1
|
Le H, Mao J, Cavender-Bares J, Pinto-Ledezma JN, Deng Y, Zhao C, Xiong G, Xu W, Xie Z. Non-native plants tend to be phylogenetically distant but functionally similar to native plants under intense disturbance at the Three Gorges Reservoir Area. THE NEW PHYTOLOGIST 2024; 244:2078-2088. [PMID: 39262233 DOI: 10.1111/nph.20126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Darwin's two opposing hypotheses, proposing that non-native species closely or distantly related to native species are more likely to succeed, are known as 'Darwin's Naturalization Conundrum'. Recently, invasion ecologists have sought to unravel these hypotheses. Studies that incorporate rich observational data in disturbed ecosystems that integrate phylogenetic and functional perspectives have potential to shed light on the conundrum. Using 313 invaded plant communities including 46 invasive plant species and 531 native plant species across the Three Gorges Reservoir Area in China, we aim to evaluate the coexistence mechanisms of invasive and native plants by integrating phylogenetic and functional dimensions at spatial and temporal scales. Our findings revealed that invasive plants tended to co-occur more frequently with native plant species that were phylogenetically distant but functionally similar in the reservoir riparian zone. Furthermore, our study demonstrated that the filtering of flood-dry-flood cycles played a significant role in deepening functional similarities of native communities and invasive-native species over time. Our study highlights the contrasting effects of phylogenetic relatedness and functional similarity between invasive and native species in highly flood-disturbed habitats, providing new sights into Darwin's Naturalization Conundrum.
Collapse
Affiliation(s)
- Haichuan Le
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jeannine Cavender-Bares
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Jesús N Pinto-Ledezma
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ying Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Changming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Gaoming Xiong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenting Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ge Y, Gu X, Zeng Q, Mao Z, Chen H, Yang H, Luo W. Functional diversity explores the maintenance mechanism and driving factors of the invasion equilibrium state of the icefish (Neosalanx taihuensis Chen) in Lake Fuxian, China. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39434443 DOI: 10.1111/jfb.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
Biodiversity loss caused by biological invasions is an ecological problem on a global scale, and understanding the mechanism of biological invasion is the basis for managing non-native species. The biotic resistance hypothesis proposes that species-rich native communities are less susceptible to invasion because of the limited resources available to non-native species, therefore comparing the resource utilization patterns of different communities can reveal the invasion mechanisms of specific non-native species at the community level. We selected Lake Taihu, where icefish (Neosalanx taihuensis Chen) originated, and Lake Fuxian, where icefish invaded, as the research objects. We calculated the fish functional diversity indexes, including functional richness (FRic), functional evenness (FEve), and functional divergence (FDiv), to reflect differences in ecological niche and resource utilization based on four quarterly fish survey data from two lakes. The random forests model explored the relationship between functional diversity indexes and biotic and environmental variables. Our results showed that more diverse resource utilization (high FRic), more niche space (low FEve), and less competitive pressure (high FDiv) in Lake Fuxian were identified as the critical important factors for maintaining the current equilibrium state after successful invasion of icefish. The bottom-up effects mainly affected the functional diversity indexes in Lake Fuxian. They differed from those in Lake Taihu and were primarily influenced by top-down effects. Enhancing the top-down effects in Lake Fuxian and limiting the zooplankton available to icefish are critical to controlling the invasion of icefish. This study offers a new perspective for studying the non-native fish invasion mechanism, and provides scientific guidance for managing non-native fish in Lake Fuxian.
Collapse
Affiliation(s)
- You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yuxi, China
| |
Collapse
|
3
|
Li S, Gao G, Wang C, Li Z, Feng X, Fu B. Aridity regulates the impacts of multiple dimensional plant diversity on soil properties in the drylands of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174211. [PMID: 38914324 DOI: 10.1016/j.scitotenv.2024.174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Relationships between plant diversity and soil properties are important for restoring ecosystem function to adapt climate change in drylands. Taxonomic, functional and phylogenetic diversity are widely used for understanding community assembly and the responses of plant communities to environmental change. However, one dimension of diversity index is difficult to reflect the multiple dimensional plant diversity, and their effects on soil properties (i.e., moisture, nutrients, and texture characteristics) along aridity gradient in drylands are limitedly understood. In this study, we proposed a holistic biodiversity (HB) index to integrate all the characteristics of plant diversity, and investigated the relationships between plant diversity and soil properties across 41 sites along aridity gradient (from hyperarid to arid and semiarid levels) in drylands of northern China. The results showed that the taxonomic diversity and phylogenetic diversity increased significantly while most of functional diversity indices did not differ significantly along the aridity gradient. The functional diversity was more important than taxonomic and phylogenetic diversity to plant communities, and the importance of taxonomic and phylogenetic diversity varied greatly and inversely along the aridity gradient. The HB index could much better reflect the positive or negative exponential relationships with soil properties compared to the single diversity index. Further, the aridity weakened the positive effects of plant diversity on several soil properties (including soil water content, soil organic carbon and soil total nitrogen), and indirectly strengthened the accumulation of soil total phosphorus, as well as intensified the soil coarsening by limiting the negative effects of plant diversity on soil sand content. Our findings suggest that the holistic biodiversity index can represent the overall traits of plant diversity in drylands, and guide a further step to understand the role of plant diversity in plant-soil relationships of dryland ecosystems.
Collapse
Affiliation(s)
- Shuhan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyao Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Oliveira EVDS, Landim MF, Gouveia SF. Assembly structures of coastal woody species of eastern South America: Patterns and drivers. PLANT DIVERSITY 2024; 46:611-620. [PMID: 39290883 PMCID: PMC11403147 DOI: 10.1016/j.pld.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 09/19/2024]
Abstract
Tropical regions have provided new insights into how ecological communities are assembled. In dry coastal communities, water stress has been hypothesized to determine plant assembly structure by favoring preadapted lineages from neighboring ecosystems, consistent with functional clustering. However, it is unclear whether this hypothesis is sufficient to explain how coastal communities in tropical ecosystems are assembled. Here, we test whether water stress or other factors drive community assembly in woody plant communities across the coastal zone of Brazil, a tropical ecosystem. We characterized functional and phylogenetic structures of these communities and determined the underlying environmental factors (e.g., water stress, historical climate stability, edaphic constraints, and habitat heterogeneity) that drive their community assembly. Assemblages of coastal woody species show geographically varied patterns, including stochastic arrangements, clustering, and overdispersion of species relative to their traits and phylogenetic relatedness. Topographic complexity, water vapor pressure, and soil nutrient availability best explained the gradient in the functional structure. Water deficit, water vapor pressure, and soil organic carbon were the best predictors of variation in phylogenetic structure. Our results support the water-stress conservatism hypothesis on functional and phylogenetic structure, as well as the effect of habitat heterogeneity on functional structure and edaphic constraints on functional and phylogenetic structure. These effects are associated with increased phenotypic and phylogenetic divergence of woody plant assemblages, which is likely mediated by abiotic filtering and niche opportunities, suggesting a complex pattern of ecological assembly.
Collapse
Affiliation(s)
- Eduardo Vinícius da Silva Oliveira
- Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- National Institute of Science and Technology Ecology, Evolution and Conservation of Biodiversity (INCT-EECBio), Goiânia, Goiás, Brazil
| | | | - Sidney F Gouveia
- National Institute of Science and Technology Ecology, Evolution and Conservation of Biodiversity (INCT-EECBio), Goiânia, Goiás, Brazil
- Department of Ecology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
5
|
Arias-Real R, Delgado-Baquerizo M, Sabater S, Gutiérrez-Cánovas C, Valencia E, Aragón G, Cantón Y, Datry T, Giordani P, Medina NG, de Los Ríos A, Romaní AM, Weber B, Hurtado P. Unfolding the dynamics of ecosystems undergoing alternating wet-dry transitional states. Ecol Lett 2024; 27:e14488. [PMID: 39092560 DOI: 10.1111/ele.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.
Collapse
Affiliation(s)
- Rebeca Arias-Real
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Sergi Sabater
- Catalan Institute of Water Research (ICRA), Girona, Spain
- Institute of Aquatic Ecology, University of Girona-Montilivi Campus, Girona, Spain
| | - Cayetano Gutiérrez-Cánovas
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
| | - Enrique Valencia
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Gregorio Aragón
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos, Móstoles, Spain
| | - Yolanda Cantón
- Agronomy Department, University of Almería, Almería, Spain
- Research Centre for Scientific Collections from the University of Almería (CECOUAL), Almería, Spain
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | | | - Nagore G Medina
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Bettina Weber
- Division of Plant Sciences, Institute for Biology, University of Graz, Graz, Austria
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Pilar Hurtado
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Spain
- DIFAR, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
7
|
Ma LL, Seibold S, Cadotte MW, Zou JY, Song J, Mo ZQ, Tan SL, Ye LJ, Zheng W, Burgess KS, Chen ZF, Liu DT, Yang XL, Shi XC, Zhao W, Liu J, Li DZ, Gao LM, Luo YH. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173343. [PMID: 38777069 DOI: 10.1016/j.scitotenv.2024.173343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.
