1
|
Duppen CP, Sachdeva N, Wrona H, Dayan E, Browner N, Lewek MD. Blending motor learning approaches for short-term adjustments to gait in people with Parkinson disease. Exp Brain Res 2024; 242:2853-2863. [PMID: 39361030 DOI: 10.1007/s00221-024-06933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Rhythmic auditory cueing (RAC) using an isochronous metronome is an effective approach to immediately enhance spatiotemporal aspects of gait for people with Parkinson disease (PwPD). Whereas entraining to RAC typically occurs subconsciously via cerebellar pathways, the use of metronome frequencies that deviate from one's typical cadence, such as those used in rehabilitation, may require conscious awareness. This heightened awareness may increase cognitive load and limit the persistence of gait training gains. Here, we explore the immediate effects of incorporating an implicit motor learning approach (i.e., error-based recalibration) to gait training with RAC. Twenty older adults (10 with PD and 10 controls) were asked to match their footfalls to both isochronous and subtly varying metronomes while walking on a treadmill and overground. Our findings revealed intriguing differences between treadmill and overground walking. During treadmill walking to a slower metronome frequency, both groups reduced their cadence and increased step lengths, but did not make the necessary adjustments to match the subtly varying metronome. During overground walking, both groups modified their cadence in response to a 3-4% change in metronome frequency (p < 0.05). Both metronomes yielded evidence of implicit and explicit retention during overground and treadmill walking. Furthermore, during overground walking the PD group showed greater implicit retention of cadence changes following the varying metronome, compared to the isochronous metronome. Our results suggest that incorporating implicit motor learning approaches to gait training during a single session of overground walking may enhance short term implicit retention of gait behaviors for PwPD.
Collapse
Affiliation(s)
- Chelsea Parker Duppen
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikhil Sachdeva
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hailey Wrona
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- NC and North Carolina State University, Raleigh, NC, USA
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nina Browner
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael D Lewek
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Physical Therapy, Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Miller-Mills B, McAnally K, Leow LA, Keane BF, Grove P, Carroll TJ. Implicit audiomotor adaptation. Neuroscience 2024; 558:81-91. [PMID: 39168173 DOI: 10.1016/j.neuroscience.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Sensorimotor adaptation alters mappings between motor commands and their predicted outcomes. Such remapping has been extensively studied in the visual domain, but the degree to which it occurs in modalities other than vision remains less well understood. Here, we manipulated the modality of reach target presentation to compare sensorimotor adaptation in response to perturbations of visual and auditory feedback location. We compared the extent of adaptation to perturbed sensory feedback for visual and auditory sensory modalities, and the magnitude of reach-direction aftereffects when the perturbation was removed. To isolate the contribution of implicit sensorimotor recalibration to adaptation in reach direction, we held sensory prediction errors and task-performance errors constant via a task-irrelevant clamp of sensory feedback. Seventy-two participants performed one of three experiments in which target location information and endpoint reach direction feedback were presented by loudspeakers (n = 24), headphones (n = 24), or a visual display (n = 24). Presentation durations for target stimuli (500 ms) and (non-veridical) endpoint feedback of reach direction (100 ms) were matched for visual and auditory modalities. For all three groups, when endpoint feedback was perturbed, adaptation was evident: reach-directions increased significantly in the direction opposite the clamped feedback, and a significant aftereffect persisted after participants were instructed that the perturbation had been removed. This study provides new evidence that implicit sensorimotor adaptation occurs in response to perturbed auditory feedback of reach direction, suggesting that an implicit neural process to recalibrate sensory to motor maps in response to sensory prediction errors may be ubiquitous across sensory modalities.
Collapse
Affiliation(s)
- Benjamin Miller-Mills
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.
| | - Kenneth McAnally
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Li-Ann Leow
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Brendan F Keane
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Philip Grove
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Timothy J Carroll
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Rudisch J, Holzhauer LKH, Kravanja K, Hamker FH, Voelcker-Rehage C. A systematic review of observational practice for adaptation of reaching movements. NPJ SCIENCE OF LEARNING 2024; 9:61. [PMID: 39362866 PMCID: PMC11449917 DOI: 10.1038/s41539-024-00271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Observational practice is discussed as a substitute for physical practice for motor learning and adaptation. We systematically reviewed the literature on observational practice in reaching and aiming tasks. Our objectives were to identify (i) performance differences between observational and physical practice; (ii) factors that contribute to adaptation following observational practice; and (iii) the neural correlates of observational practice. We found 18 studies, all investigated adaptation of reaching in visuomotor rotations or force-field perturbations. Results of the studies showed that observational practice led to adaptation in both, visuomotor rotation and force-field paradigms (d = -2.16 as compared to no practice). However, direct effects were considerably smaller as compared to physical practice (d = 4.38) and aftereffects were absent, suggesting that observational practice informed inverse, but not forward modes. Contrarily, neurophysiological evidence in this review showed that observational and physical practice involved similar brain regions.
Collapse
Affiliation(s)
- Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany.
| | - Luis K H Holzhauer
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
- Department of Sports Analytics, Institute for Sport Science, Saarland University, Saarbrücken, Germany
| | - Karmen Kravanja
- Department of Psychology, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Kim KS, Hinkley LB, Brent K, Gaines JL, Pongos AL, Gupta S, Dale CL, Nagarajan SS, Houde JF. Neurophysiological evidence of sensory prediction errors driving speech sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563504. [PMID: 37961099 PMCID: PMC10634734 DOI: 10.1101/2023.10.22.563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex (n = 34) during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Leighton B. Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kurtis Brent
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Gaines
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Alvincé L. Pongos
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Saloni Gupta
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corby L. Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - John F. Houde
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Casasnovas V, Amann LK, Haas GL, Gail A. Task-relevant visual feedback uncertainty attenuates visuomotor adaptation. J Neurophysiol 2024; 132:879-889. [PMID: 39110513 DOI: 10.1152/jn.00180.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Motor adaptation is attenuated when sensory feedback about the movement is uncertain. Although this was initially shown for small visual errors, attenuation seems not to hold when visual errors are larger and the contributions of implicit adaptation are isolated with the error-clamp method, which makes visual feedback task-irrelevant. Here we ask whether adaptation to a similarly large perturbation is attenuated when task-relevant visual feedback is uncertain. In a first experiment, we tested participants on a 30° movement-contingent visuomotor rotation under both low (cursor) and high (cloud of moving dots) visual feedback uncertainty. In line with optimal integration, we found that the early increase in adaptation and final extent of adaptation were reduced with high feedback uncertainty. In a second experiment, we included several blocks of no-feedback trials during the perturbation block to quantify the contribution of implicit adaptation. Results showed that implicit adaptation was smaller with high compared to low feedback uncertainty throughout the perturbation block. The estimated contribution of explicit adaptation was overall small, particularly for high feedback uncertainty. Our results demonstrate an influence of task-relevant visual feedback, and the resulting target errors, on implicit adaptation. We show that our motor system is sensitive to the feedback it receives even for larger error sizes and accordingly adjusts its learning properties when our ability to achieve the task goal is affected.NEW & NOTEWORTHY Motor adaptation is linked to the estimation of our actions. Whereas uncertainty of task-irrelevant visual feedback appears not to influence implicit adaptation for errors beyond a certain size, here we tested whether this is still the case for task-relevant feedback. We show that implicit adaptation is attenuated when task-relevant visual feedback is uncertain, suggesting a dependency on the assessment of not just sensory prediction errors but also target errors.
Collapse
Affiliation(s)
- Virginia Casasnovas
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Lukas K Amann
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Gianna L Haas
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Alexander Gail
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
6
|
Oza A, Kumar A, Sharma A, Mutha PK. Limb-related sensory prediction errors and task-related performance errors facilitate human sensorimotor learning through separate mechanisms. PLoS Biol 2024; 22:e3002703. [PMID: 38959259 PMCID: PMC11221701 DOI: 10.1371/journal.pbio.3002703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
The unpredictable nature of our world can introduce a variety of errors in our actions, including sensory prediction errors (SPEs) and task performance errors (TPEs). SPEs arise when our existing internal models of limb-environment properties and interactions become miscalibrated due to changes in the environment, while TPEs occur when environmental perturbations hinder achievement of task goals. The precise mechanisms employed by the sensorimotor system to learn from such limb- and task-related errors and improve future performance are not comprehensively understood. To gain insight into these mechanisms, we performed a series of learning experiments wherein the location and size of a reach target were varied, the visual feedback of the motion was perturbed in different ways, and instructions were carefully manipulated. Our findings indicate that the mechanisms employed to compensate SPEs and TPEs are dissociable. Specifically, our results fail to support theories that suggest that TPEs trigger implicit refinement of reach plans or that their occurrence automatically modulates SPE-mediated learning. Rather, TPEs drive improved action selection, that is, the selection of verbally sensitive, volitional strategies that reduce future errors. Moreover, we find that exposure to SPEs is necessary and sufficient to trigger implicit recalibration. When SPE-mediated implicit learning and TPE-driven improved action selection combine, performance gains are larger. However, when actions are always successful and strategies are not employed, refinement in behavior is smaller. Flexibly weighting strategic action selection and implicit recalibration could thus be a way of controlling how much, and how quickly, we learn from errors.
