1
|
Xu H, Gao Y, Hassan A, Liu Y, Zhao X, Huang Q. Neuroregulation of foraging behavior mediated by the olfactory co-receptor Orco in termites. Int J Biol Macromol 2024; 262:129639. [PMID: 38331075 DOI: 10.1016/j.ijbiomac.2024.129639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xincheng Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, Henan, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Strauß J, Stritih-Peljhan N, Nishino H. Vibration receptor organs in the insect leg: neuroanatomical diversity and functional principles. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101153. [PMID: 38128778 DOI: 10.1016/j.cois.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Detecting substrate vibrations is essential for insects in different behavioural contexts. These vibrational behaviours are mediated by mechanoreceptor organs detecting and processing vibrational stimuli transmitted in the environment. We discuss recently gained insights about the functional principles of insect vibration receptors, mainly leg chordotonal organs highly sensitive to vibrational stimuli, and the mechanisms of their diversification in neuroanatomy and functional morphology, in relation to the attachment structures and mechanical coupling. The two main input pathways for vibration stimuli transferred by the insect legs to vibrosensory organs via the cuticle and via the hemolymph are fundamental for explaining sensory specialisations. The vibroreceptor organs can diversify in their neuroanatomy and morphology in several key aspects. This provides the structural basis for complex adaptations in sensory evolution.
Collapse
Affiliation(s)
- Johannes Strauß
- Institute for Animal Physiology, AG Integrative Sensory Physiology, Justus Liebig University Gießen, Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Gießen, Germany.
| | - Nataša Stritih-Peljhan
- National Institute of Biology, Department of Organisms and Ecosystems Research, Ljubljana, Slovenia
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
de Mendonça THC, Silva CR, Watanabe SYM, Silva AFN, Santos REC, Cristaldo PF. How to perceive the insecticide? The Neotropical termite Nasutitermes corniger (Termitidae: Nasutitermitinae) triggers alert behavior after exposure to imidacloprid. Behav Processes 2023; 209:104887. [PMID: 37150334 DOI: 10.1016/j.beproc.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
In eusocial insects, alarm signaling is used to inform nestmates about threats such as predators, competitors, and pathogens. Such behavior is important for the survival of colonies. However, studies evaluating the effect of insecticides on the alarm in termites have not yet been reported. Here, we inspected the effects of insecticide on alarm communication in Nasutitermes corniger. Specifically, we test the following hypotheses: (1) termite groups exposed to insecticide imidacloprid increase the body shaking movements, displaying an alert behavior; and (2) the alert behavior displayed after exposition to insecticide is dose dependent. Bioassays were conducted evaluating the body shaking movements and walking activity of termite groups exposed and non-exposed to insecticide. Thereafter, body shaking movements were evaluated in groups submitted to different doses of insecticide. In general, exposing termite groups to insecticide resulted in significantly higher body shaking movements compared to non-exposed groups. There was a positive effect of imidacloprid doses on the shaking movements. Walking activity, however, decreases in those groups exposed to the insecticide. Our results demonstrate the existence of 'insecticide alert behavior' in N. corniger and it appears to be a previously unrecognized communication mechanism in termites that allows for reducing the intoxication risks in the colony.
Collapse
Affiliation(s)
- Thiago H C de Mendonça
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Cátila R Silva
- Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Sara Y M Watanabe
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Aline F N Silva
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Renan E C Santos
- Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Paulo F Cristaldo
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil.
| |
Collapse
|
4
|
Wikantyoso B, Imai T, Himmi SK, Yusuf S, Hata T, Yoshimura T. Ultrastructure and distribution of sensory receptors on the nonolfactory organs of the soldier caste in subterranean termite (Coptotermes spp.). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101201. [PMID: 35994811 DOI: 10.1016/j.asd.2022.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The soldier caste of termites uses sensilla to sense pheromonal, tactile, and vibrational cues to communicate inside and outside their nest. Although sensilla with many modalities on the antennae of subterranean termites have been well explored, there remains a lack of information regarding sensillum characteristics and distribution of the nonolfactory organs of the soldier caste in the Coptotermes genus. In this study, the ultrastructure of sensilla from the soldier caste of three Coptotermes spp. (Coptotermes formosanus, Coptotermes curvignathus, and Coptotermes gestroi) was observed by scanning and transmission electron microscopy, and the putative function of each type was deduced. Six total sensillum types were observed, with two mechanoreceptive sensillum types (hair and plate). The long flexible-peg mechanoreceptive sensilla may work as contact-chemoreceptive sensilla due to their elongated dendritic outer segments and uniporous characteristics. There was a significant depletion of mechano-chemoreceptive sensillum numbers in C. gestroi, which was compensated by a high density of short-peg mechanoreceptive sensilla on the pronotum. Finally, cuticular and innervation characteristics of thermo-/hygrosensitive sensilla were observed for the first time on the labrum of the soldier caste of Coptotermes.