Collapse
Affiliation(s)
- Liang-Liang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Seibold
- TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jia-Yun Zou
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany; Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Jie Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Qiong Mo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Lin Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Jiang Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Tuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xing-Liang Yang
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Lian-Ming Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| | - Ya-Huang Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| |
Collapse
|
8
|
Simpson EG, Fraser I, Woolf H, Pearse WD. Variation in near-surface soil temperature drives plant assemblage differentiation across aspect. Ecol Evol 2024; 14:e11656. [PMID: 39055775 PMCID: PMC11269051 DOI: 10.1002/ece3.11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Quantifying assemblage variation across environmental gradients provides insight into the ecological and evolutionary mechanisms that differentiate assemblages locally within a larger climate regime. We assessed how vascular plant functional composition and diversity varied across microenvironment to identify ecological differences in assemblages in a mountainous fieldsite in northeastern Utah, USA. Then, we looked at how life-history strategies and information about phylogenetic differences affect the relationship between functional metrics and environment. We found less functionally dispersed assemblages that were shorter and more resource-conservative on south-facing slopes where intra-annual soil temperature was hotter and more variable. In contrast, we found more functionally dispersed assemblages, that were taller and more resource-acquisitive on north-facing slopes where intra-annual temperature was cooler and less variable. Herbaceous and woody perennials drove these trends. Additionally, including information about phylogenetic differences in a dispersion metric indicated that phylogeny accounts for traits we did not measure. At this fieldsite, soil temperature acts as an environmental filter across aspect. If soil temperature increases and becomes more variable, intra-annually, the function of north- versus south-facing assemblages may be at risk for contrasting reasons. On south-facing slopes, assemblages may not have the variance in functional diversity needed to respond to more intense, stressful conditions. Conversely, assemblages on north-facing slopes may not have the resource-conservative strategies needed to persist if temperatures become hotter and more variable intra-annually. Given these results, we advocate for the inclusion of aspect differentiation in studies seeking to understand species and assemblage shifts in response to changing climate conditions.
Collapse
Affiliation(s)
- Elizabeth G. Simpson
- Department of Biology & Ecology CenterUtah State UniversityLoganUtahUSA
- Avian Science Center, Wildlife Biology ProgramW.A. Franke College of Forestry and Conservation, University of MontanaMissoulaMontanaUSA
| | - Ian Fraser
- Department of Biology & Ecology CenterUtah State UniversityLoganUtahUSA
| | - Hillary Woolf
- Department of Biology & Ecology CenterUtah State UniversityLoganUtahUSA
| | | |
Collapse
|
9
|
Martins A, Collart F, Sim‐Sim M, Patiño J. Ecological drivers of taxonomic, functional, and phylogenetic diversity of bryophytes in an oceanic island. Ecol Evol 2024; 14:e70023. [PMID: 39055776 PMCID: PMC11269207 DOI: 10.1002/ece3.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Montane oceanic islands possess unique geographic and ecological attributes, rendering them valuable for assessing patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. Such comparisons of diversity facets can provide insights into the mechanisms governing community assembly on islands. Herein, we aimed to characterize taxonomic, functional, and phylogenetic bryophyte diversity on Madeira Island within and across areas at varying elevations. We also assessed how these diversity facets for the alpha and beta components relate to ecological and anthropogenic factors. We estimated and compared alpha and beta taxonomic, functional, and phylogenetic diversity using 80 plots of 0.5 m × 0.5 m across the whole elevational gradient of the island. We compiled trait databases and supplemented them with our own observations. Phylogenetic information was sourced from the Moss and Liverwort Tree of Life. To assess the impact of ecological and anthropogenic factors on the three facets, we applied linear mixed-effects models and generalized dissimilarity models to alpha- and beta-diversity matrices, respectively. All facets of diversity exhibited strong correlations within both mosses and liverworts, indicating a substantial congruence when alpha and beta are analyzed separately. The bryophyte groups categorized by the growth form demonstrated contrasting patterns, aligning with their distinctive ecological requirements. While a mid-elevation peak emerged as a common pattern across the three facets of alpha diversity, beta diversity often displayed the opposite trend. Although the relative influence of environmental factors varied depending on the diversity facet and bryophyte grouping considered, we found that alpha and beta diversity of bryophytes are more influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors. In the current context of global change, these results should be interpreted with caution, but they point to the resilience of bryophytes to survive in relatively well-preserved natural microhabitats within anthropogenic landscapes. In this study on Madeira Island, we investigated patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. We found that alpha and beta diversity of bryophytes are more strongly influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors.
Collapse
Affiliation(s)
- Anabela Martins
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute/MUHNAC—Museu Nacional de História Natural e da CiênciaUniversidade de LisboaLisboaPortugal
| | - Flavien Collart
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Manuela Sim‐Sim
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute/MUHNAC—Museu Nacional de História Natural e da CiênciaUniversidade de LisboaLisboaPortugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability InstituteUniversidade de LisboaLisboaPortugal
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA‐CSIC)La LagunaSpain
- Departamento de Botánica, Ecología y Fisiología VegetalUniversidad de La LagunaLa LagunaSpain
| |
Collapse
|
10
|
Becklin KM, Betancourt JL, Braasch J, Dézerald O, Díaz FP, González AL, Harbert R, Holmgren CA, Hornsby AD, Latorre C, Matocq MD, Smith FA. New uses for ancient middens: bridging ecological and evolutionary perspectives. Trends Ecol Evol 2024; 39:479-493. [PMID: 38553315 DOI: 10.1016/j.tree.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 05/12/2024]
Abstract
Rodent middens provide a fine-scale spatiotemporal record of plant and animal communities over the late Quaternary. In the Americas, middens have offered insight into biotic responses to past environmental changes and historical factors influencing the distribution and diversity of species. However, few studies have used middens to investigate genetic or ecosystem level responses. Integrating midden studies with neoecology and experimental evolution can help address these gaps and test mechanisms underlying eco-evolutionary patterns across biological and spatiotemporal scales. Fully realizing the potential of middens to answer cross-cutting ecological and evolutionary questions and inform conservation goals in the Anthropocene will require a collaborative research community to exploit existing midden archives and mount new campaigns to leverage midden records globally.
Collapse
Affiliation(s)
- Katie M Becklin
- Biology Department, Syracuse University, Syracuse, NY 13244, USA.
| | - Julio L Betancourt
- US Geological Survey, Science and Decisions Center, Reston, VA 20192, USA
| | - Joseph Braasch
- Department of Biology, Rutgers University, Camden, NJ 08103, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| | - Olivier Dézerald
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Francisca P Díaz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Institute of Ecology and Biodiversity (IEB), Santiago, Chile; Millennium Nucleus of Applied Historical Ecology for Arid Forests (AFOREST), Santiago, Chile
| | - Angélica L González
- Department of Biology, Rutgers University, Camden, NJ 08103, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| | - Robert Harbert
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Camille A Holmgren
- Department of Geosciences, SUNY Buffalo State University, Buffalo, NY 14222, USA
| | - Angela D Hornsby
- Philip L. Wright Zoological Museum, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Claudio Latorre
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile; Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Ecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marjorie D Matocq
- Program in Ecology, Evolution, and Conservation Biology, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Schroeder L, Robles V, Jara‐Arancio P, Lapadat C, Hobbie SE, Arroyo MTK, Cavender‐Bares J. Drivers of plant diversity, community composition, functional traits, and soil processes along an alpine gradient in the central Chilean Andes. Ecol Evol 2024; 14:e10888. [PMID: 38343572 PMCID: PMC10857943 DOI: 10.1002/ece3.10888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait-mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400-3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W). We surveyed vegetation and spectroscopic reflectance (400-2400 nm) to quantify taxonomic, phylogenetic, functional, and spectral diversity at five sites from 2400 to 3500 m elevation. We characterized soil attributes and processes by measuring water content, carbon and nitrogen, and net nitrogen mineralization rates. At high elevation, colder temperatures reduced available soil nitrogen, while at warmer, lower elevations, soil moisture was lower. Metrics of taxonomic, functional, and spectral alpha diversity peaked at mid-elevations, while phylogenetic species richness was highest at low elevation. Leaf nitrogen increased with elevation at the community level and within individual species, consistent with global patterns of increasing leaf nitrogen with colder temperatures. The increase in leaf nitrogen, coupled with shifts in taxonomic and functional diversity associated with turnover in lineages, indicate that the ability to acquire and retain nitrogen in colder temperatures may be important in plant community assembly in this range. Such environmental filters have important implications for forecasting shifts in alpine plant communities under a warming climate.