Collapse
Affiliation(s)
- Anushka Oza
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Adarsh Kumar
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
- Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Apoorva Sharma
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K. Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Leow LA, Bernheine L, Carroll TJ, Dux PE, Filmer HL. Dopamine Increases Accuracy and Lengthens Deliberation Time in Explicit Motor Skill Learning. eNeuro 2024; 11:ENEURO.0360-23.2023. [PMID: 38238069 PMCID: PMC10849023 DOI: 10.1523/eneuro.0360-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Although animal research implicates a central role for dopamine in motor skill learning, a direct causal link has yet to be established in neurotypical humans. Here, we tested if a pharmacological manipulation of dopamine alters motor learning, using a paradigm which engaged explicit, goal-directed strategies. Participants (27 females; 11 males; aged 18-29 years) first consumed either 100 mg of levodopa (n = 19), a dopamine precursor that increases dopamine availability, or placebo (n = 19). Then, during training, participants learnt the explicit strategy of aiming away from presented targets by instructed angles of varying sizes. Targets jumped mid-movement by the instructed aiming angle. Task success was thus contingent upon aiming accuracy and not speed. The effect of the dopamine manipulations on skill learning was assessed during training and after an overnight follow-up. Increasing dopamine availability at training improved aiming accuracy and lengthened reaction times, particularly for larger, more difficult aiming angles, both at training and, importantly, at follow-up, despite prominent session-by-session performance improvements in both accuracy and speed. Exogenous dopamine thus seems to result in a learnt, persistent propensity to better adhere to task goals. Results support the proposal that dopamine is important in engagement of instrumental motivation to optimize adherence to task goals, particularly when learning to execute goal-directed strategies in motor skill learning.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia
- Centre for Sensorimotor Performance, School of Human Movement & Nutrition Sciences, St Lucia, 4067, Australia
| | - Lena Bernheine
- Centre for Sensorimotor Performance, School of Human Movement & Nutrition Sciences, St Lucia, 4067, Australia
- School of Sport Science Faculty of Sport Governance and Event Management, University of Bayreuth, 95447 Bayreuth, Germany
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement & Nutrition Sciences, St Lucia, 4067, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
8
|
Jang J, Shadmehr R, Albert ST. A software tool for at-home measurement of sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571359. [PMID: 38168264 PMCID: PMC10760058 DOI: 10.1101/2023.12.12.571359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sensorimotor adaptation is traditionally studied in well-controlled laboratory settings with specialized equipment. However, recent public health concerns such as the COVID-19 pandemic, as well as a desire to recruit a more diverse study population, have led the motor control community to consider at-home study designs. At-home motor control experiments are still rare because of the requirement to write software that can be easily used by anyone on any platform. To this end, we developed software that runs locally on a personal computer. The software provides audiovisual instructions and measures the ability of the subject to control the cursor in the context of visuomotor perturbations. We tested the software on a group of at-home participants and asked whether the adaptation principles inferred from in-lab measurements were reproducible in the at-home setting. For example, we manipulated the perturbations to test whether there were changes in adaptation rates (savings and interference), whether adaptation was associated with multiple timescales of memory (spontaneous recovery), and whether we could selectively suppress subconscious learning (delayed feedback, perturbation variability) or explicit strategies (limited reaction time). We found remarkable similarity between in-lab and at-home behaviors across these experimental conditions. Thus, we developed a software tool that can be used by research teams with little or no programming experience to study mechanisms of adaptation in an at-home setting.
Collapse
Affiliation(s)
- Jihoon Jang
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| | - Scott T Albert
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore MD
| |
Collapse
|
9
|
van Mastrigt NM, Tsay JS, Wang T, Avraham G, Abram SJ, van der Kooij K, Smeets JBJ, Ivry RB. Implicit reward-based motor learning. Exp Brain Res 2023; 241:2287-2298. [PMID: 37580611 PMCID: PMC10471724 DOI: 10.1007/s00221-023-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induces implicit learning. We examined this question in a center-out reaching task by gradually moving an invisible reward zone away from a visual target to a final rotation of 7.5° or 25° in a between-group design. Participants received binary feedback, indicating if the movement intersected the reward zone. By the end of the training, both groups modified their reach angle by about 95% of the rotation. We quantified implicit learning by measuring performance in a subsequent no-feedback aftereffect phase, in which participants were told to forgo any adopted movement strategies and reach directly to the visual target. The results showed a small, but robust (2-3°) aftereffect in both groups, highlighting that binary feedback elicits implicit learning. Notably, for both groups, reaches to two flanking generalization targets were biased in the same direction as the aftereffect. This pattern is at odds with the hypothesis that implicit learning is a form of use-dependent learning. Rather, the results suggest that binary feedback can be sufficient to recalibrate a sensorimotor map.
Collapse
Affiliation(s)
- Nina M van Mastrigt
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | - Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Albert ST, Blaum EC, Blustein DH. Sensory prediction error drives subconscious motor learning outside of the laboratory. J Neurophysiol 2023; 130:427-435. [PMID: 37435648 DOI: 10.1152/jn.00110.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
Sensorimotor adaptation is supported by at least two parallel learning systems: an intentionally controlled explicit strategy and an involuntary implicit learning system. Past work focused on constrained reaches or finger movements in laboratory environments has shown subconscious learning systems to be driven in part by sensory prediction error (SPE), i.e., the mismatch between the realized and expected outcome of an action. We designed a ball rolling task to explore whether SPEs can drive implicit motor adaptation during complex whole body movements that impart physical motion on external objects. After applying a visual shift, participants rapidly adapted their rolling angles to reduce the error between the ball and the target. We removed all visual feedback and told participants to aim their throw directly toward the primary target, revealing an unintentional 5.06° implicit adjustment to reach angles that decayed over time. To determine whether this implicit adaptation was driven by SPE, we gave participants a second aiming target that would "solve" the visual shift, as in the study by Mazzoni and Krakauer (Mazzoni P, Krakauer JW. J Neurosci 26: 3642-3645, 2006). Remarkably, after rapidly reducing ball-rolling error to zero (due to enhancements in strategic aiming), the additional aiming target caused rolling angles to deviate beyond the primary target by 3.15°. This involuntary overcompensation, which worsened task performance, is a hallmark of SPE-driven implicit learning. These results show that SPE-driven implicit processes, previously observed within simplified finger or planar reaching movements, actively contribute to motor adaptation in more complex naturalistic skill-based tasks.NEW & NOTEWORTHY Implicit and explicit learning systems have been detected using simple, constrained movements inside the laboratory. How these systems impact movements during complex whole body, skill-based tasks has not been established. Here, we demonstrate that sensory prediction errors significantly impact how a person updates their movements, replicating findings from the laboratory in an unconstrained ball-rolling task. This real-world validation is an important step toward explaining how subconscious learning helps humans execute common motor skills in dynamic environments.
Collapse
Affiliation(s)
- Scott T Albert
- Neuroscience Center, UNC Chapel Hill, Chapel Hill, North Carolina, United States
| | - Emily C Blaum
- Neuroscience Program, Rhodes College, Memphis, Tennessee, United States
| | - Daniel H Blustein
- Department of Psychology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
11
|
Al-Fawakhiri N, Ma A, Taylor JA, Kim OA. Exploring the role of task success in implicit motor adaptation. J Neurophysiol 2023; 130:332-344. [PMID: 37403601 PMCID: PMC10396223 DOI: 10.1152/jn.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Although implicit motor adaptation is driven by sensory-prediction errors (SPEs), recent work has shown that task success modulates this process. Task success has typically been defined as hitting a target, which signifies the goal of the movement. Visuomotor adaptation tasks are uniquely situated to experimentally manipulate task success independently from SPE by changing the target size or the location of the target. These two, distinct manipulations may influence implicit motor adaptation in different ways, so, over four experiments, we sought to probe the efficacy of each manipulation. We found that changes in target size, which caused the target to fully envelop the cursor, only affected implicit adaptation for a narrow range of SPE sizes, while jumping the target to overlap with the cursor more reliably and robustly affected implicit adaptation. Taken together, our data indicate that, while task success exerts a small effect on implicit adaptation, these effects are susceptible to methodological variations. Future investigations of the effect of task success on implicit adaptation could benefit from employing target jump manipulations instead of target size manipulations.NEW & NOTEWORTHY Recent work has suggested that task success, namely, hitting a target, influences implicit motor adaptation. Here, we observed that implicit adaptation is modulated by target jump manipulations, where the target abruptly "jumps" to meet the cursor; however, implicit adaptation was only weakly modulated by target size manipulations, where a static target either envelops or excludes the cursor. We discuss how these manipulations may exert their effects through different mechanisms.
Collapse
Affiliation(s)
- Naser Al-Fawakhiri
- Department of Psychology, Yale University, New Haven, Connecticut, United States
| | - Ambri Ma
- Department of Psychology, Princeton University, Princeton, New Jersey, United States
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, New Jersey, United States
| | - Olivia A Kim
- Department of Psychology, Princeton University, Princeton, New Jersey, United States
| |
Collapse
|
12
|
Larssen BC, Hodges NJ. Updating of Implicit Adaptation Processes through Erroneous Numeric Feedback. J Mot Behav 2023; 55:475-492. [PMID: 37442571 DOI: 10.1080/00222895.2023.2232739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
There is debate about how implicit and explicit processes interact in sensorimotor adaptation, implicating how error signals drive learning. Target error information is thought to primarily influence explicit processes, therefore manipulations to the veracity of this information should impact adaptation but not implicit recalibration (i.e. after-effects). Thirty participants across three groups initially adapted to rotated cursor feedback. Then we manipulated numeric target error through knowledge of results (KR) feedback, where groups practised with correct or incorrect (+/-15°) numeric KR. Participants adapted to erroneous KR, but only the KR + 15 group showed augmented implicit recalibration, evidenced by larger after-effects than before KR exposure. In the presence of sensory prediction errors, target errors modulated after-effects, suggesting an interaction between implicit and explicit processes.