Collapse
Affiliation(s)
- Bramantyo Wikantyoso
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan; Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia.
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - S Khoirul Himmi
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Sulaeman Yusuf
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Toshimitsu Hata
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
5
|
Sansom TM, Oberst S, Richter A, Lai JCS, Saadatfar M, Nowotny M, Evans TA. Low radiodensity μCT scans to reveal detailed morphology of the termite leg and its subgenual organ. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101191. [PMID: 35816830 DOI: 10.1016/j.asd.2022.101191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Termites sense tiny substrate-borne vibrations through subgenual organs (SGOs) located within their legs' tibiae. Little is known about the SGOs' structure and physical properties. We applied high-resolution (voxel size 0.45 μm) micro-computed tomography (μCT) to Australian termites, Coptotermes lacteus and Nasutitermes exitiosus (Hill) to test two staining techniques. We compared the effectiveness of a single stain of Lugol's iodine solution (LS) to LS followed by Phosphotungstic acid (PTA) solutions (1% and 2%). We then present results of a soldier of Nasutitermes exitiosus combining μCT with LS + 2%PTS stains and scanning electron microscopy to exemplify the visualisation of their SGOs. The termite's SGO due to its approximately oval shape was shown to have a maximum diameter of 60 μm and a minimum of 48 μm, covering 60 ± 4% of the leg's cross-section and 90.4 ± 5% of the residual haemolymph channel. Additionally, the leg and residual haemolymph channel cross-sectional area decreased around the SGO by 33% and 73%, respectively. We hypothesise that this change in cross-sectional area amplifies the vibrations for the SGO. Since SGOs are directly connected to the cuticle, their mechanical properties and the geometric details identified here may enable new approaches to determine how termites sense micro-vibrations.
Collapse
Affiliation(s)
- Travers M Sansom
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia.
| | - Sebastian Oberst
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Sydney, NSW, 2007, Australia; School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia.
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Joseph C S Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT, 2612, Australia
| | - Mohammad Saadatfar
- School of Civil Engineering, The University of Sydney, 2006, Sydney, Australia
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Theodore A Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
6
|
Xu 徐焕 H, Huang 黄求应 Q, Gao 高勇勇 Y, Wu 吴佳 J, Hassan A, Liu 刘昱彤 Y. IDH knockdown alters foraging behavior in the termite Odontotermes formosanus in different social contexts. Curr Zool 2021; 67:609-620. [PMID: 34805537 PMCID: PMC8599053 DOI: 10.1093/cz/zoab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Foraging, as an energy-consuming behavior, is very important for colony survival in termites. How energy metabolism related to glucose decomposition and adenosine triphosphate (ATP) production influences foraging behavior in termites is still unclear. Here, we analyzed the change in energy metabolism in the whole organism and brain after silencing the key metabolic gene isocitrate dehydrogenase (IDH) and then investigated its impact on foraging behavior in the subterranean termite Odontotermes formosanus in different social contexts. The IDH gene exhibited higher expression in the abdomen and head of O. formosanus. The knockdown of IDH resulted in metabolic disorders in the whole organism. The dsIDH-injected workers showed significantly reduced walking activity but increased foraging success. Interestingly, IDH knockdown altered brain energy metabolism, resulting in a decline in ATP levels and an increase in IDH activity. Additionally, the social context affected brain energy metabolism and, thus, altered foraging behavior in O. formosanus. We found that the presence of predator ants increased the negative influence on the foraging behavior of dsIDH-injected workers, including a decrease in foraging success. However, an increase in the number of nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on worker foraging behavior. Our orthogonal experiments further verified that the role of the IDH gene as an inherent factor was dominant in manipulating termite foraging behavior compared with external social contexts, suggesting that energy metabolism, especially brain energy metabolism, plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu 徐焕
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiuying Huang 黄求应
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongyong Gao 高勇勇
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Wu 吴佳
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yutong Liu 刘昱彤