Collapse
Affiliation(s)
- Lucy Schroeder
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Valeria Robles
- Institute of Ecology and Biodiversity (IEB)ConcepciónChile
- Cape Horn International Center (CHIC)Universidad de MagallanesPunta ArenasChile
| | - Paola Jara‐Arancio
- Institute of Ecology and Biodiversity (IEB)ConcepciónChile
- Cape Horn International Center (CHIC)Universidad de MagallanesPunta ArenasChile
- Departamento de Ciencias Biológicas y Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andrés BelloSantiagoChile
| | - Cathleen Lapadat
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mary T. K. Arroyo
- Institute of Ecology and Biodiversity (IEB)ConcepciónChile
- Cape Horn International Center (CHIC)Universidad de MagallanesPunta ArenasChile
- Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile
| | - Jeannine Cavender‐Bares
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
12
|
Schmera D, Boschi C, Baur B. The type of forest edge shapes snail assemblages at forest-pasture transitions. Sci Rep 2023; 13:16761. [PMID: 37798306 PMCID: PMC10556092 DOI: 10.1038/s41598-023-43758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Semi-natural, nutrient-poor calcareous grasslands are local biodiversity hotspots that are increasingly threatened by land use intensification, abandonment, or indirect effects from adjacent habitats. The habitat quality of these grasslands is often influenced by neighbouring forests or intensively managed agricultural land. For example, shrubs encroaching on grassland reduce the sensitive habitat, but at the same time represent a new habitat type (transition zone at gradual forest edge). We investigated the effects of gradual and abrupt forest edges on the species richness, abundance, species composition, functional diversity and number of species of conservation importance (red-listed species) of land snail assemblages at forest-pasture transitions in the Jura Mountains, Switzerland. Forest edge type influenced the snail assemblages in different ways. Transition zones at abrupt forest edges had a higher species richness and more snail individuals than transition zones at gradual forest edges. Transition zones also differed in land snail species composition. At gradual forest edges, the transition zones contained some openland snail species, while those at abrupt forest edges had a similar species composition to the forest interior. Functional diversity was significantly higher for snails in the forests and transition zones at both abrupt and gradual edges than in pastures. In contrast, pastures and transition zones at both abrupt and gradual edges had a significantly higher number of red-listed snail species. Based on our findings, we recommend the creation of gradual forest edges through regular forest management practices, rather than through shrub encroachment into pasture, which could reduce the size of the threatened habitat.
Collapse
Affiliation(s)
- Dénes Schmera
- Balaton Limnological Research Institute, Klebelsberg K. u. 3, 8237, Tihany, Hungary.
| | - Cristina Boschi
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
- , Gränichen, Switzerland
| | - Bruno Baur
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
| |
Collapse
|
13
|
Tóth F, Zsuga K, Kerepeczki É, Kovács B, Magura T, Körmöczi L, Lövei GL. Discordant spatiotemporal dynamics of functional and phylogenetic diversity of rotiferan communities exposed to aquaculture effluent. Ecol Evol 2023; 13:e10503. [PMID: 37680963 PMCID: PMC10480067 DOI: 10.1002/ece3.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
The growth of the human population brought about the global intensification of aquacultural production, and aquaculture became the fastest growing animal husbandry sector. Effluent from aquaculture is an anthropogenic environmental burden, containing organic matter, nutrients and suspended solids that affect water quality especially in the water bodies of high biodiversity and conservation value. Water quality assessment often relies on bioindicators, analysing changes in taxonomic diversity of various freshwater organismal groups. Stepping beyond taxon diversity, we used functional and phylogenetic diversities of rotifers to identify factors affecting their community organization in response to an aquaculture effluent gradient in the largest oxbow lake in the Carpathian Basin, Hungary. Sampling was carried out three times per season at five points along a 3.5 km section of the oxbow lake, including the point of effluent inflow. We used eight traits to evaluate functional diversity: body size, trophi type, feeding mode, protection type, body wall type, corona type, habitat preference and tolerance level. Functional and phylogenetic distances among the 24 species identified indicated trait conservatism. Rotiferan diversity increased with increasing distance from the point of influx in spring and summer. Among the factors affecting community organization in spring and summer, we find examples of environmental filtering, while in autumn the role of biotic interaction is more frequent. Under nutrient-rich conditions in spring and summer, organisms belonging to the same functional group were dominant, whereas under oligotrophic conditions, more diverse but less abundant groups were present. Considering functional and phylogenetic traits allowed us to identify organising forces of rotifer communities in the largest oxbow lake of the Hungarian Lowland.
Collapse
Affiliation(s)
- Flórián Tóth
- Department of Hydrobiology, Research Centre for Aquaculture and Fisheries, Institute of Aquaculture and Environmental SafetyHungarian University of Agriculture and Life SciencesSzarvasHungary
- Department of Ecology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
- Department of AgroecologyFlakkebjerg Research Center, Aarhus UniversitySlagelseDenmark
| | | | - Éva Kerepeczki
- Department of Hydrobiology, Research Centre for Aquaculture and Fisheries, Institute of Aquaculture and Environmental SafetyHungarian University of Agriculture and Life SciencesSzarvasHungary
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental SafetyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Tibor Magura
- ELKH‐DE Anthropocene Ecology Research GroupUniversity of DebrecenDebrecenHungary
- Department of Ecology, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
| | - László Körmöczi
- Department of Ecology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Gábor L. Lövei
- Department of AgroecologyFlakkebjerg Research Center, Aarhus UniversitySlagelseDenmark
- ELKH‐DE Anthropocene Ecology Research GroupUniversity of DebrecenDebrecenHungary
| |
Collapse
|
14
|
Zieschank V, Junker RR. Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities to environmental changes in the field. FRONTIERS IN PLANT SCIENCE 2023; 14:1141554. [PMID: 37229120 PMCID: PMC10203609 DOI: 10.3389/fpls.2023.1141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Plant traits are informative for ecosystem functions and processes and help to derive general rules and predictions about responses to environmental gradients, global change and perturbations. Ecological field studies often use 'low-throughput' methods to assess plant phenotypes and integrate species-specific traits to community-wide indices. In contrast, agricultural greenhouse or lab-based studies often employ 'high-throughput phenotyping' to assess plant individuals tracking their growth or fertilizer and water demand. In ecological field studies, remote sensing makes use of freely movable devices like satellites or unmanned aerial vehicles (UAVs) which provide large-scale spatial and temporal data. Adopting such methods for community ecology on a smaller scale may provide novel insights on the phenotypic properties of plant communities and fill the gap between traditional field measurements and airborne remote sensing. However, the trade-off between spatial resolution, temporal resolution and scope of the respective study requires highly specific setups so that the measurements fit the scientific question. We introduce small-scale, high-resolution digital automated phenotyping as a novel source of quantitative trait data in ecological field studies that provides complementary multi-faceted data of plant communities. We customized an automated plant phenotyping system for its mobile application in the field for 'digital whole-community phenotyping' (DWCP), capturing the 3-dimensional structure and multispectral information of plant communities. We demonstrated the potential of DWCP by recording plant community responses to experimental land-use treatments over two years. DWCP captured changes in morphological and physiological community properties in response to mowing and fertilizer treatments and thus reliably informed about changes in land-use. In contrast, manually measured community-weighted mean traits and species composition remained largely unaffected and were not informative about these treatments. DWCP proved to be an efficient method for characterizing plant communities, complements other methods in trait-based ecology, provides indicators of ecosystem states, and may help to forecast tipping points in plant communities often associated with irreversible changes in ecosystems.