Collapse
Affiliation(s)
- Beverley C Larssen
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, The University of British Columbia, Vancouver, Canada
| | - Nicola J Hodges
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Kim KS, Gaines JL, Parrell B, Ramanarayanan V, Nagarajan SS, Houde JF. Mechanisms of sensorimotor adaptation in a hierarchical state feedback control model of speech. PLoS Comput Biol 2023; 19:e1011244. [PMID: 37506120 PMCID: PMC10434967 DOI: 10.1371/journal.pcbi.1011244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 08/17/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors-discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jessica L. Gaines
- Graduate Program in Bioengineering, University of California Berkeley-University of California San Francisco, San Francisco, California, United States of America
| | - Benjamin Parrell
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vikram Ramanarayanan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
- Modality.AI, San Francisco, California, United States of America
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - John F. Houde
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
14
|
van Mastrigt NM, Tsay JS, Wang T, Avraham G, Abram SJ, van der Kooij K, Smeets JBJ, Ivry RB. Implicit reward-based motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546738. [PMID: 37425740 PMCID: PMC10327077 DOI: 10.1101/2023.06.27.546738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induce implicit learning. We examined this question in a center-out reaching task by gradually moving an invisible reward zone away from a visual target to a final rotation of 7.5° or 25° in a between-group design. Participants received binary feedback, indicating if the movement intersected the reward zone. By the end of the training, both groups modified their reach angle by about 95% of the rotation. We quantified implicit learning by measuring performance in a subsequent no-feedback aftereffect phase, in which participants were told to forgo any adopted movement strategies and reach directly to the visual target. The results showed a small, but robust (2-3°) aftereffect in both groups, highlighting that binary feedback elicits implicit learning. Notably, for both groups, reaches to two flanking generalization targets were biased in the same direction as the aftereffect. This pattern is at odds with the hypothesis that implicit learning is a form of use-dependent learning. Rather, the results suggest that binary feedback can be sufficient to recalibrate a sensorimotor map.
Collapse
Affiliation(s)
- Nina M van Mastrigt
- Vrije Universiteit Amsterdam, Department of Human Movement Sciences, Amsterdam, The Netherlands
| | - Jonathan S Tsay
- UC Berkeley, CognAc lab, Berkeley, California, United States
| | - Tianhe Wang
- UC Berkeley, CognAc lab, Berkeley, California, United States
| | - Guy Avraham
- UC Berkeley, CognAc lab, Berkeley, California, United States
| | - Sabrina J Abram
- UC Berkeley, CognAc lab, Berkeley, California, United States
| | - Katinka van der Kooij
- Vrije Universiteit Amsterdam, Department of Human Movement Sciences, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Vrije Universiteit Amsterdam, Department of Human Movement Sciences, Amsterdam, The Netherlands
| | - Richard B Ivry
- UC Berkeley, CognAc lab, Berkeley, California, United States
| |
Collapse
|
15
|
Zhou P, Li W, Zhao J, Chen S, Chen Y, Shen X, Xu D. Modulated effectiveness of rehabilitation motivation by reward strategies combined with tDCS in stroke: study protocol for a randomized controlled trial. Front Neurol 2023; 14:1200741. [PMID: 37396764 PMCID: PMC10310965 DOI: 10.3389/fneur.2023.1200741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Background Stroke survivors often exhibit low motivation for rehabilitation, hindering their ability to effectively complete rehabilitation training task effectively and participate in daily activities actively. Reward strategies have been identified as an effective method for boosting rehabilitation motivation, but their long-term efficacy remains uncertain. Transcranial direct current stimulation (tDCS) has been recognized as a technique that facilitates plastic changes and functional reorganization of cortical areas. Particularly, tDCS can improve the functional connectivity between brain regions associated with goal-directed behavior when applied to the left dorsolateral prefrontal cortex (dlPFC). Combing reward strategies with tDCS (RStDCS) has been shown to motivate healthy individuals to exert more effort in task performance. However, research exploring the combined and sustained effects of these strategies on rehabilitation motivation in stroke survivors is lacking. Methods and design Eighty-seven stroke survivors with low motivation and upper extremity dysfunction will be randomized to receive either conventional treatment, RS treatment, or RStDCS treatment. The RStDCS group will receive reward strategies combined with anodal tDCS stimulation of the left dlPFC. The RS group will receive reward strategies combined with sham stimulation. The conventional group will receive conventional treatment combined with sham stimulation. tDCS stimulation is performed over 3 weeks of hospitalization, 20 min/time, five times a week. Reward strategies refers to personalized active exercise programs for patients during hospitalization and at home. Patients can voluntarily choose tasks for active exercise and self-report to the therapist so as to punch a card for points and exchange gifts. The conventional group will receive home rehabilitation instructions prior to discharge. Rehabilitation motivation, measured using RMS. RMS, FMA, FIM, and ICF activity and social engagement scale will be compared at baseline, 3 weeks, 6 weeks, and 3 months post-enrollment to evaluate patients' multifaceted health condition based on the ICF framework. Discussion This study integrates knowledge from social cognitive science, economic behavioral science, and other relevant fields. We utilize straightforward and feasible reward strategies, combined with neuromodulation technology, to jointly improve patients' rehabilitation motivation. Behavioral observations and various assessment tools will be used to monitor patients' rehabilitation motivation and multifaceted health condition according to the ICF framework. The aim is to provide a preliminary exploration path for professionals to develop comprehensive strategies for improving patient rehabilitation motivation and facilitating a complete "hospital-home-society" rehabilitation process. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=182589, ChiCTR2300069068.
Collapse
Affiliation(s)
- Ping Zhou
- Rehabilitation Medicine Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxi Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwang Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyun Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufeng Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Shen
- Rehabilitation Medicine Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Al-Fawakhiri N, Ma A, Taylor JA, Kim OA. Exploring the role of task success in implicit motor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526533. [PMID: 36778277 PMCID: PMC9915693 DOI: 10.1101/2023.02.01.526533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We learn to improve our motor skills using different forms of feedback: sensory-prediction error, task success, and reward/punishment. While implicit motor adaptation is driven by sensory-prediction errors, recent work has shown that task success modulates this process. Task success is often confounded with reward, so we sought to determine if the effects of these two signals on adaptation can be dissociated. To address this question, we conducted five experiments that isolated implicit learning using error-clamp visuomotor reach adaptation paradigms. Task success was manipulated by changing the size and position of the target relative to the cursor providing visual feedback, and reward expectation was established using monetary cues and auditory feedback. We found that neither monetary cues nor auditory feedback affected implicit adaptation, suggesting that task success influences implicit adaptation via mechanisms distinct from conventional reward-related processes. Additionally, we found that changes in target size, which caused the target to either exclude or fully envelop the cursor, only affected implicit adaptation for a narrow range of error sizes, while jumping the target to overlap with the cursor more reliably and robustly affected implicit adaptation. Taken together, our data indicate that, while task success exerts a small effect on implicit adaptation, these effects are susceptible to methodological variations and unlikely to be mediated by reward.
Collapse
Affiliation(s)
| | - Ambri Ma
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | - Olivia A Kim
- Department of Psychology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
17
|
Modchalingam S, Ciccone M, D'Amario S, 't Hart BM, Henriques DYP. Adapting to visuomotor rotations in stepped increments increases implicit motor learning. Sci Rep 2023; 13:5022. [PMID: 36977740 PMCID: PMC10050328 DOI: 10.1038/s41598-023-32068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human motor adaptation relies on both explicit conscious strategies and implicit unconscious updating of internal models to correct motor errors. Implicit adaptation is powerful, requiring less preparation time before executing adapted movements, but recent work suggests it is limited to some absolute magnitude regardless of the size of a visuomotor perturbation when the perturbation is introduced abruptly. It is commonly assumed that gradually introducing a perturbation should lead to improved implicit learning beyond this limit, but outcomes are conflicting. We tested whether introducing a perturbation in two distinct gradual methods can overcome the apparent limit and explain past conflicting findings. We found that gradually introducing a perturbation in a stepped manner, where participants were given time to adapt to each partial step before being introduced to a larger partial step, led to ~ 80% higher implicit aftereffects of learning, but introducing it in a ramped manner, where participants adapted larger rotations on each subsequent reach, did not. Our results clearly show that gradual introduction of a perturbation can lead to substantially larger implicit adaptation, as well as identify the type of introduction that is necessary to do so.
