1
|
Guibourd de Luzinais V, Gascuel D, Reygondeau G, Cheung WWL. Large potential impacts of marine heatwaves on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17437. [PMID: 39054881 DOI: 10.1111/gcb.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, The University of Miami, Florida, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Veenhof RJ, Champion C, Dworjanyn SA, Schwoerbel J, Visch W, Coleman MA. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. ANNALS OF BOTANY 2024; 133:153-168. [PMID: 37665952 PMCID: PMC10921825 DOI: 10.1093/aob/mcad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS Kelp forests underpin temperate marine ecosystems but are declining due to ocean warming, causing loss of associated ecosystem services. Projections suggest significant future decline but often only consider the persistence of adult sporophytes. Kelps have a biphasic life cycle, and the haploid gametophyte can be more thermally tolerant than the sporophyte. Therefore, projections may be altered when considering the thermal tolerance of gametophytes. METHODS We undertook thermal tolerance experiments to quantify the effect of temperature on gametophyte survival, relative growth rate (RGR) and sex ratio for three genetically distinct populations of Ecklonia radiata gametophytes from comparatively high, mid- and low latitudes (43°, 33° and 30°S). We then used these data to project the likely consequences of climate-induced thermal change on gametophyte persistence and performance across its eastern Australian range, using generalized additive and linear models. KEY RESULTS All populations were adapted to local temperatures and their thermal maximum was 2-3 °C above current maximum in situ temperatures. The lowest latitude population was most thermally tolerant (~70 % survival up to 27 °C), while survival and RGR decreased beyond 25.5 and 20.5 °C for the mid- and low-latitude populations, respectively. Sex ratios were skewed towards females with increased temperature in the low- and high-latitude populations. Spatially explicit model projections under future ocean warming (2050-centred) revealed a minimal decline in survival (0-30 %) across populations, relative to present-day predictions. RGRs were also projected to decline minimally (0-2 % d-1). CONCLUSIONS Our results contrast with projections for the sporophyte stage of E. radiata, which suggest a 257-km range contraction concurrent with loss of the low-latitude population by 2100. Thermal adaptation in E. radiata gametophytes suggests this life stage is likely resilient to future ocean warming and is unlikely to be a bottleneck for the future persistence of kelp.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - J Schwoerbel
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - W Visch
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| |
Collapse
|
3
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Lavin CP, Pauly D, Dimarchopoulou D, Liang C, Costello MJ. Fishery catch is affected by geographic expansion, fishing down food webs and climate change in Aotearoa, New Zealand. PeerJ 2023; 11:e16070. [PMID: 37750081 PMCID: PMC10518166 DOI: 10.7717/peerj.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
Historical fishing effort has resulted, in many parts of the ocean, in increasing catches of smaller, lower trophic level species once larger higher trophic level species have been depleted. Concurrently, changes in the geographic distribution of marine species have been observed as species track their thermal affinity in line with ocean warming. However, geographic shifts in fisheries, including to deeper waters, may conceal the phenomenon of fishing down the food web and effects of climate warming on fish stocks. Fisheries-catch weighted metrics such as the Mean Trophic Level (MTL) and Mean Temperature of the Catch (MTC) are used to investigate these phenomena, although apparent trends of these metrics can be masked by the aforementioned geographic expansion and deepening of fisheries catch across large areas and time periods. We investigated instances of both fishing down trophic levels and climate-driven changes in the geographic distribution of fished species in New Zealand waters from 1950-2019, using the MTL and MTC. Thereafter, we corrected for the masking effect of the geographic expansion of fisheries within these indices by using the Fishing-in-Balance (FiB) index and the adapted Mean Trophic Level (aMTL) index. Our results document the offshore expansion of fisheries across the New Zealand Exclusive Economic Zone (EEZ) from 1950-2019, as well as the pervasiveness of fishing down within nearshore fishing stock assemblages. We also revealed the warming of the MTC for pelagic-associated fisheries, trends that were otherwise masked by the depth- and geographic expansion of New Zealand fisheries across the study period.