Collapse
Affiliation(s)
- Vincent Zieschank
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| |
Collapse
|
15
|
Chai Y, Qiu S, Wang K, Xu J, Guo Y, Wang M, Yue M, Wang M, Zhu J. Partitioning and integrating of plant traits and phylogeny in assessing diversity along secondary forest succession in Loess Plateau of China. Ecol Evol 2023; 13:e10055. [PMID: 37181202 PMCID: PMC10170657 DOI: 10.1002/ece3.10055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Assessing plant diversity during community succession based on plant trait and phylogenetic features within a community (alpha scale) and among communities (beta scale) could improve our understanding of community succession mechanism. However, whether changes of community functional diversity at alpha and beta scale are structured by different traits and whether integrating plant traits and phylogeny can enhance the ability in detecting diversity pattern have not been studied in detail. Thirty plots representing different successional stages were established on the Loess Plateau of China and 15 functional traits were measured for all coexisting species. We first analyzed the functional alpha and beta diversity along succession by decomposing species trait into alpha and beta components and then integrated key traits with phylogenetic information to explore their roles in shaping species turnover during community succession. We found that functional alpha diversity increased along successional stages and was structured by morphological traits, while beta diversity decreased during succession and was more structured by stoichiometry traits. Phylogenetic alpha diversity showed congruent pattern with functional alpha diversity because of phylogenetic conservation of trait alpha components (variation within community), while beta diversity showed incongruent pattern due to phylogenetic randomness of trait beta components (variation among communities). Furthermore, only integrating relatively conserved traits (plant height and seed mass) and phylogenetic information can raise the detecting ability in assessing diversity change. Overall, our results reveal the increasing niche differentiation within community and functional convergence among communities with succession process, indicating the importance of matching traits with scale in studying community functional diversity and the asymmetry of traits and phylogeny in reflecting species ecological differences under long-term selection pressures.
Collapse
Affiliation(s)
- Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Shen Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Kaiyue Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Yaoxin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Mao Wang
- College of Grassland and Environment SciencesXinjiang Agricultural UniversityUrumchiChina
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest UniversityXi'anChina
- School of Life SciencesNorthwest UniversityXi'anChina
| | - Mingjie Wang
- Shuanglong State‐owned Ecological Experimental Forest Station of Qiaoshan State‐owned Forestry Administration of Yan'an CityYan'anChina
| | - Jiangang Zhu
- Shuanglong State‐owned Ecological Experimental Forest Station of Qiaoshan State‐owned Forestry Administration of Yan'an CityYan'anChina
| |
Collapse
|
16
|
Uluar O, Yahyaoğlu Ö, Başıbüyük HH, Çıplak B. Taxonomy of the rear-edge populations: the case of genus Anterastes (Orthoptera, Tettigoniidae). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Busch MH, Allen DC, Marske KA, Kuczynski L. The only lasting truth is change: multiple dimensions of biodiversity show historical legacy effects in community assembly processes of freshwater fish. OIKOS 2023. [DOI: 10.1111/oik.09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Michelle H. Busch
- Geographical Ecology Group, Ecology and Evolutionary Biology Graduate Program, Dept of Biology, Dodge Family College of Arts and Sciences, Univ. of Oklahoma Norman OK USA
| | - Daniel C. Allen
- Geographical Ecology Group, Ecology and Evolutionary Biology Graduate Program, Dept of Biology, Dodge Family College of Arts and Sciences, Univ. of Oklahoma Norman OK USA
- Dept of Ecosystem Science and Management, Penn State Univ. University Park PA USA
| | - Katharine A. Marske
- Geographical Ecology Group, Ecology and Evolutionary Biology Graduate Program, Dept of Biology, Dodge Family College of Arts and Sciences, Univ. of Oklahoma Norman OK USA
| | - Lucie Kuczynski
- Geographical Ecology Group, Ecology and Evolutionary Biology Graduate Program, Dept of Biology, Dodge Family College of Arts and Sciences, Univ. of Oklahoma Norman OK USA
- Inst. for Chemistry and Biology of the Marine Environment (ICBM), Univ. of Oldenburg Wilhelmshaven Germany
| |
Collapse
|
18
|
Zhang H, Yan L, Yu L, Su H, Hu C, Zhang M, Kong Z. The diversity of resident passerine bird in the East Yunnan-Kweichow Plateau is closely related to plant species richness, vertical altitude difference and habitat area. Ecol Evol 2023; 13:e9735. [PMID: 36694543 PMCID: PMC9843479 DOI: 10.1002/ece3.9735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
East Yunnan-Kweichow Plateau is rich in biodiversity in China. Complex geographical and climatic conditions and rich bird resources made this area an ideal system for studying the spatial distribution mechanism and influencing factors of birds, which were still unknown. Bird community data from 37 sites in this region were collected, including 505 bird species and 164 species of resident passerine bird, were extracted for analysis. The taxonomic diversity, phylogenetic diversity, functional diversity (FD), and community structure index were calculated. Ordinary least square (OLS), spatial autoregressive models (SAR), and structural equation model (SEM) were used to explore the relationship between bird diversity index and environmental factors which were used to describe the habitat conditions of birds. Results indicated that species richness (SR), phylogenetic diversity (PD), and FD have similar distribution patterns and are mainly affected by vascular plant species richness, habitat area, and vertical altitude difference. The phylogenetic and functional structure of bird community changed in both longitude and latitude direction, and the phylogenetic structure of community was dispersed in the west and clustered in the east, significantly related to habitat area, and vertical altitude difference, the functional structure was dispersed in all sites, significantly related to average annual precipitation. The community in the west and south of the East Yunnan-Kweichow Plateau is mainly driven by interspecific competitive, while the process in the east and north is mainly driven by environmental filtration. Distribution pattern of bird diversity was caused by the comprehensive action of various habitat factors which were mainly related to food availability and habitat heterogeneity. For maintaining the living space of birds, the protection of urban parks, wetland parks, campuses, and other urban green spaces is as important as national and provincial nature reserves. Revealing the construction mechanism and main influencing factors of bird communities in different areas is conducive to targeted protection work.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Sciences, Guizhou UniversityGuiyangChina
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education) & Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICEAB), Institute of Agro‐Bioengineering & College of Life SciencesGuizhou UniversityGuiyangChina
- Aha Lake National Wetland ParkGuiyangChina
| | - Lingbin Yan
- College of Life Sciences, Guizhou UniversityGuiyangChina
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education) & Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICEAB), Institute of Agro‐Bioengineering & College of Life SciencesGuizhou UniversityGuiyangChina
| | - Lifei Yu
- College of Life Sciences, Guizhou UniversityGuiyangChina
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education) & Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICEAB), Institute of Agro‐Bioengineering & College of Life SciencesGuizhou UniversityGuiyangChina
| | - Haijun Su
- Forestry College, Guizhou UniversityGuiyangChina
- Research Center for Biodiversity and Natural ConservationGuizhou UniversityGuiyangChina
| | - Canshi Hu
- College of Life Sciences, Guizhou UniversityGuiyangChina
- Research Center for Biodiversity and Natural ConservationGuizhou UniversityGuiyangChina
| | - Mingming Zhang
- Forestry College, Guizhou UniversityGuiyangChina
- Research Center for Biodiversity and Natural ConservationGuizhou UniversityGuiyangChina
| | | |
Collapse
|
19
|
Zhou T, Zhang J, Qin Y, Zhou G, Wang C, Xu Y, Fei Y, Qiao X, Jiang M. Species Asynchrony and Large Trees Jointly Drive Community Stability in a Montane Subtropical Forest. Ecosystems 2022. [DOI: 10.1007/s10021-022-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Xu M, Li S, Dick JTA, Gu D, Fang M, Yang Y, Hu Y, Mu X. Exotic fishes that are phylogenetically close but functionally distant to native fishes are more likely to establish. GLOBAL CHANGE BIOLOGY 2022; 28:5683-5694. [PMID: 35904066 PMCID: PMC9543100 DOI: 10.1111/gcb.16360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Since Darwin's time, degree of ecological similarity between exotic and native species has been assumed to affect the establishment success or failure of exotic species. However, a direct test of the effect of exotic-native similarity on establishment of exotics is scarce because of the difficulty in recognizing failures of species to establish in the field. Here, using a database on the establishment success and failure of exotic fish species introduced into 673 freshwater lakes, we evaluate the effect of similarity on the establishment of exotic fishes by combining phylogenetic and functional information. We illustrate that, relative to other biotic and abiotic factors, exotic-native phylogenetic and functional similarities were the most important correlates of exotic fish establishment. While phylogenetic similarity between exotic and resident fish species promoted successful establishment, functional similarity led to failure of exotics to become established. Those exotic species phylogenetically close to, but functionally distant from, native fishes were most likely to establish successfully. Our findings provide a perspective to reconcile Darwin's naturalization conundrum and suggest that, while phylogenetic relatedness allows exotic fish species to pre-adapt better to novel environments, they need to possess distinct functional traits to reduce competition with resident native fish species.
