1
|
Zhang S, Li P, Feng Q, Shen R, Zhou H, Zhao Z. Using individualized structural covariance networks to analyze the heterogeneity of cerebral small vessel disease with cognitive impairment. J Stroke Cerebrovasc Dis 2024; 33:107829. [PMID: 38901472 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) includes vascular disorders characterized by heterogeneous pathomechanisms and different neuropathological clinical manifestations. Cognitive dysfunction in CSVD is associated with reductions in structural covariance networks (SCNs). A majority of research conducted on SCNs focused on group-level analysis. However, it is crucial to investigate the individualized variations in order to gain a better understanding of heterogeneous disorders such as CSVD. Therefore, this study aimed to utilize individualized differential structural covariance network (IDSCN) analysis to detect individualized structural covariance aberration. METHODS A total of 35 healthy controls and 33 CSVD patients with cognitive impairment participated in this investigation. Using the regional gray matter volume in their T1 images, the IDSCN was constructed for each participant. Finally, the differential structural covariance edges between the two groups were determined by comparing their IDSCN using paired-sample t-tests. On the basis of these differential edges, the two subtypes of cognitively impaired CSVD patients were identified. RESULTS The findings revealed that the differential structural covariance edges in CSVD patients with cognitive impairment showed a highly heterogeneous distribution, with the edges primarily cross-distributed between the occipital lobe (specifically inferior occipital gyrus and cuneus), temporal lobe (specifically superior temporal gyrus), and the cerebellum. To varying degrees, the inferior frontal gyrus and the superior parietal gyrus were also distributed. Subsequently, a correlation analysis was performed between the resulting differential edges and the cognitive scale scores. A significant negative association was observed between the cognitive scores and the differential edges distributed in the inferior frontal gyrus and inferior occipital gyrus, the superior temporal gyrus and inferior occipital gyrus, and within the temporal lobe. Particularly in the cognitive domain of attention, the two subtypes separated by differential edges exhibited differences in cognitive scale scores [Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)]. The differential edges of the subtype 1, characterized by lower cognitive level, were mainly cross-distributed in the limbic lobe (specifically the cingulate gyrus and hippocampus), the parietal lobe (including the superior parietal gyrus and precuneus), and the cerebellum. In contrast, the differential edges of the subtype 2 with a relatively high level of cognition were distributed between the cuneus and the cerebellum. CONCLUSIONS The differential structural covariance was investigated between the healthy controls and the CSVD patients with cognitive impairment, showing that differential structural covariance existed between the two groups. The edge distributions in certain parts of the brain, such as cerebellum and occipital and temporal lobes, verified this. Significant associations were seen between cognitive scale scores and some of those differential edges .The two subtypes that differed in both differential edges and cognitive levels were also identified. The differential edges of subtype 1 with relatively lower cognitive levels were more distributed in the cingulate gyrus, hippocampus, superior parietal gyrus, and precuneus. This could potentially offer significant benefits in terms of accurate diagnosis and targeted treatment of heterogeneous disorders such as CSVD.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Ping Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Rong Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
2
|
Menardi A, Spoa M, Vallesi A. Brain topology underlying executive functions across the lifespan: focus on the default mode network. Front Psychol 2024; 15:1441584. [PMID: 39295768 PMCID: PMC11408365 DOI: 10.3389/fpsyg.2024.1441584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction While traditional neuroimaging approaches to the study of executive functions (EFs) have typically employed task-evoked paradigms, resting state studies are gaining popularity as a tool for investigating inter-individual variability in the functional connectome and its relationship to cognitive performance outside of the scanner. Method Using resting state functional magnetic resonance imaging data from the Human Connectome Project Lifespan database, the present study capitalized on graph theory to chart cross-sectional variations in the intrinsic functional organization of the frontoparietal (FPN) and the default mode (DMN) networks in 500 healthy individuals (from 10 to 100 years of age), to investigate the neural underpinnings of EFs across the lifespan. Results Topological properties of both the FPN and DMN were associated with EF performance but not with a control task of picture naming, providing specificity in support for a tight link between neuro-functional and cognitive-behavioral efficiency within the EF domain. The topological organization of the DMN, however, appeared more sensitive to age-related changes relative to that of the FPN. Discussion The DMN matures earlier in life than the FPN and it ıs more susceptible to neurodegenerative changes. Because its activity is stronger in conditions of resting state, the DMN might be easier to measure in noncompliant populations and in those at the extremes of the life-span curve, namely very young or elder participants. Here, we argue that the study of its functional architecture in relation to higher order cognition across the lifespan might, thus, be of greater interest compared with what has been traditionally thought.