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Das KS, Marwein CB, Nonglait KCL, Choudhury S. Sensory structures on the antenna of soldier and worker castes of the termite species Odontotermes parvidens (Termitidae: Isoptera: Blattaria). Microsc Res Tech 2021; 85:956-970. [PMID: 34668271 DOI: 10.1002/jemt.23965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Odontotermes parvidens is a commonly found important pest species of termite that primarily feed on a range of cellulosic sources. In termites, communication among the nestmates is the basis of all their daily activities in termites and the sensory structures present on the sensory appendages play a crucial role in different social behaviors perceiving and processing various signals of the nestmates and external environments. So, it is essential to understand in detail their sensory structures in order to understand the sensory system of the species O. parvidens. Thus, we have studied the antenna which is one of the primary sensory appendages of both soldier and worker individuals of the species to elucidate various antennal sensory structures and their distribution using scanning electron microscopy. Based on the morphological features of various sensilla, we observed seven types of sensilla as sensilla chaetica (subtypes I, II, III, and IV), sensilla trichodea (subtypes I and II), sensilla trichodea curvata (subtypes I and II), sensilla basiconica, sensilla capitula, Böhm bristles, and sensilla campaniformia (subtypes I and II) along with numerous glandular pores on the antenna of soldier and worker castes. We have also discussed the putative functions of all the sensilla observed based on their external morphology and distributional characteristics on the antenna of soldier and worker castes of the species O. parvidens. Furthermore, the abundance of sensillar types on the antenna of both the castes has also been discussed.
Collapse
Affiliation(s)
- Khirod Sankar Das
- Entomology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| | | | | | | |
Collapse
|
8
|
Escape-hatching decisions show adaptive ontogenetic changes in how embryos manage ambiguity in predation risk cues. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Evans TA. Predicting ecological impacts of invasive termites. CURRENT OPINION IN INSECT SCIENCE 2021; 46:88-94. [PMID: 33771736 DOI: 10.1016/j.cois.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
There are 28 invasive termite species, most belong to two families, the Kalotermitidae (esp. Cryptotermes spp.) and Rhinotermitidae (esp. Coptotermes spp.). Six invasive termite species are known to have spread into natural habitats, but little direct research has been conducted into their ecological impacts. Predictions based on indirect research (natural durability of commercial wood species) suggest fast-growing, pioneer tree species with low density wood, perhaps notably legumes, are most vulnerable to invasive termites, but even slow growing climax tree species may succumb. Cryptotermes will likely have less ecological impact, due to small colonies attacking dead branch stubs in the canopy. Coptotermes will likely have greater impact, due to large colony sizes and nesting in living trees, which they hollow out and can kill. There are no studies of invasive termites on native termites, other wood-eating insects, or predators, such as ants, showing considerable scope for future research.
Collapse
Affiliation(s)
- Theodore A Evans
- School of Biological Sciences, University of Western Australia, Perth WA 6009, Australia.
| |
Collapse
|
10
|
Morphometric Analysis of Coptotermes spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes gestroi Extreme Head-Capsule Shapes. INSECTS 2021; 12:insects12050477. [PMID: 34065535 PMCID: PMC8160883 DOI: 10.3390/insects12050477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Linear and geometric morphometrics approaches were conducted to analyze the head capsule (HC) shape of collected soldier caste specimens of Coptotermes from various locations in Indonesia. The soldiers' morphology was observed and measured. The results of the principal component analysis of the group of all species showed two important groups of variables, i.e., the body size and setae characteristics of the pronotum and head. The multicollinearity of the morphometric variables showed the importance of body measurements as well as important alternative characteristics such as the pronotum setae (PrS) and HC setae. Four trends of HC shape were observed across the species. Interestingly, three extreme shapes were depicted by geometric morphometrics of the C. gestroi HC. The phylogenetic tree inferred from 12S and 16S mitochondrial gene fragments showed high confidence for C. gestroi populations. The lateral expansion of the posterior part of the HC across the species was in accordance with the increasing of the number of hairlike setae on the pronotum and HC. These differences among species might be associated with mandible-force-related defensive labor and sensitivity to environmental stressors.
