1
|
Chen J, Wang X, Li Z, Yuan H, Wang X, Yun Y, Wu X, Yang P, Qin L. Thalamo-cortical neural mechanism of sodium salicylate-induced hyperacusis and anxiety-like behaviors. Commun Biol 2024; 7:1346. [PMID: 39420035 PMCID: PMC11487285 DOI: 10.1038/s42003-024-07040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xueru Wang
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Tye KM, Miller EK, Taschbach FH, Benna MK, Rigotti M, Fusi S. Mixed selectivity: Cellular computations for complexity. Neuron 2024; 112:2289-2303. [PMID: 38729151 PMCID: PMC11257803 DOI: 10.1016/j.neuron.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
Collapse
Affiliation(s)
- Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Felix H Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA; Biological Science Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Marcus K Benna
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Godfrey-Smith P. Inferring Consciousness in Phylogenetically Distant Organisms. J Cogn Neurosci 2024; 36:1660-1666. [PMID: 38579258 DOI: 10.1162/jocn_a_02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The neural dynamics of subjectivity (NDS) approach to the biological explanation of consciousness is outlined and applied to the problem of inferring consciousness in animals phylogenetically distant from ourselves. The NDS approach holds that consciousness or felt experience is characteristic of systems whose nervous systems have been shaped to realize subjectivity through a combination of network interactions and large-scale dynamic patterns. Features of the vertebrate brain architecture that figure in other accounts of the biology of consciousness are viewed as inessential. Deep phylogenetic branchings in the animal kingdom occurred before the evolution of complex behavior, cognition, and sensing. These capacities arose independently in brain architectures that differ widely across arthropods, vertebrates, and cephalopods, but with conservation of large-scale dynamic patterns of a kind that have an apparent link to felt experience in humans. An evolutionary perspective also motivates a strongly gradualist view of consciousness; a simple distinction between conscious and nonconscious animals will probably be replaced with a view that admits differences of degree, perhaps on many dimensions.
Collapse
|
4
|
Abstract
Cognition relies on the flexible organization of neural activity. In this discussion, we explore how many aspects of this organization can be described as emergent properties, not reducible to their constituent parts. We discuss how electrical fields in the brain can serve as a medium for propagating activity nearly instantaneously, and how population-level patterns of neural activity can organize computations through subspace coding.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott L Brincat
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jefferson E Roy
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Bevilacqua M, Feroldi S, Windel F, Menoud P, Salamanca-Giron RF, Zandvliet SB, Fleury L, Hummel FC, Raffin E. Single session cross-frequency bifocal tACS modulates visual motion network activity in young healthy population and stroke patients. Brain Stimul 2024; 17:660-667. [PMID: 38763414 DOI: 10.1016/j.brs.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Phase synchronization over long distances underlies inter-areal communication and importantly, modulates the flow of information processing to adjust to cognitive demands. OBJECTIVE This study investigates the impact of single-session, cross-frequency (Alpha-Gamma) bifocal transcranial alternating current stimulation (cf-tACS) to the cortical visual motion network on inter-areal coupling between the primary visual cortex (V1) and the medio-temporal area (MT) and on motion direction discrimination. METHODS Based on the well-established phase-amplitude coupling (PAC) mechanism driving information processing in the visual system, we designed a novel directionally tuned cf-tACS protocol. Directionality of information flow was inferred from the area receiving low-frequency tACS (e.g., V1) projecting onto the area receiving high-frequency tACS (e.g., MT), in this case, promoting bottom-up information flow (Forward-tACS). The control condition promoted the opposite top-down connection (from MT to V1, called Backward-tACS), both compared to a Sham-tACS condition. Task performance and EEG activity were recorded from 45 young healthy subjects. An additional cohort of 16 stroke patients with occipital lesions and impairing visual processing was measured to assess the influence of a V1 lesion on the modulation of V1-MT coupling. RESULTS The results indicate that Forward cf-tACS successfully modulated bottom-up PAC (V1 α-phase-MT ɣ-amplitude) in both cohorts, while producing opposite effects on the reverse MT-to-V1 connection. Backward-tACS did not change V1-MT PAC in either direction in healthy participants but induced a slight decrease in bottom-up PAC in stroke patients. However, these changes in inter-areal coupling did not translate into cf-tACS-specific behavioural improvements. CONCLUSIONS Single session cf-tACS can alter inter-areal coupling in intact and lesioned brains but is probably not enough to induce longer-lasting behavioural effects in these cohorts. This might suggest that a longer daily visual training protocol paired with tACS is needed to unveil the relationship between externally applied oscillatory activity and behaviourally relevant brain processing.
Collapse
Affiliation(s)
- Michele Bevilacqua
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland.
| | - Sarah Feroldi
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabienne Windel
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland
| | - Pauline Menoud
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland
| | - Roberto F Salamanca-Giron
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland
| | - Sarah B Zandvliet
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland
| | - Lisa Fleury
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland; Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Estelle Raffin
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Neuro-X Institute, Clinique Romande de Réadaptation, (EPFL Valais), Sion, Switzerland.
| |
Collapse
|
6
|
Khanjanianpak M, Azimi-Tafreshi N, Valizadeh A. Emergence of complex oscillatory dynamics in the neuronal networks with long activity time of inhibitory synapses. iScience 2024; 27:109401. [PMID: 38532887 PMCID: PMC10963234 DOI: 10.1016/j.isci.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The brain displays complex dynamics, including collective oscillations, and extensive research has been conducted to understand their generation. However, our understanding of how biological constraints influence these oscillations is incomplete. This study investigates the essential properties of neuronal networks needed to generate oscillations resembling those in the brain. A simple discrete-time model of interconnected excitable elements is developed, capable of closely resembling the complex oscillations observed in biological neural networks. In the model, synaptic connections remain active for a duration exceeding individual neuron activity. We show that the inhibitory synapses must exhibit longer activity than excitatory synapses to produce a diverse range of the dynamical states, including biologically plausible oscillations. Upon meeting this condition, the transition between different dynamical states can be controlled by external stochastic input to the neurons. The study provides a comprehensive explanation for the emergence of distinct dynamical states in neural networks based on specific parameters.