Collapse
Affiliation(s)
- A Menardi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - M Spoa
- Department of General Psychology, University of Padova, Padova, Italy
| | - A Vallesi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Zawiślak-Fornagiel K, Ledwoń D, Bugdol M, Grażyńska A, Ślot M, Tabaka-Pradela J, Bieniek I, Siuda J. Quantitative EEG Spectral and Connectivity Analysis for Cognitive Decline in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2024; 97:1235-1247. [PMID: 38217593 DOI: 10.3233/jad-230485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is considered to be the borderline of cognitive changes associated with aging and very early dementia. Cognitive functions in MCI can improve, remain stable or progress to clinically probable AD. Quantitative electroencephalography (qEEG) can become a useful tool for using the analytical techniques to quantify EEG patterns indicating cognitive impairment. OBJECTIVE The aim of our study was to assess spectral and connectivity analysis of the EEG resting state activity in amnestic MCI (aMCI) patients in comparison with healthy control group (CogN). METHODS 30 aMCI patients and 23 CogN group, matched by age and education, underwent equal neuropsychological assessment and EEG recording, according to the same protocol. RESULTS qEEG spectral analysis revealed decrease of global relative beta band power and increase of global relative theta and delta power in aMCI patients. Whereas, decreased coherence in centroparietal right area considered to be an early qEEG biomarker of functional disconnection of the brain network in aMCI patients. In conclusion, the demonstrated changes in qEEG, especially, the coherence patterns are specific biomarkers of cognitive impairment in aMCI. CONCLUSIONS Therefore, qEEG measurements appears to be a useful tool that complements neuropsychological diagnostics, assessing the risk of progression and provides a basis for possible interventions designed to improve cognitive functions or even inhibit the progression of the disease.
Collapse
Affiliation(s)
- Katarzyna Zawiślak-Fornagiel
- Department of Neurology, Prof. Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Monika Bugdol
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Anna Grażyńska
- Department of Imaging Diagnostics and Interventional Radiology, Prof. Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Maciej Ślot
- Department of Solid State Physics, Faculty of Physics and Applied Computer Science, University of Łódź, Łódź, Poland
| | - Justyna Tabaka-Pradela
- Department of Neurology, Prof. Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Izabela Bieniek
- Department of Neurology, Prof. Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Joanna Siuda
- Department of Neurology, Prof. Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Chen X, Li Y, Li R, Yuan X, Liu M, Zhang W, Li Y. Multiple cross-frequency coupling analysis of resting-state EEG in patients with mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2023; 15:1142085. [PMID: 37600515 PMCID: PMC10436577 DOI: 10.3389/fnagi.2023.1142085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Electroencephalographic (EEG) abnormalities are seen in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) with characteristic features of cognitive impairment. The most common findings of EEG features in AD and MCI patients are increased relative power of slow oscillations (delta and theta rhythms) and decreased relative power of fast oscillations (alpha, beta and gamma rhythms). However, impairments in cognitive processes in AD and MCI are not sufficiently reflected by brain oscillatory activity in a particular frequency band. MCI patients are at high risk of progressing to AD. Cross-frequency coupling (CFC), which refers to coupling between different frequency bands, is a crucial tool for comprehending changes in brain oscillations and cognitive performance. CFC features exhibit some specificity in patients with AD and MCI, but a comparison between CFC features in individuals with these disorders is still lacking. The aim of this study was to explore changes in CFC properties in MCI and AD and to explore the relationship between CFC properties and multiple types of cognitive functional performance. Methods We recorded resting-state EEG (rsEEG) signals in 46 MCI patients, 43 AD patients, and 43 cognitively healthy controls (HCs) and analyzed the changes in CFC as well as the relationship between CFC and scores on clinical tests of cognitive function. Results and discussion Multiple couplings between low-frequency oscillations and high-frequency oscillations were found to be significantly enhanced in AD patients compared to those of HCs and MCI, while delta-gamma as well as theta-gamma couplings in the right temporal and parietal lobes were significantly enhanced in MCI patients compared to HCs. Moreover, theta-gamma coupling in the right temporal lobe tended to be stronger in MCI patients than in HCs, and it was stronger in AD than in MCI. Multiple CFC properties were found to correlate significantly with various cognitive domains, especially the memory function domain. Overall, these findings suggest that AD and MCI patients must use more neural resources to maintain a resting brain state and that alterations in theta-gamma coupling in the temporal lobe become progressively obvious during disease progression and are likely to be a valuable indicator of MCI and AD pathology.