Collapse
Affiliation(s)
- Meng Xu
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| | - Shao‐peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Dangen Gu
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| | - Miao Fang
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| | - Yexin Yang
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| | - Yinchang Hu
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| | - Xidong Mu
- Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien SpeciesMinistry of Agriculture and Rural AffairsGuangzhouChina
- Key Laboratory of Alien Species and Ecological Security (CAFS)Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhouChina
| |
Collapse
|
21
|
Perea AJ, Wiegand T, Garrido JL, Rey PJ, Alcántara JM. Spatial phylogenetic and phenotypic patterns reveal ontogenetic shifts in ecological processes of plant community assembly. OIKOS 2022. [DOI: 10.1111/oik.09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio J. Perea
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
| | - Thorsten Wiegand
- Dept of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - José L. Garrido
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
- Depto Ecología Evolutiva, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD‐CSIC) Sevilla Spain
| | - Pedro J. Rey
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| | - Julio M. Alcántara
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| |
Collapse
|
22
|
Razanajatovo M, Rakoto Joseph F, Rajaonarivelo Andrianina P, van Kleunen M. Floral visitation to alien plants is non‐linearly related to their phylogenetic and floral similarity to native plants. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mialy Razanajatovo
- Ecology, Department of Biology University of Konstanz Constance Germany
- Institute of Landscape and Plant Ecology University of Hohenheim Ottilie‐Zeller‐Weg 2 70599 Stuttgart Germany
| | | | | | - Mark van Kleunen
- Ecology, Department of Biology University of Konstanz Constance Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China
| |
Collapse
|
23
|
Griffith P, Lang JW, Turvey ST, Gumbs R. Using functional traits to identify conservation priorities for the world's crocodylians. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Phoebe Griffith
- Institute of Zoology Zoological Society of London London UK
- Wildlife Conservation Research Unit The Recanati‐Kaplan Centre, Department of Zoology, University of Oxford Oxford UK
| | - Jeffrey W. Lang
- Gharial Ecology Project Madras Crocodile Bank Trust Mamallapuram Tamil Nadu India
| | | | - Rikki Gumbs
- EDGE of Existence Programme Conservation and Policy, Zoological Society of London London UK
| |
Collapse
|
24
|
Tan EYW, Neo ML, Huang D. Assessing taxonomic, functional and phylogenetic diversity of giant clams across the Indo‐Pacific for conservation prioritization. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Edwin Y. W. Tan
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Mei Lin Neo
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Tropical Marine Science Institute National University of Singapore Singapore Singapore
| | - Danwei Huang
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Tropical Marine Science Institute National University of Singapore Singapore Singapore
- Centre for Nature‐based Climate Solutions National University of Singapore Singapore Singapore
- Lee Kong Chian Natural History Museum National University of Singapore Singapore Singapore
| |
Collapse
|
25
|
Valencia E, Galland T, Carmona CP, Goberna M, Götzenberger L, Lepš J, Verdú M, Macek P, de Bello F. The functional structure of plant communities drives soil functioning via changes in soil abiotic properties. Ecology 2022; 103:e3833. [DOI: 10.1002/ecy.3833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Enrique Valencia
- Departamento de Biología y Geología Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos Móstoles Spain
| | - Thomas Galland
- Department of Botany, Faculty of Sciences University of South Bohemia, České Budějovice Czech Republic
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Marta Goberna
- Department of Environment and Agronomy INIA‐CSIC Madrid Spain
| | - Lars Götzenberger
- Department of Botany, Faculty of Sciences University of South Bohemia, České Budějovice Czech Republic
- Institute of Botany Czech Academy of Sciences Třeboň Czech Republic
| | - Jan Lepš
- Department of Botany, Faculty of Sciences University of South Bohemia, České Budějovice Czech Republic
- Biology Research Centre, Institute of Entomology Czech Academy of Sciences, České Budějovice Czech Republic
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CSIC‐UV‐GV) Valencia Spain
| | - Petr Macek
- Biology Research Centre, Institute of Hydrobiology Czech Academy of Sciences, České Budějovice Czech Republic
| | - Francesco de Bello
- Department of Botany, Faculty of Sciences University of South Bohemia, České Budějovice Czech Republic
- Centro de Investigaciones sobre Desertificación (CSIC‐UV‐GV) Valencia Spain
| |
Collapse
|
26
|
Wang J, Wang Y, Qu M, Feng Y, Wu B, Lu Q, He N, Li J. Testing the Functional and Phylogenetic Assembly of Plant Communities in Gobi Deserts of Northern Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:952074. [PMID: 35923883 PMCID: PMC9340061 DOI: 10.3389/fpls.2022.952074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanism governing plant community assembly across large-scale Gobi deserts remains unclear. Here, we inferred the roles of different assembly processes in structuring plant communities in the Gobi deserts of the Qinghai-Tibet Plateau by using a phylogenetic tree, and leaf and root traits. The functional and phylogenetic structures of 183 plant communities were assessed, and their distributions were linked with environmental gradients. Our results demonstrated that functional convergence was prevalent in most functional traits (75% of the traits) and accentuated when all traits were combined. The phylogenetic structure exhibited significant divergence. We observed the contrasting response of functional and phylogenetic assembly structures to environmental gradients. More importantly, we found that the shifts in the functional assembly along environmental gradients were trait-specific, with dominant roles of local factors, such as gravel coverage and soil attributes, in determining the distribution patterns of most traits. However, the distribution patterns of leaf P concentration (LPC), root N concentration (RNC), and root P concentration (RPC) were mainly driven by climatic factors. These results reveal that niche-based processes, such as abiotic filtering and weaker competitive exclusion, are the major drivers of species co-occurrence, which results in the widespread coexistence of phylogenetically distinct but functionally similar species within the Gobi plant community. Our findings could improve the understanding of plant community assembly processes and biodiversity maintenance in extremely harsh drylands.
Collapse
Affiliation(s)
- Jianming Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
| | - Yin Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengjun Qu
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yiming Feng
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
| | - Jingwen Li
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Rehitha TV, Vineetha G, Madhu NV. Ecological habitat quality assessment of a tropical estuary using macrobenthic functional characteristics and biotic indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47629-47646. [PMID: 35184236 DOI: 10.1007/s11356-022-19295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Seasonal variation in the macrobenthic functional characteristics, such as trophic structure and secondary production, was studied, along with their structural characteristics such as density, biomass, and community distribution in Cochin estuary (CE), a tropical monsoonal estuary along the Southwest coast of India during 2018-2019. The biotic indices, AMBI (AZTI's Marine Biotic Index) and M-AMBI (Multivariate-AMBI) were used to assess the ecological quality of the study area by using the sensitivity of macrobenthic fauna to disturbances. A distinct temporal variation was evident in the macrobenthic structural characteristics, wherein high density, biomass, and species richness were observed during the post-monsoon. Polycheate species were dominant during pre-monsoon (Prionospio cirrifera) and monsoon (Mediomastus sp.), while gastropod species, Stenothyra perpumila, was dominant during post-monsoon. The trophic structure analysis revealed the dominance of deposit-feeding polychaetes during the pre-monsoon in association with the fine sediments laden with high organic carbon. In contrast, during post-monsoon, the polychaete trophic groups were more or less evenly distributed in the sandy substratum. The higher density of suspension feeders and herbivorous-grazers observed during the post-monsoon indicated improved habitat quality compared to the pre-monsoon dominated by the detritivores. The macrobenthic secondary production was also high during the post-monsoon, contributed by a diverse assemblage of molluscs, crustaceans, and polychaetes having size > 0.7 mm. The biotic indices also showed an evident increase in the habitat quality of the estuary from pre-monsoon to post-monsoon (AMBI, moderately disturbed to undisturbed; M-AMBI, poor-moderate-good to good-high conditions), similar to the results of benthic structural and functional characteristics. The study highlights the significance of the utility of benthic functional characteristics while assessing the habitat quality of an ecosystem.