Collapse
Affiliation(s)
- Mozhgan Khanjanianpak
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| | - Nahid Azimi-Tafreshi
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Alireza Valizadeh
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| |
Collapse
|
7
|
Miltner WHR, Franz M, Naumann E. Neuroscientific results of experimental studies on the control of acute pain with hypnosis and suggested analgesia. Front Psychol 2024; 15:1371636. [PMID: 38638524 PMCID: PMC11025616 DOI: 10.3389/fpsyg.2024.1371636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
This narrative review summarizes a representative collection of electrophysiological and imaging studies on the neural processes and brain sources underlying hypnotic trance and the effects of hypnotic suggestions on the processing of experimentally induced painful events. It complements several reviews on the effect of hypnosis on brain processes and structures of chronic pain processing. Based on a summary of previous findings on the neuronal processing of experimentally applied pain stimuli and their effects on neuronal brain structures in healthy subjects, three neurophysiological methods are then presented that examine which of these neuronal processes and structures get demonstrably altered by hypnosis and can thus be interpreted as neuronal signatures of the effect of analgesic suggestions: (A) On a more global neuronal level, these are electrical processes of the brain that can be recorded from the cranial surface of the brain with magnetoencephalography (MEG) and electroencephalography (EEG). (B) On a second level, so-called evoked (EPs) or event-related potentials (ERPs) are discussed, which represent a subset of the brain electrical parameters of the EEG. (C) Thirdly, imaging procedures are summarized that focus on brain structures involved in the processing of pain states and belong to the main imaging procedures of magnetic resonance imaging (MRI/fMRI) and positron emission tomography (PET). Finally, these different approaches are summarized in a discussion, and some research and methodological suggestions are made as to how this research could be improved in the future.
Collapse
Affiliation(s)
- Wolfgang H. R. Miltner
- Institute of Psychology, Friedrich Schiller University of Jena, Jena, Thuringia, Germany
| | - Marcel Franz
- Institute of Psychology, Friedrich Schiller University of Jena, Jena, Thuringia, Germany
| | - Ewald Naumann
- Institute of Psychology, University of Trier, Trier, Rhineland-Palatinate, Germany
| |
Collapse
|
8
|
Myrov V, Siebenhühner F, Juvonen JJ, Arnulfo G, Palva S, Palva JM. Rhythmicity of neuronal oscillations delineates their cortical and spectral architecture. Commun Biol 2024; 7:405. [PMID: 38570628 PMCID: PMC10991572 DOI: 10.1038/s42003-024-06083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for the direct quantification of rhythmicity. We applied pACF to human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.
Collapse
Affiliation(s)
- Vladislav Myrov
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki, Finland
| | - Joonas J Juvonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
10
|
Ruikes TR, Fiorilli J, Lim J, Huis In 't Veld G, Bosman C, Pennartz CMA. Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior. eNeuro 2024; 11:ENEURO.0180-23.2024. [PMID: 38621992 PMCID: PMC11055653 DOI: 10.1523/eneuro.0180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.
Collapse
Affiliation(s)
- Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Julien Fiorilli
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Judith Lim
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gerjan Huis In 't Veld
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Conrado Bosman
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
11
|
Kanayama H, Tominaga T, Tominaga Y, Kato N, Yoshimura H. Action of GABAB receptor on local network oscillation in somatosensory cortex of oral part: focusing on NMDA receptor. J Physiol Sci 2024; 74:16. [PMID: 38475711 DOI: 10.1186/s12576-024-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABAB receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application. Oscillations comprised a non-NMDA receptor-dependent initial phase and a later NMDA receptor-dependent oscillatory phase, with the oscillator located in the upper layer of the OSC. Baclofen was applied to investigate the actions of GABAB receptors. The later NMDA receptor-dependent oscillatory phase completely disappeared, but the initial phase did not. These results suggest that GABAB receptors mainly act on NMDA receptor, in which metabotropic actions of GABAB receptors may contribute to the attenuation of NMDA receptor activities. A regulatory system for network oscillation involving GABAB receptors may be present in the OSC.
Collapse
Affiliation(s)
- Hiroyuki Kanayama
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
- Department of Oral and Maxillofacial Surgery, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Shido, Kagawa, 769-2123, Japan
| | - Yoko Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Shido, Kagawa, 769-2123, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Uchinada-Cho, Ishikawa, 920-0293, Japan
| | - Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| |
Collapse
|
12
|
Hadler MD, Tzilivaki A, Schmitz D, Alle H, Geiger JRP. Gamma oscillation plasticity is mediated via parvalbumin interneurons. SCIENCE ADVANCES 2024; 10:eadj7427. [PMID: 38295164 PMCID: PMC10830109 DOI: 10.1126/sciadv.adj7427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.
Collapse
Affiliation(s)
- Michael D. Hadler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle-Straße 10, 13125 Berlin, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R. P. Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
14
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Flores-Sandoval AA, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CSY. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. Neurobiol Dis 2024; 190:106380. [PMID: 38114048 DOI: 10.1016/j.nbd.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK.