Collapse
Affiliation(s)
- Shanaathanan Modchalingam
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Marco Ciccone
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - Sebastian D'Amario
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Denise Y P Henriques
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
18
|
Tsay JS, Najafi T, Schuck L, Wang T, Ivry RB. Implicit sensorimotor adaptation is preserved in Parkinson's disease. Brain Commun 2022; 4:fcac303. [PMID: 36531745 PMCID: PMC9750131 DOI: 10.1093/braincomms/fcac303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Our ability to enact successful goal-directed actions involves multiple learning processes. Among these processes, implicit motor adaptation ensures that the sensorimotor system remains finely tuned in response to changes in the body and environment. Whether Parkinson's disease impacts implicit motor adaptation remains a contentious area of research: whereas multiple reports show impaired performance in this population, many others show intact performance. While there is a range of methodological differences across studies, one critical issue is that performance in many of the studies may reflect a combination of implicit adaptation and strategic re-aiming. Here, we revisited this controversy using a visuomotor task designed to isolate implicit adaptation. In two experiments, we found that adaptation in response to a wide range of visual perturbations was similar in Parkinson's disease and matched control participants. Moreover, in a meta-analysis of previously published and unpublished work, we found that the mean effect size contrasting Parkinson's disease and controls across 16 experiments involving over 200 participants was not significant. Together, these analyses indicate that implicit adaptation is preserved in Parkinson's disease, offering a fresh perspective on the role of the basal ganglia in sensorimotor learning.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Correspondence to: Jonathan S. Tsay 2121 Berkeley Way West Berkeley, CA 94704, USA E-mail:
| | | | - Lauren Schuck
- Department of Psychology, University of California Berkeley, Berkeley, CA 94704, USA
| | - Tianhe Wang
- Department of Psychology, University of California Berkeley, Berkeley, CA 94704, USA
| | - Richard B Ivry
- Department of Psychology, University of California Berkeley, Berkeley, CA 94704, USA,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
19
|
Kitchen NM, Kim KS, Wang PZ, Hermosillo RJ, Max L. Individual sensorimotor adaptation characteristics are independent across orofacial speech movements and limb reaching movements. J Neurophysiol 2022; 128:696-710. [PMID: 35946809 PMCID: PMC9484989 DOI: 10.1152/jn.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor adaptation is critical for human motor control but shows considerable interindividual variability. Efforts are underway to identify factors accounting for individual differences in specific adaptation tasks. However, a fundamental question has remained unaddressed: Is an individual's capability for adaptation effector system specific or does it reflect a generalized adaptation ability? We therefore tested the same participants in analogous adaptation paradigms focusing on distinct sensorimotor systems: speaking with perturbed auditory feedback and reaching with perturbed visual feedback. Each task was completed once with the perturbation introduced gradually (ramped up over 60 trials) and, on a different day, once with the perturbation introduced suddenly. Consistent with studies of each system separately, visuomotor reach adaptation was more complete than auditory-motor speech adaptation (80% vs. 29% of the perturbation). Adaptation was not significantly correlated between the speech and reach tasks. Moreover, considered within tasks, 1) adaptation extent was correlated between the gradual and sudden conditions for reaching but not for speaking, 2) adaptation extent was correlated with additional measures of performance (e.g., trial duration, within-trial corrections) only for reaching and not for speaking, and 3) fitting individual participant adaptation profiles with exponential rather than linear functions offered a larger benefit [lower root mean square error (RMSE)] for the reach task than for the speech task. Combined, results suggest that the ability for sensorimotor adaptation relies on neural plasticity mechanisms that are effector system specific rather than generalized. This finding has important implications for ongoing efforts seeking to identify cognitive, behavioral, and neurochemical predictors of individual sensorimotor adaptation.NEW & NOTEWORTHY This study provides the first detailed demonstration that individual sensorimotor adaptation characteristics are independent across articulatory speech movements and limb reaching movements. Thus, individual sensorimotor learning abilities are effector system specific rather than generalized. Findings regarding one effector system do not necessarily apply to other systems, different underlying mechanisms may be involved, and implications for clinical rehabilitation or performance training also cannot be generalized.
Collapse
Affiliation(s)
- Nick M Kitchen
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Kwang S Kim
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Prince Z Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Robert J Hermosillo
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
20
|
Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. eLife 2022; 11:e76639. [PMID: 35969491 PMCID: PMC9377801 DOI: 10.7554/elife.76639] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here, we present an alternative to this visuo-centric framework, outlining a model in which implicit adaptation acts to minimize a proprioceptive error, the distance between the perceived hand position and its intended goal. This proprioceptive re-alignment model (PReMo) is consistent with many phenomena that have previously been interpreted in terms of learning from visual errors, and offers a parsimonious account of numerous unexplained phenomena. Cognizant that the evidence for PReMo rests on correlational studies, we highlight core predictions to be tested in future experiments, as well as note potential challenges for a proprioceptive-based perspective on implicit adaptation.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Hyosub Kim
- Department of Physical Therapy, University of DelawareNewarkUnited States
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Kim OA, Forrence AD, McDougle SD. Motor learning without movement. Proc Natl Acad Sci U S A 2022; 119:e2204379119. [PMID: 35858450 PMCID: PMC9335319 DOI: 10.1073/pnas.2204379119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
Prediction errors guide many forms of learning, providing teaching signals that help us improve our performance. Implicit motor adaptation, for instance, is thought to be driven by sensory prediction errors (SPEs), which occur when the expected and observed consequences of a movement differ. Traditionally, SPE computation is thought to require movement execution. However, recent work suggesting that the brain can generate sensory predictions based on motor imagery or planning alone calls this assumption into question. Here, by measuring implicit motor adaptation during a visuomotor task, we tested whether motor planning and well-timed sensory feedback are sufficient for adaptation. Human participants were cued to reach to a target and were, on a subset of trials, rapidly cued to withhold these movements. Errors displayed both on trials with and without movements induced single-trial adaptation. Learning following trials without movements persisted even when movement trials had never been paired with errors and when the direction of movement and sensory feedback trajectories were decoupled. These observations indicate that the brain can compute errors that drive implicit adaptation without generating overt movements, leading to the adaptation of motor commands that are not overtly produced.
Collapse
Affiliation(s)
- Olivia A. Kim
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | | | - Samuel D. McDougle
- Department of Psychology, Yale University, New Haven, CT 06511
- Wu Tsai Institute, Yale University, New Haven, CT 06511
| |
Collapse
|
22
|
Larssen BC, Kraeutner SN, Hodges NJ. Implicit Adaptation Processes Promoted by Immediate Offline Visual and Numeric Feedback. J Mot Behav 2022; 55:1-17. [PMID: 35786368 DOI: 10.1080/00222895.2022.2088678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In adaptation learning, visual feedback impacts how adaptation proceeds. With concurrent feedback, a more implicit/feedforward process is thought to be engaged, compared to feedback after movement, which promotes more explicit processes. Due to discrepancies across studies, related to timing and type of visual feedback, we isolated these conditions here. Four groups (N = 52) practiced aiming under rotated feedback conditions; feedback was provided concurrently, immediately after movement (visually or numerically), or visually after a 3 s delay. All groups adapted and only delayed feedback attenuated implicit adaptation as evidenced by post-practice after-effects. Contrary to some suggestions, immediately presented offline and numeric feedback resulted in implicit after-effects, potentially due to comparisons between feedforward information and seen or imagined feedback.
Collapse
Affiliation(s)
- Beverley C Larssen
- School of Kinesiology, The University of British Columbia, Vancouver, Canada.,Department of Physical Therapy, The University of British Columbia, Vancouver, Canada
| | - Sarah N Kraeutner
- Department of Psychology, The University of British Columbia, Kelowna, Canada
| | - Nicola J Hodges
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Tsay JS, Kim HE, Saxena A, Parvin DE, Verstynen T, Ivry RB. Dissociable use-dependent processes for volitional goal-directed reaching. Proc Biol Sci 2022; 289:20220415. [PMID: 35473382 PMCID: PMC9043705 DOI: 10.1098/rspb.2022.0415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
Repetition of specific movement biases subsequent actions towards the practiced movement, a phenomenon known as use-dependent learning (UDL). Recent experiments that impose strict constraints on planning time have revealed two sources of use-dependent biases, one arising from dynamic changes occurring during motor planning and another reflecting a stable shift in motor execution. Here, we used a distributional analysis to examine the contribution of these biases in reaching. To create the conditions for UDL, the target appeared at a designated 'frequent' location on most trials, and at one of six 'rare' locations on other trials. Strikingly, the heading angles were bimodally distributed, with peaks at both frequent and rare target locations. Despite having no constraints on planning time, participants exhibited a robust bias towards the frequent target when movements were self-initiated quickly, the signature of a planning bias; notably, the peak near the rare target was shifted in the frequently practiced direction, the signature of an execution bias. Furthermore, these execution biases were not only replicated in a delayed-response task but were also insensitive to reward. Taken together, these results extend our understanding of how volitional movements are influenced by recent experience.
Collapse
Affiliation(s)
- Jonathan S. Tsay
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Arohi Saxena
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Darius E. Parvin
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| |
Collapse
|
24
|
Sadaphal DP, Kumar A, Mutha PK. Sensorimotor Learning in Response to Errors in Task Performance. eNeuro 2022; 9:ENEURO.0371-21.2022. [PMID: 35110383 PMCID: PMC8938978 DOI: 10.1523/eneuro.0371-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
The human sensorimotor system is sensitive to both limb-related prediction errors and task-related performance errors. Prediction error signals are believed to drive implicit refinements to motor plans. However, an understanding of the mechanisms that performance errors stimulate has remained unclear largely because their effects have not been probed in isolation from prediction errors. Diverging from past work, we induced performance errors independent of prediction errors by shifting the location of a reach target but keeping the intended and actual kinematic consequences of the motion matched. Our first two experiments revealed that rather than implicit learning, motor adjustments in response to performance errors reflect the use of deliberative, volitional strategies. Our third experiment revealed a potential dissociation of performance-error-driven strategies based on error size. Specifically, behavioral changes following large errors were consistent with goal-directed or model-based control, known to be supported by connections between prefrontal cortex and associative striatum. In contrast, motor changes following smaller performance errors carried signatures of model-free stimulus-response learning, of the kind underpinned by pathways between motor cortical areas and sensorimotor striatum. Across all experiments, we also found remarkably faster re-learning, advocating that such "savings" is associated with retrieval of previously learned strategic error compensation and may not require a history of exposure to limb-related errors.