Collapse
Affiliation(s)
- Thekkendavida Velloth Rehitha
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa- 403 804, Vasco-da-Gama, India.
| | - Gopinath Vineetha
- Central Marine Fisheries Research Institute, Post Box No. 1603, Ernakulam North P.O, Cochin -18, India
| | | |
Collapse
|
28
|
Cruz-Laufer AJ, Artois T, Koblmüller S, Pariselle A, Smeets K, Van Steenberge M, Vanhove MPM. Explosive networking: The role of adaptive host radiations and ecological opportunity in a species-rich host-parasite assembly. Ecol Lett 2022; 25:1795-1812. [PMID: 35726545 DOI: 10.1111/ele.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 01/09/2023]
Abstract
Many species-rich ecological communities emerge from adaptive radiation events. Yet the effects of adaptive radiation on community assembly remain poorly understood. Here, we explore the well-documented radiations of African cichlid fishes and their interactions with the flatworm gill parasites Cichlidogyrus spp., including 10,529 reported infections and 477 different host-parasite combinations collected through a survey of peer-reviewed literature. We assess how evolutionary, ecological, and morphological parameters determine host-parasite meta-communities affected by adaptive radiation events through network metrics, host repertoire measures, and network link prediction. The hosts' evolutionary history mostly determined host repertoires of the parasites. Ecological and evolutionary parameters predicted host-parasite interactions. Generally, ecological opportunity and fitting have shaped cichlid-Cichlidogyrus meta-communities suggesting an invasive potential for hosts used in aquaculture. Meta-communities affected by adaptive radiations are increasingly specialised with higher environmental stability. These trends should be verified across other systems to infer generalities in the evolution of species-rich host-parasite networks.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | | | - Antoine Pariselle
- ISEM, CNRS, IRD, Université de Montpellier, Montpellier, France.,Faculty of Sciences, Laboratory "Biodiversity, Ecology and Genome", Research Centre "Plant and Microbial Biotechnology, Biodiversity and Environment", Mohammed V University, Rabat, Morocco
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Maarten Van Steenberge
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Zhao F, Yang T, Luo C, Rao W, Yang G, Li G, Shen Z. Comparing Elevational Patterns of Taxonomic, Phylogenetic, and Functional Diversity of Woody Plants Reveal the Asymmetry of Community Assembly Mechanisms on a Mountain in the Hengduan Mountains Region. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contributions and interaction of biotic and abiotic processes in community assembly are crucial for understanding the elevational patterns of biodiversity. The combined analyses of taxonomic, phylogenetic, and functional diversity are necessary to resolve this issue. By investigating vegetation in 24 transects sampled on Hongla Snow Mountain, in the central Hengduan Mountain Ranges in Southwest China, we delineated the elevational vegetation spectrum on the eastern and western slopes, analyzed the elevational variation in taxonomic, phylogenetic, and functional diversity of woody plant species, and compared the community structure of phylogeny and function in the low-elevational shrublands, mid-elevational forests, and alpine shrubs and meadows. The species richness, phylogenetic diversity, and functional diversity of woody plants showed nonstandard hump-shaped patterns with two peaks along the elevational gradient. The community structure of phylogeny and function (including tree height, leaf area, specific leaf area, leaf thickness, bark thickness, and wood density) clustered in the low-elevation shrub communities, being random and over-dispersed in mid-elevational forests. The phylogenic structure was over-dispersed in alpine communities, whereas the functional structure was clustered. Elevational patterns in taxonomic, phylogenetic, and functional diversity, together with the mean and variation in woody plant functional traits, suggested drought stress and freeze stress as environmental filters dominating the assembly of low and high elevation non-forest communities, and a conspicuous effect of biotic facilitation was also suggested for alpine habitats. By contrast, interspecific competition dominated the community assembly of forests at mid-elevations. The difference in biodiversity indices between the west and east slopes reflected the effects of the Indian Monsoon on the geomorphic patterns of ecosystem structure. These results increased our understanding of biodiversity patterns and underlying mechanisms in the Hengduan Mountains of Southwest China and highlighted the priorities for biodiversity conservation in this region.
Collapse
|
30
|
Bosch NE, McLean M, Zarco-Perello S, Bennett S, Stuart-Smith RD, Vergés A, Pessarrodona A, Tuya F, Langlois T, Spencer C, Bell S, Saunders BJ, Harvey ES, Wernberg T. Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of top-down control on the rebound potential of temperate seaweed forests? GLOBAL CHANGE BIOLOGY 2022; 28:2296-2311. [PMID: 34981602 DOI: 10.1111/gcb.16070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.
Collapse
Affiliation(s)
- Nestor E Bosch
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Salvador Zarco-Perello
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Scott Bennett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Adriana Vergés
- Centre of Marine Science & Innovation, Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Albert Pessarrodona
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de G.C., Canary Islands, Spain
| | - Tim Langlois
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Claude Spencer
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sahira Bell
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Thomas Wernberg
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
31
|
Cruz-Elizalde R, Ochoa-Ochoa LM, Flores-Villela OA, Velasco JA. Taxonomic distinctiveness and phylogenetic variability of amphibians and reptiles in the cloud forest of Mexico. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Tobias JA. A bird in the hand: Global-scale morphological trait datasets open new frontiers of ecology, evolution and ecosystem science. Ecol Lett 2022; 25:573-580. [PMID: 35199920 DOI: 10.1111/ele.13960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
33
|
Müller J, Brandl R, Cadotte MW, Heibl C, Bässler C, Weiß I, Birkhofer K, Thorn S, Seibold S. A replicated study on the response of spider assemblages to regional and local processes. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, Glashüttenstraße 5 Rauhenebrach Germany
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Roland Brandl
- Department of Ecology ‐ Animal Ecology, Faculty of Biology Philipps‐Universität Marburg, Karl‐von‐Frisch Str. 8 Marburg Germany
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto–Scarborough Toronto Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Canada
| | - Christoph Heibl
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Claus Bässler
- Conservation Biology, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity Goethe‐University Frankfurt Frankfurt am Main Germany
| | - Ingmar Weiß
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Cottbus‐Senftenberg, Konrad‐Wachsmann Allee 6 Cottbus Germany
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, Glashüttenstraße 5 Rauhenebrach Germany
| | - Sebastian Seibold
- Technical University of Munich Freising Germany
- Berchtesgaden National Park Berchtesgaden Germany
| |
Collapse
|
34
|
Elek Z, Růžičková J, Ódor P. Functional plasticity of carabids can presume better the changes in community composition than taxon-based descriptors. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02460. [PMID: 34582618 DOI: 10.1002/eap.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Although the functional trait approach can facilitate the understanding of mechanisms that underline community responses to habitat alteration, only a few studies used this way on exploring the structure of insect assemblages compared to taxon-based analyses. We compared the descriptive power of medium-term effects (2014-2018) of forestry treatments in a temperate managed oak-dominated forest on taxon- vs. trait-based descriptors of ground beetle assemblages. The treatments included rotation forestry (partial preparation cutting, clear-cutting, retention-tree group, and mature closed forest as control) and continuous cover forestry (gap cutting) operations. The species composition was only slightly influenced by the treatments; on the ordination biplot, the control, retention tree group, and clear-cutting treatments formed relatively homogeneous groups, well separated from each other, while the others were scattered randomly in the ordination space. Over time, the species richness decreased in all treatments, but it was higher in the retention tree group treatment than in others in 2016 and 2017. The activity density also declined between years, but an immediate mass effect was revealed after the implementation of treatment types especially in the control, gap, and preparation cuts. We found that assemblages in the clear-cutting and retention-tree group had similar characteristics: high functional diversity; more open-habitat, generalist, and omnivore species and fewer carnivore species; while those in the control, gap, and preparation cutting groups had the opposite: lower functional diversity, more forest species, and more carnivorous species. Our findings will demonstrate that the simultaneous use of the two approaches will allow the most articulate understanding of the status of ground beetles assemblages in managed forests.
Collapse
Affiliation(s)
- Zoltán Elek
- MTA-ELTE-MTM Ecology Research Group, Hungarian Academy of Sciences, c/o Biological Institute, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
- Hungarian Natural History Museum, Baross u. 13, 1088, Budapest, Hungary
| | - Jana Růžičková
- MTA-ELTE-MTM Ecology Research Group, Hungarian Academy of Sciences, c/o Biological Institute, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
- Hungarian Natural History Museum, Baross u. 13, 1088, Budapest, Hungary
| | - Péter Ódor
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány út 2-4, 2163, Vácrátót, Hungary
| |
Collapse
|
35
|
Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol Evol 2022; 37:454-467. [DOI: 10.1016/j.tree.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
|
36
|
Pagani-Núñez E, Liang D, He C, Liu Y, Luo X, Goodale E. Dynamic trait-niche relationships shape niche partitioning across habitat transformation gradients. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Speed JDM, Chimal-Ballesteros JA, Martin MD, Barrio IC, Vuorinen KEM, Soininen EM. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? GLOBAL CHANGE BIOLOGY 2021; 27:6568-6577. [PMID: 34592044 DOI: 10.1111/gcb.15910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Poleward shifts in species distributions are expected and frequently observed with a warming climate. In Arctic ecosystems, the strong warming trends are associated with increasing greenness and shrubification. Vertebrate herbivores have the potential to limit greening and shrub advance and expansion on the tundra, posing the question of whether changes in herbivore communities could partly mediate the impacts of climate warming on Arctic tundra. Therefore, future changes in the herbivore community in the Arctic tundra will depend on whether the community tracks the changing climates directly (i.e. occurs in response to temperature) or indirectly, in response to vegetation changes (which can be modified by trophic interactions). In this study, we used biogeographic and remotely sensed data to quantify spatial variation in vertebrate herbivore communities across the boreal forest and Arctic tundra biomes. We then tested whether present-day herbivore community structure is determined primarily by temperature or vegetation. We demonstrate that vertebrate herbivore communities are significantly more diverse in the boreal forest than in the Arctic tundra in terms of species richness, phylogenetic diversity and functional diversity. A clear shift in community structure was observed at the biome boundary, with stronger northward declines in diversity in the Arctic tundra. Interestingly, important functional traits characterizing the role of herbivores in limiting tundra vegetation change, such as body mass and woody plant feeding, did not show threshold changes across the biome boundary. Temperature was a more important determinant of herbivore community structure across these biomes than vegetation productivity or woody plant cover. Thus, our study does not support the premise that herbivore-driven limitation of Arctic tundra shrubification or greening would limit herbivore community change in the tundra. Instead, borealization of tundra herbivore communities is likely to result from the direct effect of climate warming.