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK; Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Aimee Arely Flores-Sandoval
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain; Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States of America
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Assaneo MF, Orpella J. Rhythms in Speech. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:257-274. [PMID: 38918356 DOI: 10.1007/978-3-031-60183-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Speech can be defined as the human ability to communicate through a sequence of vocal sounds. Consequently, speech requires an emitter (the speaker) capable of generating the acoustic signal and a receiver (the listener) able to successfully decode the sounds produced by the emitter (i.e., the acoustic signal). Time plays a central role at both ends of this interaction. On the one hand, speech production requires precise and rapid coordination, typically within the order of milliseconds, of the upper vocal tract articulators (i.e., tongue, jaw, lips, and velum), their composite movements, and the activation of the vocal folds. On the other hand, the generated acoustic signal unfolds in time, carrying information at different timescales. This information must be parsed and integrated by the receiver for the correct transmission of meaning. This chapter describes the temporal patterns that characterize the speech signal and reviews research that explores the neural mechanisms underlying the generation of these patterns and the role they play in speech comprehension.
Collapse
Affiliation(s)
- M Florencia Assaneo
- Instituto de Neurobiología, Universidad Autónoma de México, Santiago de Querétaro, Mexico.
| | - Joan Orpella
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
16
|
Chino B, López-Sanz D, Doval S, Torres-Simón L, de Frutos Lucas J, Giménez-Llort L, Zegarra-Valdivia J, Maestú F. Resting State Electrophysiological Profiles and Their Relationship with Cognitive Performance in Cognitively Unimpaired Older Adults: A Systematic Review. J Alzheimers Dis 2024; 100:453-468. [PMID: 38875030 PMCID: PMC11307078 DOI: 10.3233/jad-231009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Background Aging is a complex and natural process. The physiological decline related to aging is accompanied by a slowdown in cognitive processes, which begins shortly after individuals reach maturity. These changes have been sometimes interpreted as a compensatory sign and others as a fingerprint of deterioration. Objective In this context, our aim is to uncover the mechanisms that underlie and support normal cognitive functioning in the brain during the later stages of life. Methods With this purpose, a systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, which identified 781 potential articles. After applying inclusion and exclusion criteria, we selected 12 studies that examined the brain oscillations patterns in resting-state conditions associated with cognitive performance in cognitively unimpaired older adults. Results Although cognitive healthy aging was characterized differently across studies, and various approaches to analyzing brain activity were employed, our review indicates a relationship between alpha peak frequency (APF) and improved performance in neuropsychological scores among cognitively unimpaired older adults. Conclusions A higher APF is linked with a higher score in intelligence, executive function, and general cognitive performance, and could be considered an optimal, and easy-to-assess, electrophysiological marker of cognitive health in older adults.
Collapse
Affiliation(s)
- Brenda Chino
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Lydia Giménez-Llort
- Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | | | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
17
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
18
|
Rubinov M. Circular and unified analysis in network neuroscience. eLife 2023; 12:e79559. [PMID: 38014843 PMCID: PMC10684154 DOI: 10.7554/elife.79559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.
Collapse
Affiliation(s)
- Mika Rubinov
- Departments of Biomedical Engineering, Computer Science, and Psychology, Vanderbilt UniversityNashvilleUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
19
|
Anand S, Cho H, Adamek M, Burton H, Moran D, Leuthardt E, Brunner P. High gamma coherence between task-responsive sensory-motor cortical regions in a motor reaction-time task. J Neurophysiol 2023; 130:628-639. [PMID: 37584101 PMCID: PMC10648945 DOI: 10.1152/jn.00172.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Electrical activity at high gamma frequencies (70-170 Hz) is thought to reflect the activity of small cortical ensembles. For example, high gamma activity (often quantified by spectral power) can increase in sensory-motor cortex in response to sensory stimuli or movement. On the other hand, synchrony of neural activity between cortical areas (often quantified by coherence) has been hypothesized as an important mechanism for inter-areal communication, thereby serving functional roles in cognition and behavior. Currently, high gamma activity has primarily been studied as a local amplitude phenomenon. We investigated the synchronization of high gamma activity within sensory-motor cortex and the extent to which underlying high gamma activity can explain coherence during motor tasks. We characterized high gamma coherence in sensory-motor networks and the relationship between coherence and power by analyzing electrocorticography (ECoG) data from human subjects as they performed a motor response to sensory cues. We found greatly increased high gamma coherence during the motor response compared with the sensory cue. High gamma power poorly predicted high gamma coherence, but the two shared a similar time course. However, high gamma coherence persisted longer than high gamma power. The results of this study suggest that high gamma coherence is a physiologically distinct phenomenon during a sensory-motor task, the emergence of which may require active task participation.NEW & NOTEWORTHY Motor action after auditory stimulus elicits high gamma responses in sensory-motor and auditory cortex, respectively. We show that high gamma coherence reliably and greatly increased during motor response, but not after auditory stimulus. Underlying high gamma power could not explain high gamma coherence. Our results indicate that high gamma coherence is a physiologically distinct sensory-motor phenomenon that may serve as an indicator of increased synaptic communication on short timescales (∼1 s).