Collapse
Affiliation(s)
| | - Daniel Pauly
- Sea Around Us, Institute for the Ocean and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna Dimarchopoulou
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States
| | - Cui Liang
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | |
Collapse
|
5
|
Geraldi NR, Vozzo ML, Fegley SR, Anton A, Peterson CH. Oyster abundance on subtidal reefs depends on predation, location, and experimental duration. Ecosphere 2022. [DOI: 10.1002/ecs2.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nathan R. Geraldi
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Maria L. Vozzo
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Stephen R. Fegley
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| | - Andrea Anton
- Global Change Research Group, IMEDEA (CSIC‐UIB) Mediterranean Institute for Advanced Studies Esporles Illes Balears Spain
| | - Charles H. Peterson
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| |
Collapse
|
6
|
de la Vega C, Buchanan PJ, Tagliabue A, Hopkins JE, Jeffreys RM, Frie AK, Biuw M, Kershaw J, Grecian J, Norman L, Smout S, Haug T, Mahaffey C. Multi-decadal environmental change in the Barents Sea recorded by seal teeth. GLOBAL CHANGE BIOLOGY 2022; 28:3054-3065. [PMID: 35202506 PMCID: PMC9314922 DOI: 10.1111/gcb.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Multiple environmental forcings, such as warming and changes in ocean circulation and nutrient supply, are affecting the base of Arctic marine ecosystems, with cascading effects on the entire food web through bottom-up control. Stable nitrogen isotopes (δ15 N) can be used to detect and unravel the impact of these forcings on this unique ecosystem, if the many processes that affect the δ15 N values are constrained. Combining unique 60-year records from compound specific δ15 N biomarkers on harp seal teeth alongside state-of-the-art ocean modelling, we observed a significant decline in the δ15 N values at the base of the Barents Sea food web from 1951 to 2012. This strong and persistent decadal trend emerges due to the combination of anthropogenic atmospheric nitrogen deposition in the Atlantic, increased northward transport of Atlantic water through Arctic gateways and local feedbacks from increasing Arctic primary production. Our results suggest that the Arctic ecosystem has been responding to anthropogenically induced local and remote drivers, linked to changing ocean biology, chemistry and physics, for at least 60 years. Accounting for these trends in δ15 N values at the base of the food web is essential to accurately detect ecosystem restructuring in this rapidly changing environment.
Collapse
Affiliation(s)
- Camille de la Vega
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
- Present address:
Leibniz Institute for Baltic Sea Research, WarnemündeRostock18119Germany
| | | | | | | | | | | | - Martin Biuw
- Institute of Marine ResearchFram CentreTromsøNorway
| | - Joanna Kershaw
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - James Grecian
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Louisa Norman
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Sophie Smout
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Tore Haug
- Institute of Marine ResearchFram CentreTromsøNorway
| | - Claire Mahaffey
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Boyce DG, Petrie B, Frank KT. Fishing, predation, and temperature drive herring decline in a large marine ecosystem. Ecol Evol 2021; 11:18136-18150. [PMID: 35003663 PMCID: PMC8717267 DOI: 10.1002/ece3.8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
Since 1960, landings of Atlantic herring have been the greatest of any marine species in Canada, surpassing Atlantic cod and accounting for 24% of the total seafood harvested in Atlantic Canada. The Scotian Shelf-Bay of Fundy herring fisheries (NAFO Division 4VWX) is among Canada's oldest and drives this productivity, accounting for up to 75% of the total herring catch in some years. The stocks' productivity and overall health have declined since 1965. Despite management measures to promote recovery implemented since 2003, biomass remains low and is declining. The factors that drive the productivity of 4VWX herring are primarily unresolved, likely impeding the effectiveness of management actions on this stock. We evaluated potential drivers of herring variability by analyzing 52 time-series that describe the temporal and spatial evolution of the 4VWX herring population and the physical, ecological, and anthropogenic factors that could affect them using structural equation models. Variation in herring biomass was best accounted for by the exploitation rate's negative effect and the geographic distribution of fishing and recruitment. Thermal phenology and temperature adversely and egg predation positively impacted the early life stage mortality rate and, ultimately, adult biomass. These findings are broadly relevant to fisheries management, but particularly for 4VWX herring, where the current management approach does not consider their early life stage dynamics or assess them within the ecosystem or climate change contexts.
Collapse
Affiliation(s)
- Daniel G. Boyce
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Brian Petrie
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
| | - Kenneth T. Frank
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
| |
Collapse
|
8
|
López-López L, Genner MJ, Tarling GA, Saunders RA, O’Gorman EJ. Ecological Networks in the Scotia Sea: Structural Changes Across Latitude and Depth. Ecosystems 2021. [DOI: 10.1007/s10021-021-00665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Fraser KM, Lefcheck JS, Ling SD, Mellin C, Stuart-Smith RD, Edgar GJ. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc Biol Sci 2020; 287:20201798. [PMID: 33352078 PMCID: PMC7779515 DOI: 10.1098/rspb.2020.1798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 11/12/2022] Open
Abstract
Primary productivity of marine ecosystems is largely driven by broad gradients in environmental and ecological properties. By contrast, secondary productivity tends to be more variable, influenced by bottom-up (resource-driven) and top-down (predatory) processes, other environmental drivers, and mediation by the physical structure of habitats. Here, we use a continental-scale dataset on small mobile invertebrates (epifauna), common on surfaces in all marine ecosystems, to test influences of potential drivers of temperature-standardized secondary production across a large biogeographic range. We found epifaunal production to be remarkably consistent along a temperate to tropical Australian latitudinal gradient of 28.6°, spanning kelp forests to coral reefs (approx. 3500 km). Using a model selection procedure, epifaunal production was primarily related to biogenic habitat group, which explained up to 45% of total variability. Production was otherwise invariant to predictors capturing primary productivity, the local biomass of fishes (proxy for predation pressure), and environmental, geographical, and human impacts. Highly predictable levels of epifaunal productivity associated with distinct habitat groups across continental scales should allow accurate modelling of the contributions of these ubiquitous invertebrates to coastal food webs, thus improving understanding of likely changes to food web structure with ocean warming and other anthropogenic impacts on marine ecosystems.