Collapse
Affiliation(s)
- Dhwani P Sadaphal
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Adarsh Kumar
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, India
| | - Pratik K Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
25
|
Tsay JS, Haith AM, Ivry RB, Kim HE. Interactions between sensory prediction error and task error during implicit motor learning. PLoS Comput Biol 2022; 18:e1010005. [PMID: 35320276 PMCID: PMC8979451 DOI: 10.1371/journal.pcbi.1010005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/04/2022] [Accepted: 03/09/2022] [Indexed: 01/11/2023] Open
Abstract
Implicit motor recalibration allows us to flexibly move in novel and changing environments. Conventionally, implicit recalibration is thought to be driven by errors in predicting the sensory outcome of movement (i.e., sensory prediction errors). However, recent studies have shown that implicit recalibration is also influenced by errors in achieving the movement goal (i.e., task errors). Exactly how sensory prediction errors and task errors interact to drive implicit recalibration and, in particular, whether task errors alone might be sufficient to drive implicit recalibration remain unknown. To test this, we induced task errors in the absence of sensory prediction errors by displacing the target mid-movement. We found that task errors alone failed to induce implicit recalibration. In additional experiments, we simultaneously varied the size of sensory prediction errors and task errors. We found that implicit recalibration driven by sensory prediction errors could be continuously modulated by task errors, revealing an unappreciated dependency between these two sources of error. Moreover, implicit recalibration was attenuated when the target was simply flickered in its original location, even though this manipulation did not affect task error - an effect likely attributed to attention being directed away from the feedback cursor. Taken as a whole, the results were accounted for by a computational model in which sensory prediction errors and task errors, modulated by attention, interact to determine the extent of implicit recalibration.
Collapse
Affiliation(s)
- Jonathan S. Tsay
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Adrian M. Haith
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
26
|
Albert ST, Jang J, Modchalingam S, 't Hart BM, Henriques D, Lerner G, Della-Maggiore V, Haith AM, Krakauer JW, Shadmehr R. Competition between parallel sensorimotor learning systems. eLife 2022; 11:e65361. [PMID: 35225229 PMCID: PMC9068222 DOI: 10.7554/elife.65361] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor learning is supported by at least two parallel systems: a strategic process that benefits from explicit knowledge and an implicit process that adapts subconsciously. How do these systems interact? Does one system's contributions suppress the other, or do they operate independently? Here, we illustrate that during reaching, implicit and explicit systems both learn from visual target errors. This shared error leads to competition such that an increase in the explicit system's response siphons away resources that are needed for implicit adaptation, thus reducing its learning. As a result, steady-state implicit learning can vary across experimental conditions, due to changes in strategy. Furthermore, strategies can mask changes in implicit learning properties, such as its error sensitivity. These ideas, however, become more complex in conditions where subjects adapt using multiple visual landmarks, a situation which introduces learning from sensory prediction errors in addition to target errors. These two types of implicit errors can oppose each other, leading to another type of competition. Thus, during sensorimotor adaptation, implicit and explicit learning systems compete for a common resource: error.
Collapse
Affiliation(s)
- Scott T Albert
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Jihoon Jang
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
- Vanderbilt University School of MedicineNashvilleUnited States
| | | | | | - Denise Henriques
- Department of Kinesiology and Health Science, York UniversityTorontoCanada
| | - Gonzalo Lerner
- IFIBIO Houssay, Deparamento de Fisiología y Biofísia, Facultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Deparamento de Fisiología y Biofísia, Facultad de Medicina, Universidad de Buenos AiresBuenos AiresArgentina
| | - Adrian M Haith
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
27
|
McDougle SD, Wilterson SA, Turk-Browne NB, Taylor JA. Revisiting the Role of the Medial Temporal Lobe in Motor Learning. J Cogn Neurosci 2022; 34:532-549. [PMID: 34942649 PMCID: PMC8832157 DOI: 10.1162/jocn_a_01809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Classic taxonomies of memory distinguish explicit and implicit memory systems, placing motor skills squarely in the latter branch. This assertion is in part a consequence of foundational discoveries showing significant motor learning in amnesics. Those findings suggest that declarative memory processes in the medial temporal lobe (MTL) do not contribute to motor learning. Here, we revisit this issue, testing an individual (L. S. J.) with severe MTL damage on four motor learning tasks and comparing her performance to age-matched controls. Consistent with previous findings in amnesics, we observed that L. S. J. could improve motor performance despite having significantly impaired declarative memory. However, she tended to perform poorly relative to age-matched controls, with deficits apparently related to flexible action selection. Further supporting an action selection deficit, L. S. J. fully failed to learn a task that required the acquisition of arbitrary action-outcome associations. We thus propose a modest revision to the classic taxonomic model: Although MTL-dependent memory processes are not necessary for some motor learning to occur, they play a significant role in the acquisition, implementation, and retrieval of action selection strategies. These findings have implications for our understanding of the neural correlates of motor learning, the psychological mechanisms of skill, and the theory of multiple memory systems.
Collapse
|
28
|
Therrien AS, Wong AL. Mechanisms of Human Motor Learning Do Not Function Independently. Front Hum Neurosci 2022; 15:785992. [PMID: 35058767 PMCID: PMC8764186 DOI: 10.3389/fnhum.2021.785992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human motor learning is governed by a suite of interacting mechanisms each one of which modifies behavior in distinct ways and rely on different neural circuits. In recent years, much attention has been given to one type of motor learning, called motor adaptation. Here, the field has generally focused on the interactions of three mechanisms: sensory prediction error SPE-driven, explicit (strategy-based), and reinforcement learning. Studies of these mechanisms have largely treated them as modular, aiming to model how the outputs of each are combined in the production of overt behavior. However, when examined closely the results of some studies also suggest the existence of additional interactions between the sub-components of each learning mechanism. In this perspective, we propose that these sub-component interactions represent a critical means through which different motor learning mechanisms are combined to produce movement; understanding such interactions is critical to advancing our knowledge of how humans learn new behaviors. We review current literature studying interactions between SPE-driven, explicit, and reinforcement mechanisms of motor learning. We then present evidence of sub-component interactions between SPE-driven and reinforcement learning as well as between SPE-driven and explicit learning from studies of people with cerebellar degeneration. Finally, we discuss the implications of interactions between learning mechanism sub-components for future research in human motor learning.
Collapse
|
29
|
Listman JB, Tsay JS, Kim HE, Mackey WE, Heeger DJ. Long-Term Motor Learning in the "Wild" With High Volume Video Game Data. Front Hum Neurosci 2021; 15:777779. [PMID: 34987368 PMCID: PMC8720934 DOI: 10.3389/fnhum.2021.777779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Motor learning occurs over long periods of practice during which motor acuity, the ability to execute actions more accurately, precisely, and in less time, improves. Laboratory-based studies of motor learning are typically limited to a small number of participants and a time frame of minutes to several hours per participant. There is a need to assess the generalizability of theories and findings from lab-based motor learning studies on larger samples and time scales. In addition, laboratory-based studies of motor learning use relatively simple motor tasks which participants are unlikely to be intrinsically motivated to learn, limiting the interpretation of their findings in more ecologically valid settings ("in the wild"). We studied the acquisition and longitudinal refinement of a complex sensorimotor skill embodied in a first-person shooter video game scenario, with a large sample size (N = 7174, 682,564 repeats of the 60 s game) over a period of months. Participants voluntarily practiced the gaming scenario for up to several hours per day up to 100 days. We found improvement in performance accuracy (quantified as hit rate) was modest over time but motor acuity (quantified as hits per second) improved considerably, with 40-60% retention from 1 day to the next. We observed steady improvements in motor acuity across multiple days of video game practice, unlike most motor learning tasks studied in the lab that hit a performance ceiling rather quickly. Learning rate was a non-linear function of baseline performance level, amount of daily practice, and to a lesser extent, number of days between practice sessions. In addition, we found that the benefit of additional practice on any given day was non-monotonic; the greatest improvements in motor acuity were evident with about an hour of practice and 90% of the learning benefit was achieved by practicing 30 min per day. Taken together, these results provide a proof-of-concept in studying motor skill acquisition outside the confines of the traditional laboratory, in the presence of unmeasured confounds, and provide new insights into how a complex motor skill is acquired in an ecologically valid setting and refined across much longer time scales than typically explored.
Collapse
Affiliation(s)
| | - Jonathan S. Tsay
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | | | | |
Collapse
|
30
|
Moore RT, Cluff T. Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Front Hum Neurosci 2021; 15:692181. [PMID: 34916916 PMCID: PMC8669441 DOI: 10.3389/fnhum.2021.692181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor adaptation enables the nervous system to modify actions for different conditions and environments. Many studies have investigated factors that influence adaptation at the group level. There is growing recognition that individuals vary in their ability to adapt motor skills and that a better understanding of individual differences in adaptation may inform how motor skills are taught and rehabilitated. Here we examined individual differences in the adaptation of upper-limb reaching movements. We quantified the extent to which participants adapted their movements to a velocity-dependent force field during an initial session, at 24 h, and again 1-week later. Participants (n = 28) displayed savings, which was expressed as greater initial adaptation when re-exposed to the force field. Individual differences in adaptation across various stages of the experiment displayed weak-strong reliability, such that individuals who adapted to a greater extent in the initial session tended to do so when re-exposed to the force field. Our second experiment investigated if individual differences in adaptation are also present when participants adapt to different force fields or a force field and visuomotor rotation. Separate groups of participants adapted to position- and velocity-dependent force fields (Experiment 2a; n = 20) or a velocity-dependent force field and visuomotor rotation in a single session (Experiment 2b; n = 20). Participants who adapted to a greater extent to velocity-dependent forces tended to show a greater extent of adaptation when exposed to position-dependent forces. In contrast, correlations were weak between various stages of adaptation to the force-field and visuomotor rotation. Collectively, our study reveals individual differences in adaptation that are reliable across repeated exposure to the same force field and present when adapting to different force fields.