Collapse
Affiliation(s)
- Shashank Anand
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hohyun Cho
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
| | - Markus Adamek
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Harold Burton
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Daniel Moran
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Eric Leuthardt
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Peter Brunner
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neurology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
20
|
Baumgarten TJ, Wutz A, Samaha J. Editorial: Peak frequencies in neural oscillatory activity and their connection to perception and cognition. Front Psychol 2023; 14:1234955. [PMID: 37425156 PMCID: PMC10328761 DOI: 10.3389/fpsyg.2023.1234955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Thomas J. Baumgarten
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Wutz
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Jason Samaha
- Psychology Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
21
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Sandoval AAF, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CS. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544491. [PMID: 37398162 PMCID: PMC10312609 DOI: 10.1101/2023.06.11.544491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- School of Psychology, University of Kent, Kent, UK
| | - Aimee Arely Flores Sandoval
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S.Y. Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
Klaver LMF, Brinkhof LP, Sikkens T, Casado-Román L, Williams AG, van Mourik-Donga L, Mejías JF, Pennartz CMA, Bosman CA. Spontaneous variations in arousal modulate subsequent visual processing and local field potential dynamics in the ferret during quiet wakefulness. Cereb Cortex 2023; 33:7564-7581. [PMID: 36935096 PMCID: PMC10267643 DOI: 10.1093/cercor/bhad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8-12 Hz) decreases when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1 displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations (>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12-18 Hz) and high-frequency (>80 Hz) rhythms. These results indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral state and account for the neuronal response variability observed during repeated stimulation.
Collapse
Affiliation(s)
- Lianne M F Klaver
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lotte P Brinkhof
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tom Sikkens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lorena Casado-Román
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alex G Williams
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Laura van Mourik-Donga
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A Bosman
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Yiling Y, Shapcott K, Peter A, Klon-Lipok J, Xuhui H, Lazar A, Singer W. Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex. Nat Commun 2023; 14:3021. [PMID: 37231014 DOI: 10.1038/s41467-023-38587-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Parallel multisite recordings in the visual cortex of trained monkeys revealed that the responses of spatially distributed neurons to natural scenes are ordered in sequences. The rank order of these sequences is stimulus-specific and maintained even if the absolute timing of the responses is modified by manipulating stimulus parameters. The stimulus specificity of these sequences was highest when they were evoked by natural stimuli and deteriorated for stimulus versions in which certain statistical regularities were removed. This suggests that the response sequences result from a matching operation between sensory evidence and priors stored in the cortical network. Decoders trained on sequence order performed as well as decoders trained on rate vectors but the former could decode stimulus identity from considerably shorter response intervals than the latter. A simulated recurrent network reproduced similarly structured stimulus-specific response sequences, particularly once it was familiarized with the stimuli through non-supervised Hebbian learning. We propose that recurrent processing transforms signals from stationary visual scenes into sequential responses whose rank order is the result of a Bayesian matching operation. If this temporal code were used by the visual system it would allow for ultrafast processing of visual scenes.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- International Max Planck Research School (IMPRS) for Neural Circuits, 60438, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe-University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- International Max Planck Research School (IMPRS) for Neural Circuits, 60438, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe-University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Huang Xuhui
- Intelligent Science and Technology Academy, China Aerospace Science and Industry Corporation (CASIC), 100144, Beijing, China
- Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Andreea Lazar
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Baghdadi G, Kamarajan C, Hadaeghi F. Editorial: Role of brain oscillations in neurocognitive control systems. Front Syst Neurosci 2023; 17:1182496. [PMID: 37064159 PMCID: PMC10102580 DOI: 10.3389/fnsys.2023.1182496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Golnaz Baghdadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- *Correspondence: Golnaz Baghdadi
| | - Chella Kamarajan
- Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Fatemeh Hadaeghi
- Institute for Computational Neuroscience, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
25
|
Influence of Binaural Beats Stimulation of Gamma Frequency over Memory Performance and EEG Spectral Density. Healthcare (Basel) 2023; 11:healthcare11060801. [PMID: 36981458 PMCID: PMC10048082 DOI: 10.3390/healthcare11060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Similar to short-term memory, working memory cannot hold information for a long period of time. Studies have shown that binaural beats (BB) can stimulate the brain through sound, affecting working memory function. Although the literature is not conclusive regarding the effects of BB stimulation (stim) on memory, some studies have shown that gamma-BB stim (40 Hz) can increase attentional focusing and improve visual working memory. To better understand the relationship between BB stim and memory, we collected electroencephalographic data (EEG) from 30 subjects in 3 phases—a baseline, with gamma-BB stim, and control stim—in a rest state, with eyes closed, and while performing memory tasks. Both EEG data and memory task performance were analyzed. The results showed no significant changes in the memory task performance or the EEG data when comparing experimental and control conditions. We concluded that brain entrainment was not achieved with our parameters of gamma-BB stimulation when analyzing EEG power spectral density (PSD) and memory task performance. Hence, we suggest that other aspects of EEG data, such as connectivity and correlations with task performance, should also be analyzed for future studies.
Collapse
|
26
|
Weise A, Grimm S, Maria Rimmele J, Schröger E. Auditory representations for long lasting sounds: Insights from event-related brain potentials and neural oscillations. BRAIN AND LANGUAGE 2023; 237:105221. [PMID: 36623340 DOI: 10.1016/j.bandl.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The basic features of short sounds, such as frequency and intensity including their temporal dynamics, are integrated in a unitary representation. Knowledge on how our brain processes long lasting sounds is scarce. We review research utilizing the Mismatch Negativity event-related potential and neural oscillatory activity for studying representations for long lasting simple versus complex sounds such as sinusoidal tones versus speech. There is evidence for a temporal constraint in the formation of auditory representations: Auditory edges like sound onsets within long lasting sounds open a temporal window of about 350 ms in which the sounds' dynamics are integrated into a representation, while information beyond that window contributes less to that representation. This integration window segments the auditory input into short chunks. We argue that the representations established in adjacent integration windows can be concatenated into an auditory representation of a long sound, thus, overcoming the temporal constraint.