Collapse
Affiliation(s)
- Xi Chen
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Yingjie Li
- College of International Education, Shanghai University, Shanghai, China
- School of Life Science, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Yuan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
5
|
Arulchelvan E, Vanneste S. Promising neurostimulation routes for targeting the hippocampus to improve episodic memory: A review. Brain Res 2023:148457. [PMID: 37315722 DOI: 10.1016/j.brainres.2023.148457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
This review aims to highlight modern neurostimulation approaches that are effectively activating the hippocampus and enhancing episodic memory performance. The hippocampus is a brain region known to play an essential role in episodic memory processes. However, as it is nestled deep within the brain, it has been a challenging target for traditional neurostimulation approaches, with studies reporting inconsistent memory effects. Recent studies suggest more than half of the electrical current from non-invasive transcranial electrical stimulation (tES) methods may be attenuated by the human scalp, skull, and cerebral spinal fluid. Thus, this review aims to highlight novel neurostimulation approaches that are showing promise as alternative routes for activating hippocampal circuitry. Early evidence suggests temporal interference, closed-loop and individualized protocols, sensory stimulation and peripheral nerve-targeted tES protocols warrant further investigation. These approaches each provide promising routes for activating the hippocampus by a) increasing its functional connectiveness to key brain regions, b) strengthening synaptic plasticity mechanisms, or c) enhancing neural entrainment specifically within and between theta and gamma frequencies in these regions. Importantly, these three functional mechanisms and the hippocampus' structural integrity are negatively impacted throughout the progression of Alzheimer's Disease, with episodic memory deficits likewise evident in early stages. Consequently, depending on further validation of the approaches reviewed here, these techniques could offer significant applied therapeutic value for patients suffering from memory deficits or neurodegenerative diseases including amnestic Mild Cognitive Impairment or Alzheimer's disease.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
7
|
Markowitsch HJ, Staniloiu A. Behavioral, neurological, and psychiatric frailty of autobiographical memory. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1617. [PMID: 35970754 DOI: 10.1002/wcs.1617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/20/2023]
Abstract
Autobiographical-episodic memory is considered to be the most complex of the five long-term memory systems. It is autonoetic, which means, self-reflective, relies on emotional colorization, and needs the features of place and time; it allows mental time traveling. Compared to the other four long-term memory systems-procedural memory, priming, perceptual, and semantic memory-it develops the latest in phylogeny and ontogeny, and is the most vulnerable of the five systems, being easily impaired by brain damage and psychiatric disorders. Furthermore, it is characterized by its fragility and proneness to distortion due to environmental influences and subsequent information. On the brain level, a distinction has to be made between memory encoding and consolidating, memory storage, and memory retrieval. For encoding, structures of the limbic system, with the hippocampus in its center, are crucial, for storage of widespread cortical networks, and for retrieval again a distributed recollection network, in which the prefrontal cortex plays a crucial role, is engaged. Brain damage and psychiatric diseases can lead to what is called "focal retrograde amnesia." In this context, the clinical picture of dissociative or functional or psychogenic amnesia is central, as it may result in autobiographical-emotional amnesia of the total past with the consequence of an impairment of the self as well. The social environment therefore can have a major impact on the brain and on autobiographical-episodic memory processing. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Hans J Markowitsch
- Department of Physiological Psychology, University of Bielefeld, Bielefeld, Germany
| | - Angelica Staniloiu
- Department of Physiological Psychology, University of Bielefeld, Bielefeld, Germany
