
| |
Collapse
|
14
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
15
|
Reinscheid RK, Mafessoni F, Lüttjohann A, Jüngling K, Pape HC, Schulz S. Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides 2021; 138:170506. [PMID: 33556445 DOI: 10.1016/j.peptides.2021.170506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
The neuropeptide S (NPS) system plays an important role in fear and fear memory processing but has also been associated with allergic and inflammatory diseases. Genes for NPS and its receptor NPSR1 are found in all tetrapods. Compared to non-human primates, several non-synonymous single-nucleotide polymorphisms (SNPs) occur in both human genes that collectively result in functional attenuation, suggesting adaptive mechanisms in a human context. To investigate historic and geographic origins of these hypomorphic mutations and explore genetic signs of selection, we analyzed ancient genomes and worldwide genotype frequencies of four prototypic SNPs in the NPS system. Neandertal and Denisovan genomes contain exclusively ancestral alleles for NPSR1 while all derived alleles occur in ancient genomes of anatomically modern humans, indicating that they arose in modern Homo sapiens. Worldwide genotype frequencies for three hypomorphic NPSR1 SNPs show significant regional homogeneity but follow a gradient towards increasing derived allele frequencies that supports an out-of-Africa scenario. Increased density of high-frequency polymorphisms around the three NPSR1 loci suggests weak or possibly balancing selection. A hypomorphic mutation in the NPS precursor, however, was detected at high frequency in Eurasian Neandertal genomes and shows genetic signatures indicating that it was introgressed into the human gene pool, particularly in Southern Europe, by interbreeding with Neandertals. We discuss potential evolutionary scenarios including behavior and immune-based natural selection.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany; Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany.
| | | | - Annika Lüttjohann
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
16
|
Wang C, Xin L, Cai CC, Cong CY, Xie JF, Kong XP, Dong CY, Li J, Cui GF, Chen HL, Ren YL, Shao YF, Hou YP. Neuropeptide S Displays as a Key Neuromodulator in Olfactory Spatial Memory. Chem Senses 2020; 45:195-202. [PMID: 32010937 DOI: 10.1093/chemse/bjaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuropeptide S (NPS) is an endogenous peptide recently recognized to be presented in the brainstem and believed to play an important role in maintaining memory. The deletion of NPS or NPS receptor (NPSR) in mice shows a deficit in memory formation. Our recent studies have demonstrated that central administration of NPS facilitates olfactory function and ameliorates olfactory spatial memory impairment induced by muscarinic cholinergic receptor antagonist and N-methyl-D-aspartate receptor antagonist. However, it remains to be determined if endogenous NPS is an indispensable neuromodulator in the control of the olfactory spatial memory. In this study, we examined the effects of NPSR peptidergic antagonist [D-Val5]NPS (10 and 20 nmol, intracerebroventricular) and nonpeptidergic antagonist SHA 68 (10 and 50 mg/kg, intraperitoneal) on the olfactory spatial memory using computer-assisted 4-hole-board olfactory spatial memory test in mice. Furthermore, immunofluorescence was employed to identify the distributions of c-Fos and NPSR immunoreactive (-ir) neurons in olfactory system and hippocampal formation known to closely relate to the olfactory spatial memory. [D-Val5]NPS dosing at 20 nmol and SHA 68 dosing at 50 mg/kg significantly decreased the number of visits to the 2 odorants interchanged spatially, switched odorants, in recall trial, and simultaneously reduced the percentage of Fos-ir in NPSR-ir neurons, which were densely distributed in the anterior olfactory nucleus, piriform cortex, subiculum, presubiculum, and parasubiculum. These findings suggest that endogenous NPS is a key neuromodulator in olfactory spatial memory.
Collapse
Affiliation(s)
- Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Le Xin
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Anesthesiology, Lishan Hospital of the Anshan Central Hospital, Anshan, PR China
| | - Chen-Chen Cai
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Chao-Yu Cong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Xiang-Pan Kong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Human Anatomy, School of Medicine, Hunan Normal University, Changsha, PR China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Department of Gynaecology, The Third People's Hospital of Yunnan Province, Kunming, PR China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.,Departments of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Guang-Fu Cui
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
17
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
19
|
Calo' G, Rizzi A, Ruzza C, Ferrari F, Pacifico S, Gavioli EC, Salvadori S, Guerrini R. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors. Peptides 2018; 99:195-204. [PMID: 29031796 DOI: 10.1016/j.peptides.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Based on their high selectivity of action and low toxicity, naturally occurring peptides have great potential in terms of drug development. However, the pharmacokinetic properties of peptides, in particular their half life, are poor. Among different strategies developed for reducing susceptibility to peptidases, and thus increasing the duration of action of peptides, the generation of branched peptides has been described. However, the synthesis and purification of branched peptides are extremely complicated thus limiting their druggability. Here we present a novel and facile synthesis of tetrabranched peptides acting as GPCR ligands and their in vitro and vivo pharmacological characterization. Tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ), N/OFQ related peptides, opioid peptides, tachykinins, and neuropeptide S were generated with the strategy named peptide welding technology (PWT) and characterized by high yield and purity of the desired final product. In general, PWT derivatives displayed a pharmacological profile similar to that of the natural sequence in terms of affinity, pharmacological activity, potency, and selectivity of action in vitro. More importantly, in vivo studies demonstrated that PWT peptides are characterized by increased potency associated with long lasting duration of action. In conclusion, PWT derivatives of biologically active peptides can be viewed as innovative pharmacological tools for investigating those conditions and states in which selective and prolonged receptor stimulation promotes beneficial effects.
Collapse
Affiliation(s)
- Girolamo Calo'
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy.
| | - Anna Rizzi
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Chiara Ruzza
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Federica Ferrari
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| |
Collapse
|