Collapse
Affiliation(s)
- Annekathrin Weise
- Department of Psychology, Ludwig-Maximilians-University Munich, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Sabine Grimm
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Johanna Maria Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Germany; Center for Language, Music and Emotion, New York University, Max Planck Institute, Department of Psychology, 6 Washington Place, New York, NY 10003, United States.
| | - Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
27
|
Veit J, Handy G, Mossing DP, Doiron B, Adesnik H. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms. Neuron 2023; 111:405-417.e5. [PMID: 36384143 PMCID: PMC9898108 DOI: 10.1016/j.neuron.2022.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Gamma band synchronization can facilitate local and long-range neural communication. In the primary visual cortex, visual stimulus properties within a specific location determine local synchronization strength, while the match of stimulus properties between distant locations controls long-range synchronization. The neural basis for the differential control of local and global gamma band synchronization is unknown. Combining electrophysiology, optogenetics, and computational modeling, we found that VIP disinhibitory interneurons in mouse cortex linearly scale gamma power locally without changing its stimulus tuning. Conversely, they suppress long-range synchronization when two regions process non-matched stimuli, tuning gamma coherence globally. Modeling shows that like-to-like connectivity across space and specific VIP→SST inhibition capture these opposing effects. VIP neurons thus differentially impact local and global properties of gamma rhythms depending on visual stimulus statistics. They may thereby construct gamma-band filters for spatially extended but continuous image features, such as contours, facilitating the downstream generation of coherent visual percepts.
Collapse
Affiliation(s)
- Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Daniel P Mossing
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
28
|
Hadjipapas A, Charalambous CC, Roberts MJ. Editorial: Why the exact frequencies in our brains matter: Perspectives from electrophysiology and brain stimulation. Front Syst Neurosci 2023; 16:1121438. [PMID: 36685289 PMCID: PMC9846754 DOI: 10.3389/fnsys.2022.1121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus,Center of Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus,*Correspondence: Avgis Hadjipapas ✉
| | - Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus,Center of Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Mark J. Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
Kielar A, Shah-Basak P, Meyer L, Fujioka T. Editorial: Oscillatory brain activity as a marker of brain function and dysfunction in aging and in neurodegenerative disorders. Front Aging Neurosci 2023; 15:1153150. [PMID: 36875698 PMCID: PMC9975704 DOI: 10.3389/fnagi.2023.1153150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- Aneta Kielar
- Speech Language and Hearing Sciences, University of Arizona, Tucson, AZ, United States
| | - Priyanka Shah-Basak
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lars Meyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Takako Fujioka
- Department of Music, Stanford University, Stanford, CA, United States
| |
Collapse
|
30
|
Pinzuti E, Wollstadt P, Tüscher O, Wibral M. Information theoretic evidence for layer- and frequency-specific changes in cortical information processing under anesthesia. PLoS Comput Biol 2023; 19:e1010380. [PMID: 36701388 PMCID: PMC9904504 DOI: 10.1371/journal.pcbi.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/07/2023] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Nature relies on highly distributed computation for the processing of information in nervous systems across the entire animal kingdom. Such distributed computation can be more easily understood if decomposed into the three elementary components of information processing, i.e. storage, transfer and modification, and rigorous information theoretic measures for these components exist. However, the distributed computation is often also linked to neural dynamics exhibiting distinct rhythms. Thus, it would be beneficial to associate the above components of information processing with distinct rhythmic processes where possible. Here we focus on the storage of information in neural dynamics and introduce a novel spectrally-resolved measure of active information storage (AIS). Drawing on intracortical recordings of neural activity in ferrets under anesthesia before and after loss of consciousness (LOC) we show that anesthesia- related modulation of AIS is highly specific to different frequency bands and that these frequency-specific effects differ across cortical layers and brain regions. We found that in the high/low gamma band the effects of anesthesia result in AIS modulation only in the supergranular layers, while in the alpha/beta band the strongest decrease in AIS can be seen at infragranular layers. Finally, we show that the increase of spectral power at multiple frequencies, in particular at alpha and delta bands in frontal areas, that is often observed during LOC ('anteriorization') also impacts local information processing-but in a frequency specific way: Increases in isoflurane concentration induced a decrease in AIS in the alpha frequencies, while they increased AIS in the delta frequency range < 2Hz. Thus, the analysis of spectrally-resolved AIS provides valuable additional insights into changes in cortical information processing under anaesthesia.