Collapse
Affiliation(s)
- James D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - J Adrian Chimal-Ballesteros
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavík, Iceland
| | - Katariina E M Vuorinen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eeva M Soininen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
38
|
Arnillas CA, Borer ET, Seabloom EW, Alberti J, Baez S, Bakker JD, Boughton EH, Buckley YM, Bugalho MN, Donohue I, Dwyer J, Firn J, Gridzak R, Hagenah N, Hautier Y, Helm A, Jentsch A, Knops JMH, Komatsu KJ, Laanisto L, Laungani R, McCulley R, Moore JL, Morgan JW, Peri PL, Power SA, Price J, Sankaran M, Schamp B, Speziale K, Standish R, Virtanen R, Cadotte MW. Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecol Evol 2021; 11:17744-17761. [PMID: 35003636 PMCID: PMC8717298 DOI: 10.1002/ece3.8266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022] Open
Abstract
Biotic and abiotic factors interact with dominant plants-the locally most frequent or with the largest coverage-and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
Collapse
Affiliation(s)
- Carlos Alberto Arnillas
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoONCanada
| | | | | | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC, UNMdP, CONICET)Mar del PlataArgentina
| | - Selene Baez
- Department of BiologyEscuela Politécnica NacionalQuitoEcuador
| | - Jonathan D. Bakker
- School of Environmental and Forest SciencesUniversity of WashingtonSeattleWashingtonUSA
| | | | - Yvonne M. Buckley
- School of Natural Sciences, ZoologyTrinity College DublinDublinIreland
| | - Miguel Nuno Bugalho
- Centre for Applied Ecology Prof. Baeta Neves (CEABN‐InBIO)School of AgricultureUniversity of LisbonLisbonPortugal
| | - Ian Donohue
- School of Natural Sciences, ZoologyTrinity College DublinDublinIreland
| | - John Dwyer
- University of Queensland, School of Biological SciencesST‐LuciaQldAustralia
| | - Jennifer Firn
- Queensland University of Technology (QUT) BrisbaneQldAustralia
| | | | - Nicole Hagenah
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Yann Hautier
- Ecology and Biodiversity GroupDepartment of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Aveliina Helm
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Anke Jentsch
- Department of Disturbance EcologyBayCEERUniversity of BayreuthBayreuthGermany
| | - Johannes M. H. Knops
- Department of Health and Environmental SciencesXi'an Jiaotong Liverpool UniversitySuzhouChina
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | | | - Lauri Laanisto
- Department of Agricutural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | | | - Rebecca McCulley
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Joslin L. Moore
- School of Biological SciencesMonash UniversityClaytonVicAustralia
| | | | | | - Sally A. Power
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithAustralia
| | - Jodi Price
- Institute for Land, Water and SocietyCharles Sturt UniversityAlburyNSWAustralia
| | - Mahesh Sankaran
- National Centre for Biological SciencesTIFRBengaluruIndia
- School of BiologyUniversity of LeedsLeedsUK
| | | | - Karina Speziale
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio EcotonoINIBIOMA (CONICET‐UNCOMA)San Carlos de BarilocheRío NegroArgentina
| | - Rachel Standish
- Environmental and Conservation Sciences, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoONCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
39
|
Peterson K, Ruffley M, Parent CE. Phylogenetic diversity and community assembly in a naturally fragmented system. Ecol Evol 2021; 11:18066-18080. [PMID: 35003658 PMCID: PMC8717291 DOI: 10.1002/ece3.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022] Open
Abstract
We sought to assess effects of fragmentation and quantify the contribution of ecological processes to community assembly by measuring species richness, phylogenetic, and phenotypic diversity of species found in local and regional plant communities. Specifically, our fragmented system is Craters of the Moon National Monument and Preserve, Idaho, USA. CRMO is characterized by vegetated islands, kipukas, that are isolated in a matrix of lava. We used floristic surveys of vascular plants in 19 kipukas to create a local species list to compare traditional dispersion metrics, mean pairwise distance, and mean nearest taxon distance (MPD and MNTD), to a regional species list with phenotypic and phylogenetic data. We combined phylogenetic and functional trait data in a novel machine-learning model selection approach, Community Assembly Model Inference (CAMI), to infer probability associated with different models of community assembly given the data. Finally, we used linear regression to explore whether the geography of kipukas explained estimated support for community assembly models. Using traditional metrics of MPD and MNTD neutral processes received the most support when comparing kipuka species to regional species. Individually no kipukas showed significant support for overdispersion. Rather, five kipukas showed significant support for phylogenetic clustering using MPD and two kipukas using MNTD. Using CAMI, we inferred neutral and filtering models structured the kipuka plant community for our trait of interest. Finally, we found as species richness in kipukas increases, model support for competition decreases and lower elevation kipukas show more support for habitat filtering models. While traditional phylogenetic community approaches suggest neutral assembly dynamics, recently developed approaches utilizing machine learning and model choice revealed joint influences of assembly processes to form the kipuka plant communities. Understanding ecological processes at play in naturally fragmented systems will aid in guiding our understanding of how fragmentation impacts future changes in landscapes.
Collapse
Affiliation(s)
- Katie Peterson
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Megan Ruffley
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Christine E. Parent
- Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
- Institute for Interdisiplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
40
|
Qiao X, Zhang N, Zhang C, Zhang Z, Zhao X, Gadow K. Unravelling biodiversity–productivity relationships across a large temperate forest region. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuetao Qiao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Naili Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Zhonghui Zhang
- Jilin Provincial Academy of Forestry Sciences Changchun China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China
| | - Klaus Gadow
- Faculty of Forestry and Forest Ecology Georg‐August‐University Göttingen Göttingen Germany
- Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa
| |
Collapse
|
41
|
Lee RH, Morgan B, Liu C, Fellowes JR, Guénard B. Secondary forest succession buffers extreme temperature impacts on subtropical Asian ants. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Roger Ho Lee
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Brett Morgan
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Cong Liu
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology Harvard University 26 Oxford Street Cambridge Massachusetts 02138 USA
| | | | - Benoit Guénard
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| |
Collapse
|
42
|
Phylogenetic and Functional Traits Verify the Combined Effect of Deterministic and Stochastic Processes in the Community Assembly of Temperate Forests along an Elevational Gradient. FORESTS 2021. [DOI: 10.3390/f12050591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Explaining community assembly mechanisms along elevational gradients dominated by deterministic processes or stochastic processes is a pressing challenge. Many studies suggest that phylogenetic and functional diversity are significant indicators of the process. In this study, we analyzed the structure and beta diversity of phylogenetic and functional traits along an elevational gradient and discussed the effects of environmental and spatial factors. We found that the phylogenetic and functional traits showed inconsistent changes, and their variations were closely related to the abiotic environment. The results suggested that the community assembly of woody plants was obviously affected by the combined effect of deterministic processes and the stochastic hypothesis (primarily by the latter). Phylogenetic and functional traits had a certain relationship but changed according to different rules. These results enhance our understanding of the assembly mechanism of forest communities by considering both phylogenetic and functional traits.
Collapse
|
43
|
Jiang F, Cadotte MW, Jin G. Individual-level leaf trait variation and correlation across biological and spatial scales. Ecol Evol 2021; 11:5344-5354. [PMID: 34026011 PMCID: PMC8131770 DOI: 10.1002/ece3.7425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/11/2022] Open
Abstract
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade-offs and correlations among individual-level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long-term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%-63%) variation in leaf-level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait-based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.