- Oberberg Clinic, Hornberg, Germany
- Department of Psychology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Lin YR, Chi CH, Chang YL. Differential decay of gist and detail memory in older adults with amnestic mild cognitive impairment. Cortex 2023; 164:112-128. [PMID: 37207409 DOI: 10.1016/j.cortex.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) has been identified as a risk factor for dementia due to Alzheimer's disease. The medial temporal structures, which are crucial for memory processing, are the earliest affected regions in the brains of patients with aMCI, and episodic memory performance has been identified as a reliable way to discriminate between patients with aMCI and cognitively normal older adults. However, whether the detail and gist memory of patients with aMCI and cognitively normal older adults decay differently remains unclear. In this study, we hypothesized that detail and gist memory would be retrieved differentially, with a larger group performance gap in detail memory than in gist memory. In addition, we explored whether an increasing group performance gap between detail memory and gist memory groups would be observed over a 14-day period. Furthermore, we hypothesized that unisensory (audio-only) and multisensory (audiovisual) encoding would lead to differences in retrievals, with the multisensory condition reducing between and within-group performance gaps observed under the unisensory condition. The analyses conducted were analyses of covariance controlling for age, sex, and education and correlational analyses to examine behavioral performance and the association between behavioral data and brain variables. Compared with cognitively normal older adults, the patients with aMCI performed poorly on both detail and gist memory tests, and this performance gap persisted over time. Moreover, the memory performance of the patients with aMCI was enhanced by the provision of multisensory information, and bimodal input was significantly associated with medial temporal structure variables. Overall, our findings suggest that detail and gist memory decay differently, with a longer lasting group gap in gist memory than in detail memory. Multisensory encoding effectively reduced or overcame the between- and within-group gaps between time intervals, especially for gist memory, compared with unisensory encoding.
Collapse
Affiliation(s)
- Yu-Ruei Lin
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsing Chi
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Ju S, Horien C, Shen X, Abuwarda H, Trainer A, Constable RT, Fredericks CA. Connectome-based predictive modeling shows sex differences in brain-based predictors of memory performance. FRONTIERS IN DEMENTIA 2023; 2:1126016. [PMID: 39082002 PMCID: PMC11285565 DOI: 10.3389/frdem.2023.1126016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) takes a more aggressive course in women than men, with higher prevalence and faster progression. Amnestic AD specifically targets the default mode network (DMN), which subserves short-term memory; past research shows relative hyperconnectivity in the posterior DMN in aging women. Higher reliance on this network during memory tasks may contribute to women's elevated AD risk. Here, we applied connectome-based predictive modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human Connectome Project-Aging (HCP-A) dataset (n = 579). We sought to characterize sex-based predictors of memory performance in aging, with particular attention to the DMN. Models were evaluated using cross-validation both across the whole group and for each sex separately. Whole-group models predicted short-term memory performance with accuracies ranging from ρ = 0.21-0.45. The best-performing models were derived from an associative memory task-based scan. Sex-specific models revealed significant differences in connectome-based predictors for men and women. DMN activity contributed more to predicted memory scores in women, while within- and between- visual network activity contributed more to predicted memory scores in men. While men showed more segregation of visual networks, women showed more segregation of the DMN. We demonstrate that women and men recruit different circuitry when performing memory tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry. These findings are consistent with the hypothesis that women draw more heavily upon the DMN for recollective memory, potentially contributing to women's elevated risk of AD.