Collapse
Affiliation(s)
- Edoardo Pinzuti
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| |
Collapse
|
31
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
32
|
Tobimatsu S. Editorial: Neural oscillations in physiology and neuropsychiatric disorders. Front Hum Neurosci 2022; 16:1016481. [PMID: 36118962 PMCID: PMC9473697 DOI: 10.3389/fnhum.2022.1016481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
|
33
|
Han C, Shapley R, Xing D. Gamma rhythms in the visual cortex: functions and mechanisms. Cogn Neurodyn 2022; 16:745-756. [PMID: 35847544 PMCID: PMC9279528 DOI: 10.1007/s11571-021-09767-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 01/18/2023] Open
Abstract
Gamma-band activity, peaking around 30-100 Hz in the local field potential's power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Robert Shapley
- Center for Neural Science, New York University, New York, NY USA
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
34
|
Steinmann I, Williams KA, Wilke M, Antal A. Detection of Transcranial Alternating Current Stimulation Aftereffects Is Improved by Considering the Individual Electric Field Strength and Self-Rated Sleepiness. Front Neurosci 2022; 16:870758. [PMID: 35833087 PMCID: PMC9272587 DOI: 10.3389/fnins.2022.870758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive electrical stimulation methods, such as transcranial alternating current stimulation (tACS), are increasingly used in human neuroscience research and offer potential new avenues to treat neurological and psychiatric disorders. However, their often variable effects have also raised concerns in the scientific and clinical communities. This study aims to investigate the influence of subject-specific factors on the alpha tACS-induced aftereffect on the alpha amplitude (measured with electroencephalography, EEG) as well as on the connectivity strength between nodes of the default mode network (DMN) [measured with functional magnetic resonance imaging (fMRI)]. As subject-specific factors we considered the individual electrical field (EFIELD) strength at target regions in the brain, the frequency mismatch between applied stimulation and individual alpha frequency (IAF) and as a covariate, subject’s changes in mental state, i.e., sleepiness. Eighteen subjects participated in a tACS and a sham session conducted on different days. Each session consisted of three runs (pre/stimulation/). tACS was applied during the second run at each subject’s individual alpha frequency (IAF), applying 1 mA peak-to-peak intensity for 7 min, using an occipital bihemispheric montage. In every run, subjects watched a video designed to increase in-scanner compliance. To investigate the aftereffect of tACS on EEG alpha amplitude and on DMN connectivity strength, EEG data were recorded simultaneously with fMRI data. Self-rated sleepiness was documented using a questionnaire. Conventional statistics (ANOVA) did not show a significant aftereffect of tACS on the alpha amplitude compared to sham stimulation. Including individual EFIELD strengths and self-rated sleepiness scores in a multiple linear regression model, significant tACS-induced aftereffects were observed. However, the subject-wise mismatch between tACS frequency and IAF had no contribution to our model. Neither standard nor extended statistical methods confirmed a tACS-induced aftereffect on DMN functional connectivity. Our results show that it is possible and necessary to disentangle alpha amplitude changes due to intrinsic mechanisms and to external manipulation using tACS on the alpha amplitude that might otherwise be overlooked. Our results suggest that EFIELD is really the most significant factor that explains the alpha amplitude modulation during a tACS session. This knowledge helps to understand the variability of the tACS-induced aftereffects.
Collapse
Affiliation(s)
- Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Iris Steinmann,
| | - Kathleen A. Williams
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Andrea Antal,
| |
Collapse
|
35
|
Cariani P, Baker JM. Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures. Front Comput Neurosci 2022; 16:898829. [PMID: 35814343 PMCID: PMC9262106 DOI: 10.3389/fncom.2022.898829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Time is of the essence in how neural codes, synchronies, and oscillations might function in encoding, representation, transmission, integration, storage, and retrieval of information in brains. This Hypothesis and Theory article examines observed and possible relations between codes, synchronies, oscillations, and types of neural networks they require. Toward reverse-engineering informational functions in brains, prospective, alternative neural architectures incorporating principles from radio modulation and demodulation, active reverberant circuits, distributed content-addressable memory, signal-signal time-domain correlation and convolution operations, spike-correlation-based holography, and self-organizing, autoencoding anticipatory systems are outlined. Synchronies and oscillations are thought to subserve many possible functions: sensation, perception, action, cognition, motivation, affect, memory, attention, anticipation, and imagination. These include direct involvement in coding attributes of events and objects through phase-locking as well as characteristic patterns of spike latency and oscillatory response. They are thought to be involved in segmentation and binding, working memory, attention, gating and routing of signals, temporal reset mechanisms, inter-regional coordination, time discretization, time-warping transformations, and support for temporal wave-interference based operations. A high level, partial taxonomy of neural codes consists of channel, temporal pattern, and spike latency codes. The functional roles of synchronies and oscillations in candidate neural codes, including oscillatory phase-offset codes, are outlined. Various forms of multiplexing neural signals are considered: time-division, frequency-division, code-division, oscillatory-phase, synchronized channels, oscillatory hierarchies, polychronous ensembles. An expandable, annotative neural spike train framework for encoding low- and high-level attributes of events and objects is proposed. Coding schemes require appropriate neural architectures for their interpretation. Time-delay, oscillatory, wave-interference, synfire chain, polychronous, and neural timing networks are discussed. Some novel concepts for formulating an alternative, more time-centric theory of brain function are discussed. As in radio communication systems, brains can be regarded as networks of dynamic, adaptive transceivers that broadcast and selectively receive multiplexed temporally-patterned pulse signals. These signals enable complex signal interactions that select, reinforce, and bind common subpatterns and create emergent lower dimensional signals that propagate through spreading activation interference networks. If memory traces share the same kind of temporal pattern forms as do active neuronal representations, then distributed, holograph-like content-addressable memories are made possible via temporal pattern resonances.
Collapse
Affiliation(s)
- Peter Cariani
- Hearing Research Center, Boston University, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
36
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
37
|
Stauch BJ, Peter A, Ehrlich I, Nolte Z, Fries P. Human visual gamma for color stimuli. eLife 2022; 11:e75897. [PMID: 35532123 PMCID: PMC9122493 DOI: 10.7554/elife.75897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Strong gamma-band oscillations in primate early visual cortex can be induced by homogeneous color surfaces (Peter et al., 2019; Shirhatti and Ray, 2018). Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 have often not been fully controlled for. Therefore, stronger responses to red might be due to differences in V1 input strength. We presented stimuli that had equal luminance and cone contrast levels in a color coordinate system based on responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human participants. We found gamma oscillations in early visual cortex which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S-cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change-detection performance. The strength of human color gamma responses for stimuli on the L-M axis could be well explained by L-M cone contrast and did not show a clear red bias when L-M cone contrast was properly equalized.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
| | - Isabelle Ehrlich
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Zora Nolte
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
38
|
Majhi S. Dynamical robustness of complex networks subject to long-range connectivity. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2021.0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In spite of a few attempts in understanding the dynamical robustness of complex networks, this extremely important subject of research is still in its dawn as compared to the other dynamical processes on networks. We hereby consider the concept of long-range interactions among the dynamical units of complex networks and demonstrate
for the first time
that such a characteristic can have noteworthy impacts on the dynamical robustness of networked systems, regardless of the underlying network topology. We present a comprehensive analysis of this phenomenon on top of diverse network architectures. Such dynamical damages being able to substantially affect the network performance, determining mechanisms that boost the robustness of networks becomes a fundamental question. In this work, we put forward a prescription based upon self-feedback that can efficiently resurrect global rhythmicity of complex networks composed of active and inactive dynamical units, and thus can enhance the network robustness. We have been able to delineate the whole proposition analytically while dealing with all
d
-path adjacency matrices, having an excellent agreement with the numerical results. For the numerical computations, we examine scale-free networks, Watts–Strogatz small-world model and also Erdös–Rényi random network, along with Landau–Stuart oscillators for casting the local dynamics.