Collapse
|
11
|
Oberst S, Martin R, Halkon BJ, Lai JCS, Evans TA, Saadatfar M. Submillimetre mechanistic designs of termite-built structures. J R Soc Interface 2021; 18:20200957. [PMID: 33947222 PMCID: PMC8097512 DOI: 10.1098/rsif.2020.0957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
Termites inhabit complex underground mounds of intricate stigmergic labyrinthine designs with multiple functions as nursery, food storage and refuge, while maintaining a homeostatic microclimate. Past research studied termite building activities rather than the actual material structure. Yet, prior to understanding how multi-functionality shaped termite building, a thorough grasp of submillimetre mechanistic architecture of mounds is required. Here, we identify for Nasutitermes exitiosus via granulometry and Fourier transform infrared spectroscopy analysis, preferential particle sizes related to coarse silts and unknown mixtures of organic/inorganic components. High-resolution micro-computed X-ray tomography and microindentation tests reveal wall patterns of filigree laminated layers and sub-millimetre porosity wrapped around a coarse-grained inner scaffold. The scaffold geometry, which is designed of a lignin-based composite and densely biocementitious stercoral mortar, resembles that of trabecula cancellous bones. Fractal dimension estimates indicate multi-scaled porosity, important for enhanced evaporative cooling and structural stability. The indentation moduli increase from the outer to the inner wall parts to values higher than those found in loose clays and which exceed locally the properties of anthropogenic cementitious materials. Termites engineer intricately layered biocementitious composites of high elasticity. The multiple-scales and porosity of the structure indicate a potential to pioneer bio-architected lightweight and high-strength materials.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
| | - Benjamin J. Halkon
- Centre for Audio, Acoustics and Vibrations, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2040, Australia
| | - Joseph C. S. Lai
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
| | - Theodore A. Evans
- School of Animal Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Mohammed Saadatfar
- School of Civil Engineering, The University of Sydney, 2006, Sydney, Australia
- Department of Applied Mathematics, The Australian National University, Canberra, 2601, Australia
| |
Collapse
|
12
|
Ahmad F, Fouad H, Liang S, Hu Y, Mo J. Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. INSECT SCIENCE 2021; 28:2-20. [PMID: 31529680 PMCID: PMC7818233 DOI: 10.1111/1744-7917.12726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/02/2023]
Abstract
Termites are eusocial arthropod decomposers, and improve soil fertility, crop yield, and also are used by humans for their benefits across the world. However, some species of termites are becoming a threat to the farming community as they are directly and indirectly causing major losses to the agricultural system. It is estimated that termites cost the global economy more than 40 billion USD annually, and considerable research has been done on their management. In this review, we present the available information related to sustainable and integrated termite management practices (ITM). Furthermore, we insist that the better management of this menace can be possible through: (i) improving traditional methods to keep termites away from crops; (ii) improving agricultural practices to maintain plants with more vigor and less susceptible to termite attack; and (iii) integration of available techniques to reduce termite infestation in crops and surroundings. The application of an effective combination of traditional practices with recently developed approaches is the best option for agricultural growers. Moreover, keeping in mind the beneficial nature of this pest, more innovative efforts for its management, particularly using rapidly emerging technology (e.g., RNA interference), are needed.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
- Entomology SectionCentral Cotton Research Institute, SakrandShaheed BenazirabadSindhPakistan
| | - Hatem Fouad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
- Department of Field Crop Pests, Plant Protection Research InstituteAgricultural Research CentreCairoEgypt
| | - Shi‐You Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yin Hu
- National Termite Control CenterHangzhouChina
| | - Jian‐Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Jung J, Serrano-Rojas SJ, Warkentin KM. Multimodal mechanosensing enables treefrog embryos to escape egg-predators. J Exp Biol 2020; 223:jeb236141. [PMID: 33188064 DOI: 10.1242/jeb.236141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023]
Abstract