Collapse
Affiliation(s)
- Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Hamid Abuwarda
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Anne Trainer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
10
|
Serra L, Bonarota S, Di Domenico C, Caruso G, Giulietti G, Caltagirone C, Cercignani M, Bozzali M. Preclinical Brain Network Abnormalities in Patients with Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1119-1131. [PMID: 37661886 DOI: 10.3233/jad-230536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia worldwide. Currently there are no disease modifying treatments available. Detecting subjects with increased risk to develop dementia is essential for future clinical trials. Subjective cognitive decline (SCD) is a condition defining individuals who perceive a decrease in their own cognitive functioning in the absence of any detectable deficit on neuropsychological testing. SCD individuals show AD-related biomarkers abnormalities in cerebrospinal fluid. OBJECTIVE The aim of the present study was to assess brain functional connectivity (FC) changes in SCD individuals. METHODS 23 SCD and 33 healthy subjects (HS) underwent an extensive neuropsychological assessment and 3T-MRI scanning including a T1-w volume and resting-state fMRI (RS-fMRI) to assess brain atrophy and brain FC. RESULTS No between-group differences in grey matter volumes were detected. SCD subjects compared to HS showed both increased and decreased FC in the executive and parietal networks. Associations between cognitive measures, mainly assessing working memory, and FC within brain networks were found both in SCD and HS separately. CONCLUSIONS SCD individuals showed FC abnormalities in networks involving fronto-parietal areas that may account for their lower visuo-spatial working memory performances. Dysfunctions in executive-frontal networks may be responsible for the cognitive decline subjectively experienced by SCD individuals despite the normal scores observed by formal neuropsychological assessment. The present study contributes to consider SCD individuals in an early AD stage with an increased risk of developing the disease in the long term.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Sabrina Bonarota
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Systems Medicine, Univerisity of Rome Tor Vergata, Rome, Italy
| | - Carlotta Di Domenico
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome/Santa Lucia Foundation IRCCS, Italy
| | - Giulia Caruso
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | - Mara Cercignani
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
| | - Marco Bozzali
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin, Italy
| |
Collapse
|
11
|
Wang RWY, Liu IN. Temporal and electroencephalography dynamics of surreal marketing. Front Neurosci 2022; 16:949008. [PMID: 36389218 PMCID: PMC9648353 DOI: 10.3389/fnins.2022.949008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022] Open
Abstract
Event-related spectral perturbation analysis was employed in this study to explore whether surreal image designs containing metaphors could influence product marketing effects, including consumers' product curiosity, product comprehension, product preference, and purchase intention. A total of 30 healthy participants aged 21-30 years were recruited. Neurophysiological findings revealed that lower gamma, beta, and theta spectral powers were evoked in the right insula (Brodmann Area 13) by surreal marketing images. This was associated, behaviorally, with the manifestation of higher product curiosity and purchase intention. Based on previous research, the brain functions of this area include novelty, puzzle-solving, and cravings for reward caused by cognitive overload.
Collapse
Affiliation(s)
- Regina W. Y. Wang
- Department of Design, National Taiwan University of Science and Technology, Taipei City, Taiwan
- Design Perceptual Awareness Laboratory, Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - I-Ning Liu
- Department of Design, National Taiwan University of Science and Technology, Taipei City, Taiwan
- Design Perceptual Awareness Laboratory, Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei City, Taiwan
| |
Collapse
|
12
|
Yu Y, Setogawa T, Matsumoto J, Nishimaru H, Nishijo H. Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. AIMS Neurosci 2022; 9:373-394. [PMID: 36329903 PMCID: PMC9581735 DOI: 10.3934/neuroscience.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.