Collapse
Affiliation(s)
- K. M. Fraser
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - J. S. Lefcheck
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - S. D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - C. Mellin
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R. D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - G. J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| |
Collapse
|
10
|
Climate drives the geography of marine consumption by changing predator communities. Proc Natl Acad Sci U S A 2020; 117:28160-28166. [PMID: 33106409 DOI: 10.1073/pnas.2005255117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.
Collapse
|
11
|
Madin EMP, Madin JS, Harmer AMT, Barrett NS, Booth DJ, Caley MJ, Cheal AJ, Edgar GJ, Emslie MJ, Gaines SD, Sweatman HPA. Latitude and protection affect decadal trends in reef trophic structure over a continental scale. Ecol Evol 2020; 10:6954-6966. [PMID: 32760504 PMCID: PMC7391320 DOI: 10.1002/ece3.6347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects. Using time-series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long-term trophic group population density trends, latitude, and exploitation status over a continental-scale biogeographic range. Specifically, we amalgamated two long-term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom-up driven in tropical systems and top-down driven in temperate systems. Further, alternating long-term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top-down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long-term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no-take marine reserves; however, exploitation status did not affect the likelihood of alternating long-term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top-down control does not universally vary in this system based on exploitation level.
Collapse
Affiliation(s)
- Elizabeth M. P. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Joshua S. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Aaron M. T. Harmer
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Neville S. Barrett
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David J. Booth
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - M. Julian Caley
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
- Australian Research Council Centre of Excellence for Mathematical and Statistical FrontiersThe University of MelbourneParkvilleVICAustralia
| | | | - Graham J. Edgar
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Steven D. Gaines
- Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCAUSA
| | | |
Collapse
|
12
|
Rogers TL, Munch SB, Stewart SD, Palkovacs EP, Giron-Nava A, Matsuzaki SIS, Symons CC. Trophic control changes with season and nutrient loading in lakes. Ecol Lett 2020; 23:1287-1297. [PMID: 32476249 PMCID: PMC7384198 DOI: 10.1111/ele.13532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Experiments have revealed much about top‐down and bottom‐up control in ecosystems, but manipulative experiments are limited in spatial and temporal scale. To obtain a more nuanced understanding of trophic control over large scales, we explored long‐term time‐series data from 13 globally distributed lakes and used empirical dynamic modelling to quantify interaction strengths between zooplankton and phytoplankton over time within and across lakes. Across all lakes, top‐down effects were associated with nutrients, switching from negative in mesotrophic lakes to positive in oligotrophic lakes. This result suggests that zooplankton nutrient recycling exceeds grazing pressure in nutrient‐limited systems. Within individual lakes, results were consistent with a ‘seasonal reset’ hypothesis in which top‐down and bottom‐up interactions varied seasonally and were both strongest at the beginning of the growing season. Thus, trophic control is not static, but varies with abiotic conditions – dynamics that only become evident when observing changes over large spatial and temporal scales.
Collapse
Affiliation(s)
- Tanya L Rogers
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, 95060, USA
| | - Stephan B Munch
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, 95060, USA
| | | | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Alfredo Giron-Nava
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Shin-Ichiro S Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Celia C Symons
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, 95060, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
13
|
Future ocean biomass losses may widen socioeconomic equity gaps. Nat Commun 2020; 11:2235. [PMID: 32376884 PMCID: PMC7203146 DOI: 10.1038/s41467-020-15708-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/23/2020] [Indexed: 11/08/2022] Open
Abstract
Future climate impacts and their consequences are increasingly being explored using multi-model ensembles that average across individual model projections. Here we develop a statistical framework that integrates projections from coupled ecosystem and earth-system models to evaluate significance and uncertainty in marine animal biomass changes over the 21st century in relation to socioeconomic indicators at national to global scales. Significant biomass changes are projected in 40%–57% of the global ocean, with 68%–84% of these areas exhibiting declining trends under low and high emission scenarios, respectively. Given unabated emissions, maritime nations with poor socioeconomic statuses such as low nutrition, wealth, and ocean health will experience the greatest projected losses. These findings suggest that climate-driven biomass changes will widen existing equity gaps and disproportionally affect populations that contributed least to global CO2 emissions. However, our analysis also suggests that such deleterious outcomes are largely preventable by achieving negative emissions (RCP 2.6). Numerous marine ecosystem models are used to project animal biomass over time but integrating them can be challenging. Here the authors develop a test for statistical significance in multi-model ensemble trends, and thus relate future biomass trends to current patterns of ecological and socioeconomic status.