Collapse
Affiliation(s)
- Soumen Majhi
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
39
|
Heinrichs-Graham E, Walker EA, Eastman JA, Frenzel MR, McCreery RW. Amount of Hearing Aid Use Impacts Neural Oscillatory Dynamics Underlying Verbal Working Memory Processing for Children With Hearing Loss. Ear Hear 2022; 43:408-419. [PMID: 34291759 PMCID: PMC8770672 DOI: 10.1097/aud.0000000000001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Children with hearing loss (CHL) may exhibit spoken language delays and may also experience deficits in other cognitive domains including working memory. Consistent hearing aid use (i.e., more than 10 hours per day) ameliorates these language delays; however, the impact of hearing aid intervention on the neural dynamics serving working memory remains unknown. The objective of this study was to examine the association between the amount of hearing aid use and neural oscillatory activity during verbal working memory processing in children with mild-to-severe hearing loss. DESIGN Twenty-three CHL between 8 and 15 years-old performed a letter-based Sternberg working memory task during magnetoencephalography (MEG). Guardians also completed a questionnaire describing the participants' daily hearing aid use. Each participant's MEG data was coregistered to their structural MRI, epoched, and transformed into the time-frequency domain using complex demodulation. Significant oscillatory responses corresponding to working memory encoding and maintenance were independently imaged using beamforming. Finally, these whole-brain source images were correlated with the total number of hours of weekly hearing aid use, controlling for degree of hearing loss. RESULTS During the encoding period, hearing aid use negatively correlated with alpha-beta oscillatory activity in the bilateral occipital cortices and right precentral gyrus. In the occipital cortices, this relationship suggested that with greater hearing aid use, there was a larger suppression of occipital activity (i.e., more negative relative to baseline). In the precentral gyrus, greater hearing aid use was related to less synchronous activity (i.e., less positive relative to baseline). During the maintenance period, hearing aid use significantly correlated with alpha activity in the right prefrontal cortex, such that with greater hearing aid use, there was less right prefrontal maintenance-related activity (i.e., less positive relative to baseline). CONCLUSIONS This study is the first to investigate the impact of hearing aid use on the neural dynamics that underlie working memory function. These data show robust relationships between the amount of hearing aid use and phase-specific neural patterns during working memory encoding and maintenance after controlling for degree of hearing loss. Furthermore, our data demonstrate that wearing hearing aids for more than ~8.5 hours/day may serve to normalize these neural patterns. This study also demonstrates the potential for neuroimaging to help determine the locus of variability in outcomes in CHL.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Elizabeth A. Walker
- Wendell Johnson Speech and Hearing Center, Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Ryan W. McCreery
- Audibility, Perception, and Cognition Laboratory, BTNRH, Omaha, Nebraska, USA
| |
Collapse
|
40
|
Zieglgänsberger W, Brenneisen R, Berthele A, Wotjak CT, Bandelow B, Tölle TR, Lutz B. Chronic Pain and the Endocannabinoid System: Smart Lipids - A Novel Therapeutic Option? Med Cannabis Cannabinoids 2022; 5:61-75. [PMID: 35702403 PMCID: PMC9149512 DOI: 10.1159/000522432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 08/05/2023] Open
Abstract
The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).
Collapse
Affiliation(s)
| | | | | | | | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
41
|
Fabbrini A, Guerra A, Giangrosso M, Manzo N, Leodori G, Pasqualetti P, Conte A, Di Lazzaro V, Berardelli A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022; 254:119119. [PMID: 35321858 DOI: 10.1016/j.neuroimage.2022.119119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022] Open
Abstract
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Margherita Giangrosso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, Rome 00128, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| |
Collapse
|
42
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
43
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
44
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
van Bree S, Alamia A, Zoefel B. Oscillation or not-Why we can and need to know (commentary on Doelling and Assaneo, 2021). Eur J Neurosci 2021; 55:201-204. [PMID: 34817088 DOI: 10.1111/ejn.15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Sander van Bree
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Andrea Alamia
- Centre de Recherche Cerveau et Cognition, CNRS, Toulouse, France.,CerCo, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition, CNRS, Toulouse, France.,CerCo, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
46
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
47
|
Dashbozorgi Z, Ghaffari A, Karamali Esmaili S, Ashoori J, Moradi A, Sarvghadi P. Effect of Neurofeedback Training on Aggression and Impulsivity in Children With Attention-Deficit/Hyperactivity Disorder: A Double-Blinded Randomized Controlled Trial. Basic Clin Neurosci 2021; 12:693-702. [PMID: 35173923 PMCID: PMC8818111 DOI: 10.32598/bcn.2021.2363.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction Aggression and impulsivity are some of the behavioral symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD). Neurofeedback (NF) training has been suggested as a promising treatment in these children. This study aimed to investigate the effect of NF training on aggression and impulsivity in schoolchildren with ADHD. Methods A total of 40 male elementary school children with ADHD (aged 11.17±0.97 years) were randomized into the NF and sham groups. The NF group received 12 NF training sessions, each taking about 60 minutes for six consecutive weeks (twice a week), based on the Hammond protocol. The subjects' parents were questioned to evaluate the outcomes, including aggression and impulsivity, using the Buss-Perry Aggression Questionnaire (BPAQ) and Barratt Impulsiveness Scale (BIS). Results After the intervention, in the NF group, the BPAQ score changed from 87.60±9.33 to 81±7.23 and the BIS score from 94.7±7.25 to 88.05±5.4, which were significant (P=0.001). The results indicated the large effect size of NF on aggression and impulsivity in ADHD. Conclusion Our findings suggest NF training as a clinically applicable method for decreasing aggression and impulsivity, also support concurrent use of medication and NF training in children with ADHD.