Collapse
Affiliation(s)
- Yang Yu
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
13
|
Cross-frequency coupling in psychiatric disorders: A systematic review. Neurosci Biobehav Rev 2022; 138:104690. [PMID: 35569580 DOI: 10.1016/j.neubiorev.2022.104690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
Abstract
Cross-frequency coupling (CFC), an electrophysiologically derived measure of oscillatory coupling in the brain, is believed to play a critical role in neuronal computation, learning and communication. It has received much recent attention in the study of both health and disease. We searched for literature that studied CFC during resting state and task-related activities during electroencephalography and magnetoencephalography in psychiatric disorders. Thirty-eight studies were identified, which included attention-deficit hyperactivity disorder, Alzheimer's dementia, autism spectrum disorder, bipolar disorder, depression, obsessive compulsive disorder, social anxiety disorder and schizophrenia. The systematic review was registered with PROSPERO (ID#CRD42021224188). The current review indicates measurable differences exist between CFC in disease states vs. healthy controls. There was variance in CFC at different regions of the brain within the same psychiatric disorders, perhaps this could be explained by the mechanisms and functionality of CFC. There was heterogeneity in methodologies used, which may lead to spurious CFC analyses. Going forward, standardized methodologies need to be established and utilized in further research to understand the neuropathophysiology associated with psychiatric disorders.
Collapse
|
14
|
Nami M, Thatcher R, Kashou N, Lopes D, Lobo M, Bolanos JF, Morris K, Sadri M, Bustos T, Sanchez GE, Mohd-Yusof A, Fiallos J, Dye J, Guo X, Peatfield N, Asiryan M, Mayuku-Dore A, Krakauskaite S, Soler EP, Cramer SC, Besio WG, Berenyi A, Tripathi M, Hagedorn D, Ingemanson M, Gombosev M, Liker M, Salimpour Y, Mortazavi M, Braverman E, Prichep LS, Chopra D, Eliashiv DS, Hariri R, Tiwari A, Green K, Cormier J, Hussain N, Tarhan N, Sipple D, Roy M, Yu JS, Filler A, Chen M, Wheeler C, Ashford JW, Blum K, Zelinsky D, Yamamoto V, Kateb B. A Proposed Brain-, Spine-, and Mental- Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. J Alzheimers Dis 2022; 86:21-42. [PMID: 35034899 DOI: 10.3233/jad-215240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.
Collapse
Affiliation(s)
- Mohammad Nami
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, and Dana Brain Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran.,Inclusive Brain Health and BrainLabs International, Swiss Alternative Medicine, Geneva, Switzerland
| | - Robert Thatcher
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Applied Neuroscience, Inc., St Petersburg, FL, USA
| | - Nasser Kashou
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Dahabada Lopes
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Maria Lobo
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Joe F Bolanos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Kevin Morris
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Melody Sadri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Teshia Bustos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Gilberto E Sanchez
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alena Mohd-Yusof
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - John Fiallos
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Justin Dye
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University, CA, USA
| | | | - Milena Asiryan
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Alero Mayuku-Dore
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Solventa Krakauskaite
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Ernesto Palmero Soler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Steven C Cramer
- Department of Neurology, UCLA, and California Rehabilitation Institute, Los Angeles, CA, USA
| | - Walter G Besio
- Electrical Computer and Biomedical Engineering Department and Interdisciplinary Neuroscience Program, University of Rhode Island, RI, USA
| | - Antal Berenyi
- The Neuroscience Institute, New York University, New York, NY, USA
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Mark Liker
- Department of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Dawn S Eliashiv
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,UCLA David Geffen, School of Medicine, Department of Neurology, Los Angeles, CA, USA
| | - Robert Hariri
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Celularity Corporation, Warren, NJ, USA.,Weill Cornell School of Medicine, Department of Neurosurgery, New York, NY, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| | - Ambooj Tiwari
- Departments of Neurology, Radiology & Neurosurgery - NYU Grossman School of Medicine, New York, NY, USA
| | - Ken Green
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | - Jason Cormier
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Lafayette Surgical Specialty Hospital, Lafayette, LA, USA
| | - Namath Hussain
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Faculty of Medicine, Uskudar University, Turkey
| | - Daniel Sipple
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Midwest Spine and Brain Institute, Roseville, MN, USA
| | - Michael Roy