Collapse
|
14
|
du Pontavice H, Gascuel D, Reygondeau G, Maureaud A, Cheung WWL. Climate change undermines the global functioning of marine food webs. GLOBAL CHANGE BIOLOGY 2020; 26:1306-1318. [PMID: 31802576 DOI: 10.1111/gcb.14944] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 05/06/2023]
Abstract
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life-history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the 'no effective mitigation' representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.
Collapse
Affiliation(s)
- Hubert du Pontavice
- Agrocampus Ouest, Ecology and Ecosystem Health Research Unit, Rennes, France
- Changing Ocean Research Unit, Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Didier Gascuel
- Agrocampus Ouest, Ecology and Ecosystem Health Research Unit, Rennes, France
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolutionary Biology Max Planck, Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, USA
| | - Aurore Maureaud
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - William W L Cheung
- Changing Ocean Research Unit, Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Walters C, Christensen V. Effect of non-additivity in mortality rates on predictions of potential yield of forage fishes. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
The marine fish food web is globally connected. Nat Ecol Evol 2019; 3:1153-1161. [PMID: 31358950 DOI: 10.1038/s41559-019-0950-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.
Collapse
|
17
|
Pulina S, Lugliè A, Mariani MA, Sarria M, Sechi N, Padedda BM. Multiannual decrement of nutrient concentrations and phytoplankton cell size in a Mediterranean reservoir. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reservoirs are primary water resources for many uses in the Mediterreanean region and need dedicated studies for understanding the complexity of their dynamics particularly vulnerable to local and global stressors. This study focused on phytoplankton variations in relation to seasonal environmental changes on a multiannual time scale (2006–2015) at a Mediterranean eutrophic reservoir (Bidighinzu Lake, Italy) belonging to the Italian, European and International Long Term Ecological Research networks. Phytoplankton cell density, volume and biomass and chlorophyll a concentrations were analysed together with meteo-climatic, hydrological, physical and chemical variables to detect trends and correlations. The period under study was also compared with previous years to assess the presence of significant differences in the environmental and planktonic compartments. Multiannual changes were more pronounced in summer than in the other seasons during the decade under study. The most conspicuous environmental changes were a significant decrease in summer nutrient concentrations in the reservoir and a simultaneous anthropic pressure reduction in the watershed. In addition, the mixing zone and euphotic zone ratio also increased. Multiannual changes in summer phytoplankton composition consisted of an increased density of smaller Bacillariophyceae and Cyanophyceae, which replaced larger species of the same phytoplankton classes. This resulted in opposite trends of total phytoplankton cell density (increasing) and mean phytoplankton cell volume (decreasing) over the study years. The nutrient decrement was statistically the strongest environmental driver of the phytoplankton changes observed in the reservoir. However, the mixing zone and the euphotic zone ratio and water temperature also significantly affected the multiannual phytoplankton variations. Therefore, we conclude that the success of small cell-sized phytoplankton in Bidighinzu Lake was most probably due to the synergic interactions of more environmental forces related to changing anthropic pressures and climate variability. Our results highlight the importance of long-term monitoring of reservoirs in the Mediterranean basin, especially in semi-arid regions where the need and scarcity of high quality water will be further exacerbated due to the global climate change.