Collapse
Affiliation(s)
- Robert T Moore
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Wang T, Taylor JA. Implicit adaptation to mirror reversal is in the correct coordinate system but the wrong direction. J Neurophysiol 2021; 126:1478-1489. [PMID: 34614369 PMCID: PMC8782646 DOI: 10.1152/jn.00304.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022] Open
Abstract
Learning in visuomotor adaptation tasks is the result of both explicit and implicit processes. Explicit processes, operationalized as reaiming an intended movement to a new goal, account for a significant proportion of learning. However, implicit processes, operationalized as error-dependent learning that gives rise to aftereffects, appear to be highly constrained. The limitations of implicit learning are highlighted in the mirror-reversal task, where implicit corrections act in opposition to performance. This is surprising given the mirror-reversal task has been viewed as emblematic of implicit learning. One potential issue not being considered in these studies is that both explicit and implicit processes were allowed to operate concurrently, which may interact, potentially in opposition. Therefore, we sought to further characterize implicit learning in a mirror-reversal task with a clamp design to isolate implicit learning from explicit strategies. We confirmed that implicit adaptation is in the wrong direction for mirror reversal and operates as if the perturbation were a rotation and only showed a moderate attenuation after 3 days of training. This result raised the question of whether implicit adaptation blindly operates as though perturbations were a rotation. In a separate experiment, which directly compared a mirror reversal and a rotation, we found that implicit adaptation operates in a proper coordinate system for different perturbations: adaptation to a mirror reversal and rotational perturbation is more consistent with Cartesian and polar coordinate systems, respectively. It remains an open question why implicit process would be flexible to the coordinate system of a perturbation but continue to be directed inappropriately.NEW & NOTEWORTHY Recent studies have found that implicit learning may operate inappropriately in some motor tasks, requiring explicit strategies to improve performance. However, this inappropriate adaptation could be attributable to competitive interactions between explicit and implicit processes. After isolating implicit processes, we found that implicit adaptation remained in the wrong direction for a mirror reversal, acting as if it were a rotation. Interestingly, however, the implicit system is sensitive to a particular coordinate system, treating mirror reversal and rotation differently.
Collapse
Affiliation(s)
- Tianhe Wang
- Department of Psychology, University of California, Berkeley, California
| | - Jordan A Taylor
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
32
|
Hamel R, De La Fontaine É, Lepage JF, Bernier PM. Punishments and rewards both modestly impair visuomotor memory retention. Neurobiol Learn Mem 2021; 185:107532. [PMID: 34592470 DOI: 10.1016/j.nlm.2021.107532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023]
Abstract
While the effects of rewards on memory appear well documented, the effects of punishments remain uncertain. Based on neuroimaging data, this study tested the hypothesis that, as compared to a neutral condition, a context allowing successful punishment avoidance would enhance memory to a similar extent as rewards. In a fully within-subject and counter-balanced design, participants (n = 18) took part in 3 distinct learning sessions during which the delivery of performance-contingent monetary punishments and rewards was manipulated. Specifically, participants had to reach towards visual targets while compensating for a gradually introduced visual deviation. Accuracy at achieving targets was either punished (Hit: "+0$"; Miss: "-0.5$), rewarded (Hit: "+0.5$"; Miss: "-0$"), or associated with neutral binary feedback (Hit: "Hit"; Miss: "Miss"). Retention was assessed through reach aftereffects both immediately and 24 h after initial acquisition. The results disconfirmed the hypothesis by showing that the punishment and reward learning sessions both impaired retention as compared to the neutral session, suggesting that both types of incentives similarly impaired memory formation and consolidation. Two alternative but complementary interpretations are discussed. One interpretation is that the presence of punishments and rewards induced a negative learning context, which - based on neurobiological data - could have been sufficient to interfere with memory formation and consolidation. Another interpretation is that punishments and rewards emphasized the disrupting effects of target hits on implicit learning processes, therefore yielding retention impairments. Altogether, these results suggest that incentives can have counter-productive effects on memory.
Collapse
Affiliation(s)
- R Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Canada; Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Canada
| | - É De La Fontaine
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Canada
| | - J F Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Canada
| | - P M Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Canada.
| |
Collapse
|
33
|
Mackay CP, Brauer SG, Kuys SS, Schaumberg MA, Leow LA. The acute effects of aerobic exercise on sensorimotor adaptation in chronic stroke. Restor Neurol Neurosci 2021; 39:367-377. [PMID: 34569981 PMCID: PMC8673548 DOI: 10.3233/rnn-211175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Sensorimotor adaptation, or the capacity to adapt movement to changes in the moving body or environment, is a form of motor learning that is important for functional independence (e.g., regaining stability after slips or trips). Aerobic exercise can acutely improve many forms of motor learning in healthy adults. It is not known, however, whether acute aerobic exercise has similar positive effects on sensorimotor adaptation in stroke survivors as it does in healthy individuals. Objective: The aim of this study was to determine whether acute aerobic exercise promotes sensorimotor adaptation in people post stroke. Methods: A single-blinded crossover study. Participants attended two separate sessions, completing an aerobic exercise intervention in one session and a resting control condition in the other session. Sensorimotor adaptation was assessed before and after each session, as was brain derived neurotrophic factor. Twenty participants with chronic stroke completed treadmill exercise at moderate to high intensity for 30 minutes. Results: Acute aerobic exercise in chronic stroke survivors significantly increased sensorimotor adaptation from pre to post treadmill intervention. The 30-minute treadmill intervention resulted in an averaged 2.99 ng/ml increase in BDNF levels (BDNF pre-treadmill = 22.31 + /–2.85 ng/ml, post-treadmill was = 25.31 + /–2.46 pg/ml; t(16) = 2.146, p = 0.048, cohen’s d = 0.521, moderate effect size). Conclusions: These results indicate a potential role for aerobic exercise to promote the recovery of sensorimotor function in chronic stroke survivors.
Collapse
Affiliation(s)
- Christopher P Mackay
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Sandra G Brauer
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Suzanne S Kuys
- Australian Catholic University, School of Allied Health, Brisbane, Queensland, Australia
| | - Mia A Schaumberg
- University of the Sunshine Coast, School of Health and Sport Sciences, Maroochydore, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,The University of Queensland, School of Human Movement and Nutrition Science, Brisbane, Queensland, Australia
| | - Li-Ann Leow
- The University of Queensland, School of Human Movement and Nutrition Science, Brisbane, Queensland, Australia.,The University of Queensland, School of Psychology, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Implicit Visuomotor Adaptation Remains Limited after Several Days of Training. eNeuro 2021; 8:ENEURO.0312-20.2021. [PMID: 34301722 PMCID: PMC8362683 DOI: 10.1523/eneuro.0312-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Learning in sensorimotor adaptation tasks has been viewed as an implicit learning phenomenon. The implicit process affords recalibration of existing motor skills so that the system can adjust to changes in the body or environment without relearning from scratch. However, recent findings suggest that the implicit process is heavily constrained, calling into question its utility in motor learning and the theoretical framework of sensorimotor adaptation paradigms. These inferences have been based mainly on results from single bouts of training, where explicit compensation strategies, such as explicitly re-aiming the intended movement direction, contribute a significant proportion of adaptive learning. It is possible, however, that the implicit process supersedes explicit compensation strategies over repeated practice sessions. We tested this by dissociating the contributions of explicit re-aiming strategies and the implicit process in human participants over five consecutive days of training. Despite a substantially longer duration of training, the implicit process still plateaued at a value far short of complete learning and, as has been observed in previous studies, was inappropriate for a mirror-reversal task. Notably, we find significant between subject differences that call into question traditional interpretation of these group-level results.