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Uniformed Services University Health Science (USUHS), Baltimore, MD, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Filler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Institute for Nerve Medicine, Santa Monica, CA, USA.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mike Chen
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Department of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chris Wheeler
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA
| | | | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine, and Primary Care, Western Health Sciences, Pomona, CA, USA
| | | | - Vicky Yamamoto
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,USC Keck School of Medicine, The USC Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA, USA.,USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Babak Kateb
- Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, USA.,Brain Mapping Foundation (BMF), Los Angeles, CA, USA.,Loma Linda University, Department of Neurosurgery, Loma Linda, CA, USA.,National Center for NanoBioElectronic (NCNBE), Los Angeles, CA, USA.,Brain Technology and Innovation Park, Los Angeles, CA, USA
| |
Collapse
|
15
|
He H, Ding S, Jiang C, Wang Y, Luo Q, Wang Y. Information Flow Pattern in Early Mild Cognitive Impairment Patients. Front Neurol 2021; 12:706631. [PMID: 34858306 PMCID: PMC8631864 DOI: 10.3389/fneur.2021.706631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate the brain information flow pattern in patients with early mild cognitive impairment (EMCI) and explore its potential ability of differentiation and prediction for EMCI. Methods: In this study, 49 patients with EMCI and 40 age- and sex-matched healthy controls (HCs) with available resting-state functional MRI images and neurological measures [including the neuropsychological evaluation and cerebrospinal fluid (CSF) biomarkers] were included from the Alzheimer's Disease Neuroimaging Initiative. Functional MRI measures including preferred information flow direction between brain regions and preferred information flow index of each brain region parcellated by the Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) were calculated by using non-parametric multiplicative regression-Granger causality analysis (NPMR-GCA). Edge- and node-wise Student's t-test was conducted for between-group comparison. Support vector classification was performed to differentiate EMCI from HC. The least absolute shrinkage and selection operator (lasso) regression were used to evaluate the predictive ability of information flow measures for the neurological state. Results: Compared to HC, disturbed preferred information flow directions between brain regions involving default mode network (DMN), executive control network (ECN), somatomotor network (SMN), and visual network (VN) were observed in patients with EMCI. An altered preferred information flow index in several brain regions (including the thalamus, posterior cingulate, and precentral gyrus) was also observed. Classification accuracy of 80% for differentiating patients with EMCI from HC was achieved by using the preferred information flow directions. The preferred information flow directions have a good ability to predict memory and executive function, level of amyloid β, tau protein, and phosphorylated tau protein with the high Pearson's correlation coefficients (r > 0.7) between predictive and actual neurological measures. Conclusion: Patients with EMCI were presented with a disturbed brain information flow pattern, which could help clinicians to identify patients with EMCI and assess their neurological state.
Collapse
Affiliation(s)
- Haijuan He
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Shuang Ding
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Chunhui Jiang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Qiaoya Luo
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | | |
Collapse
|
16
|
Aggleton JP, Yanakieva S, Sengpiel F, Nelson AJ. The separate and combined properties of the granular (area 29) and dysgranular (area 30) retrosplenial cortex. Neurobiol Learn Mem 2021; 185:107516. [PMID: 34481970 DOI: 10.1016/j.nlm.2021.107516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Retrosplenial cortex contains two principal subdivisions, area 29 (granular) and area 30 (dysgranular). Their respective anatomical connections in the rat brain reveal that area 29 is the primary recipient of hippocampal and parahippocampal spatial and contextual information while area 30 is the primary interactor with current visual information. Lesion studies and measures of neuronal activity in rodents indicate that retrosplenial cortex helps to integrate space from different perspectives, e.g., egocentric and allocentric, providing landmark and heading cues for navigation and spatial learning. It provides a repository of scene information that, over time, becomes increasingly independent of the hippocampus. These processes, reflect the interactive actions between areas 29 and 30, along with their convergent influences on cortical and thalamic targets. Consequently, despite their differences, both areas 29 and 30 are necessary for an array of spatial and learning problems.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3AT, UK.
| | - Steliana Yanakieva
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3AT, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | - Andrew J Nelson
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3AT, UK
| |
Collapse
|