Collapse
|
18
|
Yurkowski DJ, Auger-Méthé M, Mallory ML, Wong SNP, Gilchrist G, Derocher AE, Richardson E, Lunn NJ, Hussey NE, Marcoux M, Togunov RR, Fisk AT, Harwood LA, Dietz R, Rosing-Asvid A, Born EW, Mosbech A, Fort J, Grémillet D, Loseto L, Richard PR, Iacozza J, Jean-Gagnon F, Brown TM, Westdal KH, Orr J, LeBlanc B, Hedges KJ, Treble MA, Kessel ST, Blanchfield PJ, Davis S, Maftei M, Spencer N, McFarlane-Tranquilla L, Montevecchi WA, Bartzen B, Dickson L, Anderson C, Ferguson SH. Abundance and species diversity hotspots of tracked marine predators across the North American Arctic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12860] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | | | | | - Grant Gilchrist
- Environment and Climate Change Canada; Ottawa Ontario Canada
| | | | - Evan Richardson
- Environment and Climate Change Canada; Winnipeg Manitoba Canada
| | | | | | | | - Ron R. Togunov
- University of British Columbia; Vancouver British Columbia Canada
| | | | - Lois A. Harwood
- Fisheries and Oceans Canada; Yellowknife Northwest Territories Canada
| | | | | | - Erik W. Born
- Greenland Institute of Natural Resources; Nuuk Greenland
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs); UMR7266 CNRS-University of La Rochelle; La Rochelle France
| | - David Grémillet
- Centre d’Ecologie Fonctionnelle et Evolutive; UMR 5175, CNRS; Montpellier France
| | - Lisa Loseto
- Fisheries and Oceans Canada; Winnipeg Manitoba Canada
| | | | - John Iacozza
- University of Manitoba; Winnipeg Manitoba Canada
| | | | | | | | - Jack Orr
- Fisheries and Oceans Canada; Winnipeg Manitoba Canada
| | | | | | | | - Steven T. Kessel
- Daniel P. Haerther Center for Conservation and Research; John G. Shedd Aquarium; Chicago Illinois
| | | | - Shanti Davis
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | - Mark Maftei
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | - Nora Spencer
- High Arctic Gull Research Group; Victoria British Columbia Canada
| | | | | | - Blake Bartzen
- Environment and Climate Change Canada; Saskatoon Saskatchewan Canada
| | - Lynne Dickson
- Environment and Climate Change Canada; Edmonton Alberta Canada
| | | | | |
Collapse
|
19
|
Yurkowski DJ, Hussey NE, Ferguson SH, Fisk AT. A temporal shift in trophic diversity among a predator assemblage in a warming Arctic. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180259. [PMID: 30473804 PMCID: PMC6227933 DOI: 10.1098/rsos.180259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/06/2018] [Indexed: 05/29/2023]
Abstract
Climate change is leading to northward shifts in species distributions that is altering interspecific interactions at low- and mid-trophic levels. However, little attention has been focused on the effects of redistributions of species on the trophic ecology of a high trophic-level predator assemblage. Here, during a 22-year period (1990-2012) of increasing sea temperature (1.0°C) and decreasing sea ice extent (12%) in Cumberland Sound, Nunavut, Canada, we examined the trophic structure of a near-apex predator assemblage before (1990-2002) and after (2005-2012) an increase in the availability of capelin-generally an indicator species in colder marine environments for a warming climate. Stable isotopes (δ13C and δ15N) were used in a Bayesian framework to assess shifts in diet, niche size and community-wide metrics for beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), Greenland halibut (Reinhardtius hippoglossoides) and anadromous Arctic char (Salvelinus alpinus). After 2005, consumption of forage fish increased for all predator species, suggesting diet flexibility with changing abiotic and biotic conditions. An associated temporal shift from a trophically diverse to a trophically redundant predator assemblage occurred where predators now play similar trophic roles by consuming prey primarily from the pelagic energy pathway. Overall, these long-term ecological changes signify that trophic shifts of a high trophic-level predator assemblage associated with climate change have occurred in the Arctic food web.
Collapse
Affiliation(s)
- David J. Yurkowski
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| | - Nigel E. Hussey
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
| | - Steven H. Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, CanadaR3T 2N6
| | - Aaron T. Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
| |
Collapse
|
20
|
Zhang J, Qian H, Girardello M, Pellissier V, Nielsen SE, Svenning JC. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc Biol Sci 2018; 285:20180949. [PMID: 30051871 PMCID: PMC6083253 DOI: 10.1098/rspb.2018.0949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/29/2018] [Indexed: 11/12/2022] Open
Abstract
Trophic interactions play critical roles in structuring biotic communities. Understanding variation in trophic interactions among systems provides important insights into biodiversity maintenance and conservation. However, the relative importance of bottom-up versus top-down trophic processes for broad-scale patterns in biodiversity is poorly understood. Here, we used global datasets on species richness of vascular plants, mammals and breeding birds to evaluate the role of trophic interactions in shaping large-scale diversity patterns. Specifically, we used non-recursive structural equation models to test for top-down and bottom-up forcing of global species diversity patterns among plants and trophic guilds of mammals and birds (carnivores, invertivores and herbivores), while accounting for extrinsic environmental drivers. The results show that trophic linkages emerged as being more important to explaining species richness than extrinsic environmental drivers. In particular, there were strong, positive top-down interactions between mammal herbivores and plants, and moderate to strong bottom-up and/or top-down interactions between herbivores/invertivores and carnivores. Estimated trophic interactions for separate biogeographical regions were consistent with global patterns. Our findings demonstrate that, after accounting for environmental drivers, large-scale species richness patterns in plant and vertebrate taxa consistently support trophic interactions playing a major role in shaping global patterns in biodiversity. Furthermore, these results suggest that top-down forces often play strong complementary roles relative to bottom-up drivers in structuring biodiversity patterns across trophic levels. These findings underscore the importance of integrating trophic forcing mechanisms into studies of biodiversity patterns.