Mechanosensory-cued hatching (MCH) is widespread, diverse and important for survival in many animals. From flatworms and insects to frogs and turtles, embryos use mechanosensory cues and signals to inform hatching timing, yet mechanisms mediating mechanosensing in ovo are largely unknown. The arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch prematurely to escape predation, cued by physical disturbance in snake attacks. When otoconial organs in the developing vestibular system become functional, this response strengthens, but its earlier occurrence indicates another sensor must contribute. Post-hatching, tadpoles use lateral line neuromasts to detect water motion. We ablated neuromast function with gentamicin to assess their role in A. callidryas' hatching response to disturbance. Prior to vestibular function, this nearly eliminated the hatching response to a complex simulated attack cue, egg jiggling, revealing that neuromasts mediate early MCH. Vestibular function onset increased hatching, independent of neuromast function, indicating young embryos use multiple mechanosensory systems. MCH increased developmentally. All older embryos hatched in response to egg jiggling, but neuromast function reduced response latency. In contrast, neuromast ablation had no effect on the timing or level of hatching in motion-only vibration playbacks. It appears only a subset of egg-disturbance cues stimulate neuromasts; thus, embryos in attacked clutches may receive unimodal or multimodal stimuli. Agalychnis callidryas embryos have more neuromasts than described for any other species at hatching, suggesting precocious sensory development may facilitate MCH. Our findings provide insight into the behavioral roles of two mechanosensory systems in ovo and open possibilities for exploring sensory perception across taxa in early life stages.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Shirley J Serrano-Rojas
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
14
|
Abstract
Effective communication is essential in animal life to allow fundamental behavioral processes and survival. Communicating by surface-borne vibrations is likely the most ancient mode of getting and exchanging information in both invertebrates and vertebrates. In this review, we concentrate on the use of vibrational communication in arthropods as a form of intraspecific and interspecific signaling, with a focus on the newest discoveries from our research group in terrestrial isopods (Crustacea: Isopoda: Oniscidea), a taxon never investigated before in this context. After getting little attention in the past, biotremology is now an emerging field of study in animal communication, and it is receiving increased interest from the scientific community dealing with these behavioral processes. In what follows, we illustrate the general principles and mechanisms on which biotremology is based, using definitions, examples, and insights from the literature in arthropods. Vibrational communication in arthropods has mainly been studied in insects and arachnids. For these taxa, much evidence of its use as a source of information from the surrounding environment exists, as well as its involvement in many behavioral roles, such as courtship and mating, conspecific recognition, competition, foraging, parental care, and danger perception. Recently, and for the first time, communication through surface-borne waves has been studied in terrestrial isopods, using a common Mediterranean species of the Armadillidae family as a pilot species, Armadillo officinalis Duméril, 1816. Mainly, for this species, we describe typical behavioral processes, such as turn alternation, aggregation, and stridulation, where vibrational communication appears to be involved.
Collapse
Affiliation(s)
- Sofia Cividini
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L693BX, UK.
| | | |
Collapse
|
15
|
Oberst S, Lai JC, Martin R, Halkon BJ, Saadatfar M, Evans TA. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput Struct Biotechnol J 2020; 18:2522-2534. [PMID: 33005314 PMCID: PMC7516209 DOI: 10.1016/j.csbj.2020.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Termite mounds are fascinating because of their intriguing composition of numerous geometric shapes and materials. However, little is known about these structures, or of their functionalities. Most research has been on the basic composition of mounds compared with surrounding soils. There has been some targeted research on the thermoregulation and ventilation of the mounds of a few species of fungi-growing termites, which has generated considerable interest from human architecture. Otherwise, research on termite mounds has been scattered, with little work on their explicit properties. This review is focused on how termites design and build functional structures as nest, nursery and food storage; for thermoregulation and climatisation; as defence, shelter and refuge; as a foraging tool or building material; and for colony communication, either as in indirect communication (stigmergy) or as an information channel essential for direct communication through vibrations (biotremology). Our analysis shows that systematic research is required to study the properties of these structures such as porosity and material composition. High resolution computer tomography in combination with nonlinear dynamics and methods from computational intelligence may provide breakthroughs in unveiling the secrets of termite behaviour and their mounds. In particular, the examination of dynamic and wave propagation properties of termite-built structures in combination with a detailed signal analysis of termite activities is required to better understand the interplay between termites and their nest as superorganism. How termite structures serve as defence in the form of disguising acoustic and vibration signals from detection by predators, and what role local and global vibration synchronisation plays for building are open questions that need to be addressed to provide insights into how termites utilise materials to thrive in a world of predators and competitors.