Collapse
Affiliation(s)
- Zahra Dashbozorgi
- Department of Psychology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Amin Ghaffari
- Department of Occupational Therapy, School of Rehabilitation Science, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Karamali Esmaili
- Department of Occupational Therapy, School of Rehabilitation Science, Iran University of Medical Sciences, Tehran, Iran
| | - Jamal Ashoori
- Department of Psychology, Isfahan (Khorasgan) Branch, Islamic Azad University
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pooria Sarvghadi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Singer W. Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proc Natl Acad Sci U S A 2021; 118:e2101043118. [PMID: 34362837 PMCID: PMC8379985 DOI: 10.1073/pnas.2101043118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current concepts of sensory processing in the cerebral cortex emphasize serial extraction and recombination of features in hierarchically structured feed-forward networks in order to capture the relations among the components of perceptual objects. These concepts are implemented in convolutional deep learning networks and have been validated by the astounding similarities between the functional properties of artificial systems and their natural counterparts. However, cortical architectures also display an abundance of recurrent coupling within and between the layers of the processing hierarchy. This massive recurrence gives rise to highly complex dynamics whose putative function is poorly understood. Here a concept is proposed that assigns specific functions to the dynamics of cortical networks and combines, in a unifying approach, the respective advantages of recurrent and feed-forward processing. It is proposed that the priors about regularities of the world are stored in the weight distributions of feed-forward and recurrent connections and that the high-dimensional, dynamic space provided by recurrent interactions is exploited for computations. These comprise the ultrafast matching of sensory evidence with the priors covertly represented in the correlation structure of spontaneous activity and the context-dependent grouping of feature constellations characterizing natural objects. The concept posits that information is encoded not only in the discharge frequency of neurons but also in the precise timing relations among the discharges. Results of experiments designed to test the predictions derived from this concept support the hypothesis that cerebral cortex exploits the high-dimensional recurrent dynamics for computations serving predictive coding.
Collapse
Affiliation(s)
- Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60438, Germany;
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany
| |
Collapse
|
49
|
Carozzo S, Sannita WG. Stochastic resonance and ' gamma band' synchronization in the human visual system. IBRO Neurosci Rep 2021; 10:191-195. [PMID: 33937903 PMCID: PMC8076714 DOI: 10.1016/j.ibneur.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022] Open
Abstract
Cortical synchronization in the gamma-frequency range (above ~30.0 Hz) and the signal/noise interplay described by stochastic resonance models have been proposed as basic mechanisms in neuronal synchronization and sensory information processing, particularly in vision. Here we report an observation in humans of linear and inverted-U distributions of the electrophysiological (EEG) responses to visual contrast stimulation in the gamma band and in the low frequency components of the visual evoked responses (VER), respectively. The combination of linear and inverted-U distributions is described by a stochastic resonance model (SR). The observation needs replication in larger subjects' samples. It nevertheless adds to the available evidence of a role of gamma oscillatory signals and SR mechanisms in neuronal synchronization and visual processing. Some functional adaptation in human vision appears conceivable and further investigation is warranted.
Collapse
Affiliation(s)
- Simone Carozzo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Italy
| | - Walter G. Sannita
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Italy
| |
Collapse
|
50
|
Lubinus C, Orpella J, Keitel A, Gudi-Mindermann H, Engel AK, Roeder B, Rimmele JM. Data-Driven Classification of Spectral Profiles Reveals Brain Region-Specific Plasticity in Blindness. Cereb Cortex 2021; 31:2505-2522. [PMID: 33338212 DOI: 10.1093/cercor/bhaa370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Congenital blindness has been shown to result in behavioral adaptation and neuronal reorganization, but the underlying neuronal mechanisms are largely unknown. Brain rhythms are characteristic for anatomically defined brain regions and provide a putative mechanistic link to cognitive processes. In a novel approach, using magnetoencephalography resting state data of congenitally blind and sighted humans, deprivation-related changes in spectral profiles were mapped to the cortex using clustering and classification procedures. Altered spectral profiles in visual areas suggest changes in visual alpha-gamma band inhibitory-excitatory circuits. Remarkably, spectral profiles were also altered in auditory and right frontal areas showing increased power in theta-to-beta frequency bands in blind compared with sighted individuals, possibly related to adaptive auditory and higher cognitive processing. Moreover, occipital alpha correlated with microstructural white matter properties extending bilaterally across posterior parts of the brain. We provide evidence that visual deprivation selectively modulates spectral profiles, possibly reflecting structural and functional adaptation.
Collapse
Affiliation(s)
- Christina Lubinus
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany
| | - Joan Orpella
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Anne Keitel
- Psychology, University of Dundee, Dundee DD1 4HN, UK
| | - Helene Gudi-Mindermann
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany.,Department of Social Epidemiology, University of Bremen, 28359 Bremen, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Brigitte Roeder
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|