Collapse
|
35
|
Vassiliadis P, Derosiere G, Dubuc C, Lete A, Crevecoeur F, Hummel FC, Duque J. Reward boosts reinforcement-based motor learning. iScience 2021; 24:102821. [PMID: 34345810 PMCID: PMC8319366 DOI: 10.1016/j.isci.2021.102821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants. Reward improved motor skill learning beyond performance-based reinforcement feedback. Importantly, the beneficial effect of reward involved a specific potentiation of reinforcement-related adjustments in motor commands, which concerned primarily the most relevant motor component for task success and persisted on the following day in the absence of reward. We propose that the long-lasting effects of motivation on motor learning may entail a form of associative learning resulting from the repetitive pairing of the reinforcement feedback and reward during training, a mechanism that may be exploited in future rehabilitation protocols.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva 1202, Switzerland
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Cecile Dubuc
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Aegryan Lete
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Frederic Crevecoeur
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Friedhelm C. Hummel
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva 1202, Switzerland
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Sion (EPFL), Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School (HUG), Geneva 1202, Switzerland
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| |
Collapse
|
36
|
Leow LA, Tresilian JR, Uchida A, Koester D, Spingler T, Riek S, Marinovic W. Acoustic stimulation increases implicit adaptation in sensorimotor adaptation. Eur J Neurosci 2021; 54:5047-5062. [PMID: 34021941 DOI: 10.1111/ejn.15317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Sensorimotor adaptation is an important part of our ability to perform novel motor tasks (i.e., learning of motor skills). Efforts to improve adaptation in healthy and clinical patients using non-invasive brain stimulation methods have been hindered by inter-individual and intra-individual variability in brain susceptibility to stimulation. Here, we explore unpredictable loud acoustic stimulation as an alternative method of modulating brain excitability to improve sensorimotor adaptation. In two experiments, participants moved a cursor towards targets, and adapted to a 30º rotation of cursor feedback, either with or without unpredictable acoustic stimulation. Acoustic stimulation improved initial adaptation to sensory prediction errors in Study 1, and improved overnight retention of adaptation in Study 2. Unpredictable loud acoustic stimulation might thus be a potent method of modulating sensorimotor adaptation in healthy adults.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Aya Uchida
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Dirk Koester
- BSP Business School Berlin, Berlin, Germany.,Department of Sport Science, Bielefeld University, Bielefeld, Germany
| | - Tamara Spingler
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Riek
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.,Graduate Research School, University of Sunshine Coast, Sippy Downs, Australia
| | | |
Collapse
|
37
|
Palidis DJ, McGregor HR, Vo A, MacDonald PA, Gribble PL. Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference. J Neurophysiol 2021; 126:47-67. [PMID: 34038228 DOI: 10.1152/jn.00696.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on the reinforcement of rewarding actions. In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual error-based feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes. In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field or interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa. These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms that have been shown to be disrupted by levodopa during various cognitive tasks.NEW & NOTEWORTHY Motor adaptation relies on multiple processes including reinforcement of successful actions. Cognitive reinforcement learning is impaired by levodopa-induced disruption of dopamine function. We administered levodopa to healthy adults who participated in multiple motor adaptation tasks. We found no effects of levodopa on any component of motor adaptation. This suggests that motor adaptation may not depend on the same dopaminergic mechanisms as cognitive forms or reinforcement learning that have been shown to be impaired by levodopa.
Collapse
Affiliation(s)
- Dimitrios J Palidis
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrew Vo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
38
|
Hadjiosif AM, Krakauer JW, Haith AM. Did We Get Sensorimotor Adaptation Wrong? Implicit Adaptation as Direct Policy Updating Rather than Forward-Model-Based Learning. J Neurosci 2021; 41:2747-2761. [PMID: 33558432 PMCID: PMC8018745 DOI: 10.1523/jneurosci.2125-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The human motor system can rapidly adapt its motor output in response to errors. The prevailing theory of this process posits that the motor system adapts an internal forward model that predicts the consequences of outgoing motor commands and uses this forward model to plan future movements. However, despite clear evidence that adaptive forward models exist and are used to help track the state of the body, there is no definitive evidence that such models are used in movement planning. An alternative to the forward-model-based theory of adaptation is that movements are generated based on a learned policy that is adjusted over time by movement errors directly ("direct policy learning"). This learning mechanism could act in parallel with, but independent of, any updates to a predictive forward model. Forward-model-based learning and direct policy learning generate very similar predictions about behavior in conventional adaptation paradigms. However, across three experiments with human participants (N = 47, 26 female), we show that these mechanisms can be dissociated based on the properties of implicit adaptation under mirror-reversed visual feedback. Although mirror reversal is an extreme perturbation, it still elicits implicit adaptation; however, this adaptation acts to amplify rather than to reduce errors. We show that the pattern of this adaptation over time and across targets is consistent with direct policy learning but not forward-model-based learning. Our findings suggest that the forward-model-based theory of adaptation needs to be re-examined and that direct policy learning provides a more plausible explanation of implicit adaptation.SIGNIFICANCE STATEMENT The ability of our brain to adapt movements in response to error is one of the most widely studied phenomena in motor learning. Yet, we still do not know the process by which errors eventually result in adaptation. It is known that the brain maintains and updates an internal forward model, which predicts the consequences of motor commands, and the prevailing theory of motor adaptation posits that this updated forward model is responsible for trial-by-trial adaptive changes. Here, we question this view and show instead that adaptation is better explained by a simpler process whereby motor output is directly adjusted by task errors. Our findings cast doubt on long-held beliefs about adaptation.
Collapse
Affiliation(s)
| | - John W Krakauer
- Department of Neurology
- Department of Neuroscience
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Santa Fe Institute, Santa Fe, New Mexico 87501
| | | |
Collapse
|
39
|
Avraham G, Morehead JR, Kim HE, Ivry RB. Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biol 2021; 19:e3001147. [PMID: 33667219 PMCID: PMC7968744 DOI: 10.1371/journal.pbio.3001147] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/17/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to the explicit recall of the task structure and appropriate compensatory strategies. Whether implicit adaptation also contributes to savings remains subject to debate. We tackled this question by measuring, in parallel, explicit and implicit adaptive responses in a visuomotor rotation task, employing a protocol that typically elicits savings. While the initial rate of learning was faster in the second exposure to the perturbation, an analysis decomposing the 2 processes showed the benefit to be solely associated with explicit re-aiming. Surprisingly, we found a significant decrease after relearning in aftereffect magnitudes during no-feedback trials, a direct measure of implicit adaptation. In a second experiment, we isolated implicit adaptation using clamped visual feedback, a method known to eliminate the contribution of explicit learning processes. Consistent with the results of the first experiment, participants exhibited a marked reduction in the adaptation function, as well as an attenuated aftereffect when relearning from the clamped feedback. Motivated by these results, we reanalyzed data from prior studies and observed a consistent, yet unappreciated pattern of attenuation of implicit adaptation during relearning. These results indicate that explicit and implicit sensorimotor processes exhibit opposite effects upon relearning: Explicit learning shows savings, while implicit adaptation becomes attenuated.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - J. Ryan Morehead
- School of Psychology, University of Leeds, Leeds, United Kingdom
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
40
|
Ruttle JE, 't Hart BM, Henriques DYP. Implicit motor learning within three trials. Sci Rep 2021; 11:1627. [PMID: 33452363 PMCID: PMC7810862 DOI: 10.1038/s41598-021-81031-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
In motor learning, the slow development of implicit learning is traditionally taken for granted. While much is known about training performance during adaptation to a perturbation in reaches, saccades and locomotion, little is known about the time course of the underlying implicit processes during normal motor adaptation. Implicit learning is characterized by both changes in internal models and state estimates of limb position. Here, we measure both as reach aftereffects and shifts in hand localization in our participants, after every training trial. The observed implicit changes were near asymptote after only one to three perturbed training trials and were not predicted by a two-rate model's slow process that is supposed to capture implicit learning. Hence, we show that implicit learning is much faster than conventionally believed, which has implications for rehabilitation and skills training.
Collapse
Affiliation(s)
- Jennifer E Ruttle
- Centre for Vision Research, York University, Toronto, Canada. .,Department of Psychology, York University, Toronto, Canada.
| | - Bernard Marius 't Hart
- Centre for Vision Research, York University, Toronto, Canada.,School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Denise Y P Henriques
- Centre for Vision Research, York University, Toronto, Canada.,Department of Psychology, York University, Toronto, Canada.,School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
41
|
Task Feedback Processing Differs Between Young and Older Adults in Visuomotor Rotation Learning Despite Similar Initial Adaptation and Savings. Neuroscience 2020; 451:79-98. [PMID: 33002556 DOI: 10.1016/j.neuroscience.2020.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
Ageing has been suggested to affect sensorimotor adaptation by impairing explicit strategy use. Here we recorded electrophysiological (EEG) responses during visuomotor rotation in both young (n = 24) and older adults (n = 25), to investigate the neural processes that underpin putative age-related effects on adaptation. We measured the feedback related negativity (FRN) and the P3 in response to task-feedback, as electrophysiological markers of task error processing and outcome evaluation. The two age groups adapted similarly and showed comparable after effects and savings when re-exposed to the same perturbation several days after the initial session. Older adults, however, had less distinct EEG responses (i.e., reduced FRN amplitudes) to negative and positive task feedback. The P3 did not differ between age groups. Both young and older adults also showed a sustained late positivity following task feedback. Measured at the frontal electrode Fz, this sustained activity was negatively associated with both the amount of voluntary disengagement of explicit strategy and savings. In conclusion, despite preserved task performance, we find clear differences in neural responses to errors in older people, which suggests that there is a fundamental decline in this aspect of sensorimotor brain function with age.
Collapse
|
42
|
Kim HE, Avraham G, Ivry RB. The Psychology of Reaching: Action Selection, Movement Implementation, and Sensorimotor Learning. Annu Rev Psychol 2020; 72:61-95. [PMID: 32976728 DOI: 10.1146/annurev-psych-010419-051053] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of motor planning and learning in humans has undergone a dramatic transformation in the 20 years since this journal's last review of this topic. The behavioral analysis of movement, the foundational approach for psychology, has been complemented by ideas from control theory, computer science, statistics, and, most notably, neuroscience. The result of this interdisciplinary approach has been a focus on the computational level of analysis, leading to the development of mechanistic models at the psychological level to explain how humans plan, execute, and consolidate skilled reaching movements. This review emphasizes new perspectives on action selection and motor planning, research that stands in contrast to the previously dominant representation-based perspective of motor programming, as well as an emerging literature highlighting the convergent operation of multiple processes in sensorimotor learning.