Collapse
Affiliation(s)
- Sebastian Oberst
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Joseph C.S. Lai
- School of Engineering and IT, University of New South Wales Canberra, Northcott Dr, Campbell ACT 2612, Australia
| | - Richard Martin
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Benjamin J. Halkon
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mohammad Saadatfar
- Department of Applied Mathematics, Australian National University, 58-60 Mills Road, Canberra, ACT 2601, Australia
| | - Theodore A. Evans
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
16
|
Tuma J, Eggleton P, Fayle TM. Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev Camb Philos Soc 2019; 95:555-572. [PMID: 31876057 DOI: 10.1111/brv.12577] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant-termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant-termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.
Collapse
Affiliation(s)
- Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paul Eggleton
- Life Sciences Department, Natural History Museum, London, UK
| | - Tom M Fayle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
17
|
Oberst S, Lai JCS, Evans TA. Key physical wood properties in termite foraging decisions. J R Soc Interface 2019; 15:20180505. [PMID: 30958236 DOI: 10.1098/rsif.2018.0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As eusocial and wood-dwelling insects, termites have been shown to use vibrations to assess their food, to eavesdrop on competitors and predators and to warn nest-mates. Bioassay choice experiments used to determine food preferences in animals often consider single factors only but foraging decisions can be influenced by multiple factors such as the quantity and quality of the food and the wood as a medium for communication. A statistical analysis framework is developed here to design a single bioassay experiment to study multifactorial foraging choice ( Pinus radiata) in the basal Australian termite species Coptotermes ( C.) acinaciformis (Isoptera: Rhinotermitidae). By employing a correlation analysis, 17 measured physical properties of 1417 Pinus radiata veneer discs were reduced to five key material properties: density, moisture absorption, early wood content, first resonance frequency and damping. By applying a fuzzy c-means clustering technique, these veneer discs were optimally paired for treatment and control trials to study food preference by termites based on these five key material properties. A multifactorial analysis of variance was compared to a permutation analysis of the results indicating for the first time that C. acinaciformis takes into account multiple factors when making foraging decisions. C. acinaciformis prefer denser wood with large early wood content, preferably humid and highly damped. Results presented here have practical implications for food choice experiments and for studies concerned with communication in termites as well as their ecology and coevolution with trees as their major food source.
Collapse
Affiliation(s)
- Sebastian Oberst
- 1 Centre for Audio, Acoustics and Vibrations, School of Software, Faculty of Engineering and IT, University of Technology Sydney , Sydney, New South Wales 2007 , Australia
| | - Joseph C S Lai
- 2 Acoustics and Vibration Unit, School of Engineering and Information Technology, University of New South Wales , Canberra, Australian Capital Territory 2600 , Australia
| | - Theodore A Evans
- 3 School of Animal Biology, The University of Western Australia , Perth, Western Australia 6009 , Australia
| |
Collapse
|
18
|
Fu BX, Rong NH, Hong J, Zhu ZR, Mo JC, Zhang D. Comparative study with scanning electron microscopy on the antennal sensilla of two main castes of Coptotermes formosanus Shiraki (Blattaria:Rhinotermitidae). Micron 2019; 129:102777. [PMID: 31811977 DOI: 10.1016/j.micron.2019.102777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Sensilla on antennae of the workers and soldiers of Coptotermes formosanus Shiraki were examined by scanning electron microscopy in this study. As the two castes were allocated totally different tasks in the termite colony, we wondered if there was a big difference between their antennae which were recognized as the main sensory appendages of insects. Therefore, detailed information about the morphology, distribution and abundance of various types of sensilla was described in this report. However, our results showed no obvious caste dimorphism was observed. The morphology of antennae and sensilla as well as the general sensilla distribution pattern did not differ between the workers and soldiers of C. formosanus. In total, seven types of sensilla including sensilla chaetica (I, II, III), Böhm bristles, sensilla campaniformia (I, II, III), sensilla trichodea, sensilla basiconica, sensilla trichodea curvata and sensilla capitula were found on the antennae. Additionally, small apertures were found scattered randomly in the antennal cuticle. Functions of these sensilla or structures were proposed to be mechanoreceptors, chemo-receptors, thermo-hygroreceptors, co2-receptors etc. which probably play crucial roles in their various social behaviors.