Collapse
Affiliation(s)
- Jian Zhang
- Tiantong National Station for Forest Ecosystem Research & Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Marco Girardello
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Vincent Pellissier
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Scott E Nielsen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Lindegren M, Checkley DM, Koslow JA, Goericke R, Ohman MD. Climate-mediated changes in marine ecosystem regulation during El Niño. GLOBAL CHANGE BIOLOGY 2018; 24:796-809. [PMID: 29156088 DOI: 10.1111/gcb.13993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño.
Collapse
Affiliation(s)
- Martin Lindegren
- Centre for Ocean Life, c/o National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - David M Checkley
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Julian A Koslow
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Ralf Goericke
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Mark D Ohman
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Donadi S, Austin ÅN, Bergström U, Eriksson BK, Hansen JP, Jacobson P, Sundblad G, van Regteren M, Eklöf JS. A cross-scale trophic cascade from large predatory fish to algae in coastal ecosystems. Proc Biol Sci 2018; 284:rspb.2017.0045. [PMID: 28724727 DOI: 10.1098/rspb.2017.0045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Trophic cascades occur in many ecosystems, but the factors regulating them are still elusive. We suggest that an overlooked factor is that trophic interactions (TIs) are often scale-dependent and possibly interact across spatial scales. To explore the role of spatial scale for trophic cascades, and particularly the occurrence of cross-scale interactions (CSIs), we collected and analysed food-web data from 139 stations across 32 bays in the Baltic Sea. We found evidence of a four-level trophic cascade linking TIs across two spatial scales: at bay scale, piscivores (perch and pike) controlled mesopredators (three-spined stickleback), which in turn negatively affected epifaunal grazers. At station scale (within bays), grazers on average suppressed epiphytic algae, and indirectly benefitted habitat-forming vegetation. Moreover, the direction and strength of the grazer-algae relationship at station scale depended on the piscivore biomass at bay scale, indicating a cross-scale interaction effect, potentially caused by a shift in grazer assemblage composition. In summary, the trophic cascade from piscivores to algae appears to involve TIs that occur at, but also interact across, different spatial scales. Considering scale-dependence in general, and CSIs in particular, could therefore enhance our understanding of trophic cascades.
Collapse
Affiliation(s)
- S Donadi
- Department of Ecology, Environment and Plant Sciences, Stockholm, Sweden .,Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Stockholm, Sweden
| | - Å N Austin
- Department of Ecology, Environment and Plant Sciences, Stockholm, Sweden
| | - U Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Öregrund, Sweden
| | - B K Eriksson
- Groningen Institute for Evolutionary Life-Sciences GELIFES, University of Groningen, Groningen, The Netherlands
| | - J P Hansen
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - P Jacobson
- Department of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Öregrund, Sweden
| | - G Sundblad
- Department of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Stockholm, Sweden.,AquaBiota Water Research, Stockholm, Sweden
| | - M van Regteren
- Groningen Institute for Evolutionary Life-Sciences GELIFES, University of Groningen, Groningen, The Netherlands
| | - J S Eklöf
- Department of Ecology, Environment and Plant Sciences, Stockholm, Sweden
| |
Collapse
|
23
|
Stige LC, Kvile KØ, Bogstad B, Langangen Ø. Predator-prey interactions cause apparent competition between marine zooplankton groups. Ecology 2017; 99:632-641. [PMID: 29281755 DOI: 10.1002/ecy.2126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 11/07/2022]
Abstract
Predator-mediated apparent competition is an indirect negative interaction between two prey species mediated by a shared predator. Quantifying such indirect ecosystem effects is methodologically challenging but important for understanding ecosystem functioning. Still, there are few examples of apparent competition from pelagic marine environments. Using state-space statistical modeling, we here provide evidence for apparent competition between two dominant zooplankton groups in a large marine ecosystem, i.e., krill and copepods in the Barents Sea. This effect is mediated by a positive association between krill biomass and survival of the main planktivorous fish in the Barents Sea, capelin Mallotus villosus, and a negative association between capelin and copepod biomasses. The biomass of Atlantic krill species is expected to increase in the Barents Sea due to ongoing climate change, thereby potentially negatively affecting copepods through apparent competition. By demonstrating and quantifying apparent competition in a large marine ecosystem, our study paves the way for more realistic projections of indirect ecosystem effects of climate change and harvesting.