Collapse
Affiliation(s)
- Hyosub E Kim
- Departments of Physical Therapy, Psychological and Brain Sciences, and Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Guy Avraham
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA;
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
43
|
Task Errors Drive Memories That Improve Sensorimotor Adaptation. J Neurosci 2020; 40:3075-3088. [PMID: 32029533 DOI: 10.1523/jneurosci.1506-19.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
Traditional views of sensorimotor adaptation (i.e., adaptation of movements to perturbed sensory feedback) emphasize the role of automatic, implicit correction of sensory prediction errors. However, latent memories formed during sensorimotor adaptation, manifest as improved relearning (e.g., savings), have recently been attributed to strategic corrections of task errors (failures to achieve task goals). To dissociate contributions of task errors and sensory prediction errors to latent sensorimotor memories, we perturbed target locations to remove or enforce task errors during learning and/or test, with male/female human participants. Adaptation improved after learning in all conditions where participants were permitted to correct task errors, and did not improve whenever we prevented correction of task errors. Thus, previous correction of task errors was both necessary and sufficient to improve adaptation. In contrast, a history of sensory prediction errors was neither sufficient nor obligatory for improved adaptation. Limiting movement preparation time showed that the latent memories driven by learning to correct task errors take at least two forms: a time-consuming but flexible component, and a rapidly expressible, inflexible component. The results provide strong support for the idea that movement corrections driven by a failure to successfully achieve movement goals underpin motor memories that manifest as savings. Such persistent memories are not exclusively mediated by time-consuming strategic processes but also comprise a rapidly expressible but inflexible component. The distinct characteristics of these putative processes suggest dissociable underlying mechanisms, and imply that identification of the neural basis for adaptation and savings will require methods that allow such dissociations.SIGNIFICANCE STATEMENT Latent motor memories formed during sensorimotor adaptation manifest as improved adaptation when sensorimotor perturbations are reencountered. Conflicting theories suggest that this "savings" is underpinned by different mechanisms, including a memory of successful actions, a memory of errors, or an aiming strategy to correct task errors. Here we show that learning to correct task errors is sufficient to show improved subsequent adaptation with respect to naive performance, even when tested in the absence of task errors. In contrast, a history of sensory prediction errors is neither sufficient nor obligatory for improved adaptation. Finally, we show that latent sensorimotor memories driven by task errors comprise at least two distinct components: a time-consuming, flexible component, and a rapidly expressible, inflexible component.
Collapse
|
44
|
Avraham G, Keizman M, Shmuelof L. Environmental consistency modulation of error sensitivity during motor adaptation is explicitly controlled. J Neurophysiol 2019; 123:57-69. [PMID: 31721646 DOI: 10.1152/jn.00080.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor adaptation, the adjustment of a motor output in face of changes in the environment, may operate at different rates. When human participants encounter repeated or consistent perturbations, their corrections for the experienced errors are larger compared with when the perturbations are new or inconsistent. Such modulations of error sensitivity were traditionally considered to be an implicit process that does not require attentional resources. In recent years, the implicit view of motor adaptation has been challenged by evidence showing a contribution of explicit strategies to learning. These findings raise a fundamental question regarding the nature of the error sensitivity modulation processes. We tested the effect of explicit control on error sensitivity in a series of experiments, in which participants controlled a screen cursor to virtual targets. We manipulated environmental consistency by presenting rotations in random (low consistency) or random walk (high consistency) sequences and illustrated that perturbation consistency affects the rate of adaptation, corroborating previous studies. When participants were instructed to ignore the cursor and move directly to the target, thus eliminating the contribution of explicit strategies, consistency-driven error sensitivity modulation was not detected. In addition, delaying the visual feedback, a manipulation that affects implicit learning, did not influence error sensitivity under consistent perturbations. These results suggest that increases of learning rate in consistent environments are attributable to an explicit rather than implicit process in sensorimotor adaptation.NEW & NOTEWORTHY The consistency of an external perturbation modulates error sensitivity and the motor response. The roles of explicit and implicit processes in this modulation are unknown. We show that when humans are asked to ignore the perturbation, they do not show increased error sensitivity in consistent environments. When the implicit system is manipulated by delaying feedback, sensitivity to a consistent perturbation does not change. Overall, our results suggest that consistency affects adaptation mainly through explicit control.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Matan Keizman
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Lior Shmuelof
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
45
|
van Vugt FT, Ostry DJ. Early stages of sensorimotor map acquisition: learning with free exploration, without active movement or global structure. J Neurophysiol 2019; 122:1708-1720. [PMID: 31433958 PMCID: PMC6843110 DOI: 10.1152/jn.00429.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022] Open
Abstract
One of the puzzles of learning to talk or play a musical instrument is how we learn which movement produces a particular sound: an audiomotor map. The initial stages of map acquisition can be studied by having participants learn arm movements to auditory targets. The key question is what mechanism drives this early learning. Three learning processes from previous literature were tested: map learning may rely on active motor outflow (target), on error correction, and on the correspondence between sensory and motor distances (i.e., that similar movements map to similar sounds). Alternatively, we hypothesized that map learning can proceed without these. Participants made movements that were mapped to sounds in a number of different conditions that each precluded one of the potential learning processes. We tested whether map learning relies on assumptions about topological continuity by exposing participants to a permuted map that did not preserve distances in auditory and motor space. Further groups were tested who passively experienced the targets, kinematic trajectories produced by a robot arm, and auditory feedback as a yoked active participant (hence without active motor outflow). Another group made movements without receiving targets (thus without experiencing errors). In each case we observed substantial learning, therefore none of the three hypothesized processes is required for learning. Instead early map acquisition can occur with free exploration without target error correction, is based on sensory-to-sensory correspondences, and possible even for discontinuous maps. The findings are consistent with the idea that early sensorimotor map formation can involve instance-specific learning.NEW & NOTEWORTHY This study tested learning of novel sensorimotor maps in a variety of unusual circumstances, including learning a mapping that was permuted in such as way that it fragmented the sensorimotor workspace into discontinuous parts, thus not preserving sensory and motor topology. Participants could learn this mapping, and they could learn without motor outflow or targets. These results point to a robust learning mechanism building on individual instances, inspired from machine learning literature.
Collapse
Affiliation(s)
- F. T. van Vugt
- Psychology Department, McGill University, Montreal, Canada
- Haskins Laboratories, New Haven, Connecticut
| | - D. J. Ostry
- Psychology Department, McGill University, Montreal, Canada
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
46
|
Kim HE, Parvin DE, Ivry RB. The influence of task outcome on implicit motor learning. eLife 2019; 8:e39882. [PMID: 31033439 PMCID: PMC6488295 DOI: 10.7554/elife.39882] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Recent studies have demonstrated that task success signals can modulate learning during sensorimotor adaptation tasks, primarily through engaging explicit processes. Here, we examine the influence of task outcome on implicit adaptation, using a reaching task in which adaptation is induced by feedback that is not contingent on actual performance. We imposed an invariant perturbation (rotation) on the feedback cursor while varying the target size. In this way, the cursor either hit or missed the target, with the former producing a marked attenuation of implicit motor learning. We explored different computational architectures that might account for how task outcome information interacts with implicit adaptation. The results fail to support an architecture in which adaptation operates in parallel with a model-free operant reinforcement process. Rather, task outcome may serve as a gain on implicit adaptation or provide a distinct error signal for a second, independent implicit learning process. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Hyosub E Kim
- Department of PsychologyUniversity of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Physical TherapyUniversity of DelawareNewarkUnited States
- Department of Psychological and Brain SciencesUniversity of DelawareNewarkUnited States
| | - Darius E Parvin
- Department of PsychologyUniversity of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of PsychologyUniversity of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
47
|
Hutter SA, Taylor JA. Relative sensitivity of explicit reaiming and implicit motor adaptation. J Neurophysiol 2018; 120:2640-2648. [PMID: 30207865 PMCID: PMC6295523 DOI: 10.1152/jn.00283.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022] Open
Abstract
It has become increasingly clear that learning in visuomotor rotation tasks, which induce an angular mismatch between movements of the hand and visual feedback, largely results from the combined effort of two distinct processes: implicit motor adaptation and explicit reaiming. However, it remains unclear how these two processes work together to produce trial-by-trial learning. Previous work has found that implicit motor adaptation operates automatically, regardless of task relevance, and saturates for large errors. In contrast, little is known about the automaticity of explicit reaiming and its sensitivity to error magnitude. Here we sought to characterize the automaticity and sensitivity function of these two processes to determine how they work together to facilitate performance in a visuomotor rotation task. We found that implicit adaptation scales relative to the visual error but only for small perturbations-replicating prior work. In contrast, explicit reaiming scales linearly for all tested perturbation sizes. Furthermore, the consistency of the perturbation appears to diminish both implicit adaptation and explicit reaiming, but to different degrees. Whereas implicit adaptation always displayed a response to the error, explicit reaiming was only engaged when errors displayed a minimal degree of consistency. This comports with the idea that implicit adaptation is obligatory and less flexible, whereas explicit reaiming is volitional and flexible. NEW & NOTEWORTHY This paper provides the first psychometric sensitivity function for explicit reaiming. Additionally, we show that the sensitivities of both implicit adaptation and explicit reaiming are influenced by consistency of errors. The pattern of results across two experiments further supports the idea that implicit adaptation is largely inflexible, whereas explicit reaiming is flexible and can be suppressed when unnecessary.
Collapse
Affiliation(s)
- Sarah A Hutter
- Department of Psychology, Princeton University , Princeton, New Jersey
- Princeton Neuroscience Institute, Princeton University , Princeton, New Jersey
| | - Jordan A Taylor
- Department of Psychology, Princeton University , Princeton, New Jersey
- Princeton Neuroscience Institute, Princeton University , Princeton, New Jersey
| |
Collapse
|