Collapse
Affiliation(s)
- Feng Jiang
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoONCanada
| | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoONCanada
- Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Guangze Jin
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of EducationNortheast Forestry UniversityHarbinChina
| |
Collapse
|
44
|
Krasnov BR, Spickett A, Junker K, van der Mescht L, Matthee S. Functional and phylogenetic uniqueness of helminth and flea assemblages of two South African rodents. Int J Parasitol 2021; 51:865-876. [PMID: 33848500 DOI: 10.1016/j.ijpara.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
The loss of a particular species from a community may have different effects on its functioning, depending on the presence or absence of functionally similar or phylogenetically close species in that community (redundancy). Redundancy is thus defined as the fraction of species diversity not expressed by functional or phylogenetic diversity. We assessed functional and phylogenetic alpha- and beta-redundancy in helminth and flea assemblages of two species of South African rodents, Rhabdomys dilectus and Rhabdomys pumilio, using community uniqueness as the inverse indicator of redundancy. We asked whether patterns of functional and phylogenetic alpha- and beta-uniqueness differed between (i) parasite groups (endo- versus ectoparasites), (ii) host species within parasite groups, and (iii) biomes within host species. We found differences between the two hosts in the functional and phylogenetic alpha-uniqueness (but not beta-uniqueness) of flea, but not helminth, assemblages. Significant correlations between the alpha-uniqueness of parasite assemblages and the total parasite prevalence were found only for phylogenetic uniqueness and only in helminths. Pairwise site-by-site dissimilarities in uniqueness (beta-uniqueness) and pairwise dissimilarity in prevalence were significantly associated (positively) in helminths but not in fleas. A between-biome difference in functional (but not phylogenetic) alpha-uniqueness was found in both helminth and flea assemblages harboured by R. pumilio. We conclude that the resilience of parasite assemblages in terms of the effect on hosts depends not only on their transmission strategy but also on traits of host species and environmental factors.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| | - Andrea Spickett
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Kerstin Junker
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Luther van der Mescht
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
45
|
Abstract
Perhaps more than any other ecological discipline, invasion biology has married the practices of basic science and the application of that science. The conceptual frameworks of population regulation, metapopulations, supply-side ecology, and community assembly have all to some degree informed the regulation, management, and prevention of biological invasions. Invasion biology needs to continue to adopt emerging frameworks and paradigms to progress as both a basic and applied science. This need is urgent as the biological invasion problem continues to worsen. The development of metacommunity theory in the last two decades represents a paradigm-shifting approach to community ecology that emphasizes the multi-scale nature of community assembly and biodiversity regulation. Work on metacommunities has demonstrated that even relatively simple processes at local scales are often heavily influenced by regional-scale processes driven primarily by the dispersal of organisms. Often the influence of dispersal interacts with, or even swamps, the influence of local-scale drivers like environmental conditions and species interactions. An emphasis on dispersal and a focus on multi-scale processes enable metacommunity theory to contribute strongly to the advancement of invasion biology. Propagule pressure of invaders has been identified as one of the most important drivers facilitating invasion, so the metacommunity concept, designed to address how dispersal-driven dynamics affect community structure, can directly address many of the central questions of invasion biology. Here we revisit many of the important concepts and paradigms of biological invasions—propagule pressure, biotic resistance, enemy release, functional traits, neonative species, human-assisted transport,—and view those concepts through the lens of metacommunity theory. In doing so, we accomplish several goals. First, we show that work on metacommunities has generated multiple predictions, models, and the tools that can be directly applied to invasion scenarios. Among these predictions is that invasibility of a community should decrease with both local controls on community assembly, and the dispersal rates of native species. Second, we demonstrate that framing biological invasions in metacommunity terms actually unifies several seemingly disparate concepts central to invasion biology. Finally, we recommend several courses of action for the control and management of invasive species that emerge from applying the concepts of metacommunity theory.
Collapse
|
46
|
Doerfler I, Cadotte MW, Weisser WW, Müller J, Gossner MM, Heibl C, Bässler C, Thorn S, Seibold S. Restoration‐oriented forest management affects community assembly patterns of deadwood‐dependent organisms. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inken Doerfler
- Terrestrial Ecology Research Group Technical University of Munich Freising Germany
- Vegetation Science & Nature Conservation Institute of Biology and Environmental ScienceUniversity of Oldenburg Oldenburg Germany
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto Scarborough Toronto ON Canada
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group Technical University of Munich Freising Germany
| | - Jörg Müller
- Field Station Fabrikschleichach Biozentrum University of Würzburg Rauhenebrach Germany
- Department of Conservation and Research Bavarian Forest National Park Grafenau Germany
| | - Martin M. Gossner
- Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Christoph Heibl
- Department of Conservation and Research Bavarian Forest National Park Grafenau Germany
| | - Claus Bässler
- Department of Conservation and Research Bavarian Forest National Park Grafenau Germany
- Department of Biodiversity Conservation Faculty of Biological Sciences Institute for Ecology, Evolution and DiversityGoethe University Frankfurt Frankfurt am Main Germany
| | - Simon Thorn
- Field Station Fabrikschleichach Biozentrum University of Würzburg Rauhenebrach Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Technical University of Munich Freising Germany
- Berchtesgaden National Park Berchtesgaden Germany
| |
Collapse
|
47
|
Liao J, Liao T, He X, Zhang T, Li D, Luo X, Wu Y, Ran J. The effects of agricultural landscape composition and heterogeneity on bird diversity and community structure in the Chengdu Plain, China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Leopold DR, Fukami T. Greater local diversity under older species pools may arise from enhanced competitive equivalence. Ecol Lett 2020; 24:310-318. [PMID: 33216438 DOI: 10.1111/ele.13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Ecological communities typically contain more species when located within geologically older regions. This pattern is traditionally attributed to the long-term accumulation of species in the regional species pool, with local species interactions playing a minor role. We provide evidence suggesting a more important role of local species interactions than generally assumed. We assembled 320 communities of root-associated fungi under 80 species pools, varying species pool richness and the mean age of the sites from which the fungi were collected across a 4-myr soil chronosequence. We found that local diversity increased more with increasing species pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating greater competitive equivalence among species. Our results suggest that older regions have higher local richness not simply because older pools are more speciose but also because species have evolved traits that allow them to locally co-occur.
Collapse
Affiliation(s)
- Devin R Leopold
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Sun J, Wen Z, Feijó A, Cheng J, Wang Y, Li S, Ge D, Xia L, Yang Q. Elevation patterns and critical environmental drivers of the taxonomic, functional, and phylogenetic diversity of small mammals in a karst mountain area. Ecol Evol 2020; 10:10899-10911. [PMID: 33072304 PMCID: PMC7548175 DOI: 10.1002/ece3.6750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
Understanding how biodiversity components are related under different environmental factors is a fundamental challenge for ecology studies, yet there is little knowledge of this interplay among the biotas, especially small mammals, in karst mountain areas. Here, we examine the elevation patterns of the taxonomic diversity (TD), phylogenetic diversity (PD), and functional diversity (FD) of small mammals in a karst mountain area, the Wuling Mountains, Southwest China, and compare these patterns between taxa (Rodentia and Eulipotyphla) and scales (broad‐ and narrow‐range species). We also disentangle the impacts of the human influence index, net primary productivity (NPP), normalized difference vegetation index (NDVI), annual precipitation (AP), and annual mean temperature (AMT) on these three facets of biodiversity by using structural equation modeling. We recorded a total of 39 small mammal species, including 26 rodents and 13 species of the order Eulipotyphla. Our study shows that the facets of biodiversity are spatially incongruent. Net primary productivity has a positive effect on the three facets for most groups, while the effect of the NDVI is negative for TD and PD in most groups. AMT temperature and AP have negative effects on FD and PD, whereas TD is dependent on the species range scale. The human influence index effect on TD and PD also depends on the species range scale. These findings provide robust evidence that the ecological drivers of biodiversity differ among different biotas and different range scales, and future research should use multifacet approach to determine biodiversity conservation strategies.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yanqun Wang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Song Li
- Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
50
|
Zhang J, Swenson NG, Liu J, Liu M, Qiao X, Jiang M. A phylogenetic and trait-based analysis of community assembly in a subtropical forest in central China. Ecol Evol 2020; 10:8091-8104. [PMID: 32788963 PMCID: PMC7417225 DOI: 10.1002/ece3.6465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co-occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait-based tests to gain insights into community processes at four spatial scales in a large stem-mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait-based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co-occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait-based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Jianming Liu
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengting Liu
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| |
Collapse
|