Collapse
Affiliation(s)
- Leif Christian Stige
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316, Oslo, Norway
| | - Kristina Ø Kvile
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316, Oslo, Norway
| | - Bjarte Bogstad
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817, Bergen, Norway
| | - Øystein Langangen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316, Oslo, Norway
| |
Collapse
|
24
|
Lane PA. Assumptions about trophic cascades: The inevitable collision between reductionist simplicity and ecological complexity. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Pedersen EJ, Thompson PL, Ball RA, Fortin MJ, Gouhier TC, Link H, Moritz C, Nenzen H, Stanley RRE, Taranu ZE, Gonzalez A, Guichard F, Pepin P. Signatures of the collapse and incipient recovery of an overexploited marine ecosystem. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170215. [PMID: 28791149 PMCID: PMC5541544 DOI: 10.1098/rsos.170215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/30/2017] [Indexed: 05/31/2023]
Abstract
The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems.
Collapse
Affiliation(s)
- Eric J. Pedersen
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - R. Aaron Ball
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Heike Link
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Institute for Ecosystem Research, Kiel University, Kiel, Germany
| | - Charlotte Moritz
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013 Papetoai, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, Guadeloupe, France
| | - Hedvig Nenzen
- Département des sciences biologiques, Université du Québec a Montréal, Montréal, Quebec, Canada
| | - Ryan R. E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Zofia E. Taranu
- Département des sciences biologiques, Université de Montréal, Montréal, Quebec, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | - Pierre Pepin
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
26
|
Groendahl S, Fink P. Consumer species richness and nutrients interact in determining producer diversity. Sci Rep 2017; 7:44869. [PMID: 28303953 PMCID: PMC5356013 DOI: 10.1038/srep44869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/15/2017] [Indexed: 11/14/2022] Open
Abstract
While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration.
Collapse
Affiliation(s)
- Sophie Groendahl
- University of Cologne, Cologne Biocenter, Workgroup Aquatic Chemical Ecology, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Patrick Fink
- University of Cologne, Cologne Biocenter, Workgroup Aquatic Chemical Ecology, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
27
|
Breed GA, Matthews CJD, Marcoux M, Higdon JW, LeBlanc B, Petersen SD, Orr J, Reinhart NR, Ferguson SH. Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales. Proc Natl Acad Sci U S A 2017; 114:2628-2633. [PMID: 28223481 PMCID: PMC5347589 DOI: 10.1073/pnas.1611707114] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although predators influence behavior of prey, analyses of electronic tracking data in marine environments rarely consider how predators affect the behavior of tracked animals. We collected an unprecedented dataset by synchronously tracking predator (killer whales, [Formula: see text] = 1; representing a family group) and prey (narwhal, [Formula: see text] = 7) via satellite telemetry in Admiralty Inlet, a large fjord in the Eastern Canadian Arctic. Analyzing the movement data with a switching-state space model and a series of mixed effects models, we show that the presence of killer whales strongly alters the behavior and distribution of narwhal. When killer whales were present (within about 100 km), narwhal moved closer to shore, where they were presumably less vulnerable. Under predation threat, narwhal movement patterns were more likely to be transiting, whereas in the absence of threat, more likely resident. Effects extended beyond discrete predatory events and persisted steadily for 10 d, the duration that killer whales remained in Admiralty Inlet. Our findings have two key consequences. First, given current reductions in sea ice and increases in Arctic killer whale sightings, killer whales have the potential to reshape Arctic marine mammal distributions and behavior. Second and of more general importance, predators have the potential to strongly affect movement behavior of tracked marine animals. Understanding predator effects may be as or more important than relating movement behavior to resource distribution or bottom-up drivers traditionally included in analyses of marine animal tracking data.
Collapse
Affiliation(s)
- Greg A Breed
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775;
| | - Cory J D Matthews
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| | - Marianne Marcoux
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| | - Jeff W Higdon
- Higdon Wildlife Consulting, Winnipeg, MB, Canada R3G 3C9
| | - Bernard LeBlanc
- Fisheries Management, Fisheries and Oceans Canada, Quebec, QC, Canada G1K 7Y7
| | | | - Jack Orr
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| | - Natalie R Reinhart
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6
| |
Collapse
|
28
|
Abstract
Climate change and resource exploitation have been shown to modify the importance of bottom-up and top-down forces in ecosystems. However, the resulting pattern of trophic control in complex food webs is an emergent property of the system and thus unintuitive. We develop a statistical nondeterministic model, capable of modeling complex patterns of trophic control for the heavily impacted North Sea ecosystem. The model is driven solely by fishing mortality and climatic variables and based on time-series data covering >40 y for six plankton and eight fish groups along with one bird group (>20 y). Simulations show the outstanding importance of top-down exploitation pressure for the dynamics of fish populations. Whereas fishing effects on predators indirectly altered plankton abundance, bottom-up climatic processes dominate plankton dynamics. Importantly, we show planktivorous fish to have a central role in the North Sea food web initiating complex cascading effects across and between trophic levels. Our linked model integrates bottom-up and top-down effects and is able to simulate complex long-term changes in ecosystem components under a combination of stressor scenarios. Our results suggest that in marine ecosystems, pathways for bottom-up and top-down forces are not necessarily mutually exclusive and together can lead to the emergence of complex patterns of control.
Collapse
|
29
|
Smith-Ramesh LM, Moore AC, Schmitz OJ. Global synthesis suggests that food web connectance correlates to invasion resistance. GLOBAL CHANGE BIOLOGY 2017; 23:465-473. [PMID: 27507321 DOI: 10.1111/gcb.13460] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher-connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low-connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion.
Collapse
Affiliation(s)
- Lauren M Smith-Ramesh
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06510, USA
| | - Alexandria C Moore
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06510, USA
| | - Oswald J Schmitz
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06510, USA
| |
Collapse
|
30
|
Worm B, Paine RT. Humans as a Hyperkeystone Species. Trends Ecol Evol 2016; 31:600-607. [PMID: 27312777 DOI: 10.1016/j.tree.2016.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022]
Abstract
Ecologists have identified numerous keystone species, defined as organisms that have outsized ecological impacts relative to their biomass. Here we identify human beings as a higher-order or 'hyperkeystone' species that drives complex interaction chains by affecting other keystone actors across different habitats. Strong indirect effects and a global reach further characterize these interactions and amplify the impacts of human activities on diverse ecosystems, from oceans to forests. We require better understanding of hyperkeystone interaction chains most urgently, especially for marine species and terrestrial large carnivores, which experience relatively higher exploitation rates than other species. This requires innovative approaches that integrate the study of human behavior with food-web theory, and which might provide surprising new insights into the complex ecology of our own species.
Collapse
Affiliation(s)
- Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS B3H4R2, Canada.
| | - Robert T Paine
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Abstract
Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.
Collapse
|
32
|
Sommer U, Peter KH, Genitsaris S, Moustaka-Gouni M. Do marine phytoplankton follow Bergmann's rule sensu lato? Biol Rev Camb Philos Soc 2016; 92:1011-1026. [PMID: 27028628 DOI: 10.1111/brv.12266] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/29/2022]
Abstract
Global warming has revitalized interest in the relationship between body size and temperature, proposed by Bergmann's rule 150 years ago, one of the oldest manifestations of a 'biogeography of traits'. We review biogeographic evidence, results from clonal cultures and recent micro- and mesocosm experiments with naturally mixed phytoplankton communities regarding the response of phytoplankton body size to temperature, either as a single factor or in combination with other factors such as grazing, nutrient limitation, and ocean acidification. Where possible, we also focus on the comparison between intraspecific size shifts and size shifts resulting from changes in species composition. Taken together, biogeographic evidence, community-level experiments and single-species experiments indicate that phytoplankton average cell sizes tend to become smaller in warmer waters, although temperature is not necessarily the proximate environmental factor driving size shifts. Indirect effects via nutrient supply and grazing are important and often dominate. In a substantial proportion of field studies, resource availability is seen as the only factor of relevance. Interspecific size effects are greater than intraspecific effects. Direct temperature effects tend to be exacerbated by indirect ones, if warming leads to intensified nutrient limitation or copepod grazing while ocean acidification tends to counteract the temperature effect on cell size in non-calcifying phytoplankton. We discuss the implications of the temperature-related size trends in a global-warming context, based on known functional traits associated with phytoplankton size. These are a higher affinity for nutrients of smaller cells, highest maximal growth rates of moderately small phytoplankton (ca. 102 µm3 ), size-related sensitivities for different types of grazers, and impacts on sinking rates. For a phytoplankton community increasingly dominated by smaller algae we predict that: (i) a higher proportion of primary production will be respired within the microbial food web; (ii) a smaller share of primary production will be channeled to the classic phytoplankton - crustacean zooplankton - fish food chain, thus leading to decreased ecological efficiency from a fish-production point of view; (iii) a smaller share of primary production will be exported through sedimentation, thus leading to decreased efficiency of the biological carbon pump.
Collapse
Affiliation(s)
- Ulrich Sommer
- Marine Ecology, GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, 24105, Germany.,Faculty of Mathematics and Natural Sciences, Christian-Albrechts-University, Kiel, 24118, Germany
| | - Kalista H Peter
- Marine Ecology, GEOMAR Helmholtz Centre of Ocean Research Kiel, Kiel, 24105, Germany.,Department of Geography and Environmental Studies, University of Dodoma, P.O. Box 395, Dodoma 0105, Tanzania
| | - Savvas Genitsaris
- Faculty of Science, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Maria Moustaka-Gouni
- Faculty of Science, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|