Collapse
Affiliation(s)
- Bing-Xian Fu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin-an, Zhejiang 311300, PR China
| | - Nian-Hang Rong
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jian Hong
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zeng-Rong Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jian-Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Dayu Zhang
- College of Agriculture and Food Science, Zhejiang A&F University, Lin-an, Zhejiang 311300, PR China.
| |
Collapse
|
19
|
Oberst S, Lenz M, Lai JCS, Evans TA. Termites manipulate moisture content of wood to maximize foraging resources. Biol Lett 2019; 15:20190365. [PMID: 31288680 DOI: 10.1098/rsbl.2019.0365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals use cues to find their food, in microhabitats within their physiological tolerances. Termites build and modify their microhabitat, to transform hostile environments into benign ones, which raises questions about the relative importance of cues. Termites are desiccation intolerant and foraging termites are attracted to water, so most research has considered moisture to be a cue. However, termites can also transport water to food, and so moisture may play other roles than previously considered. To examine the role of moisture, we compared Coptotermes acinaciformis termite foraging decisions in laboratory experiments when they were offered dry and moist wood, with and without load. Without load, termites preferred moist wood and ate it without any building, whereas they moistened dry wood after wrapping it in a layer of clay. For the 'With load' units, termites substituted some of the wood for load-bearing clay walls, and kept the wood drier than on the unloaded units. As drier wood has higher compressive strength and higher rigidity, it allows more of the wood to be consumed. These results suggest that moisture plays a more important role in termite ecology than previously thought. Termites manipulate the moisture content according to the situational context and use it for multiple purposes: increased moisture levels soften the fibre, which facilitates foraging, yet keeping the wood dry provides higher structural stability against buckling which is especially important when foraging on wood under load.
Collapse
Affiliation(s)
- Sebastian Oberst
- 1 Centre for Audio, Acoustics and Vibration, University of Technology Sydney , Sydney, New South Wales , Australia.,2 (formerly) Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Canberra, Australian Capital Territory , Australia.,3 School of Engineering and Information Technology, The University of New South Wales Canberra , Canberra, Australian Capital Territory , Australia
| | - Michael Lenz
- 2 (formerly) Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Canberra, Australian Capital Territory , Australia
| | - Joseph C S Lai
- 3 School of Engineering and Information Technology, The University of New South Wales Canberra , Canberra, Australian Capital Territory , Australia
| | - Theodore A Evans
- 4 School of Animal Biology, The University of Western Australia , Perth, Western Australia , Australia
| |
Collapse
|
20
|
Evans TA, Kasseney BD. The Dominance Hierarchy of Wood-Eating Termites from China. INSECTS 2019; 10:E210. [PMID: 31323742 PMCID: PMC6681200 DOI: 10.3390/insects10070210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
Abstract
Competition is a fundamental process in ecology and helps to determine dominance hierarchies. Competition and dominance hierarchies have been little investigated in wood-eating termites, despite the necessary traits of similar resources, and showing spatial and temporal overlap. Competition and dominance between five species of wood-eating termites found in Huangzhou, China, was investigated in three laboratory experiments of aggression and detection, plus a year-long field survey of termite foraging activity. Dominance depended on body size, with largest species winning overwhelmingly in paired contests with equal numbers of individuals, although the advantage was reduced in paired competitions with equal biomass. The termites could detect different species from used filter papers, as larger species searched through paper used by smaller species, and smaller species avoided papers used by larger species. The largest species maintained activity all year, but in low abundance, whereas the second largest species increased activity in summer, and the smallest species increased their activity in winter. The termite species displayed a dominance hierarchy based on fighting ability, with a temporal change in foraging to avoid larger, more dominant species. The low abundance of the largest species, here Macrotermes barneyi, may be a function of human disturbance, which allows subordinate species to increase. Thus, competitive release may explain the increase in abundance of pest species, such as Coptotermes formosanus, in highly modified areas, such as urban systems.
Collapse
Affiliation(s)
- Theodore A Evans
- School of Biological Sciences, University of Western Australia, Perth WA 6009, Australia.
| | - Boris Dodji Kasseney
- Laboratory of Applied Entomology, Faculty of Sciences, University of Lomé, BP 1515 Lomé 01, Togo
| |
Collapse
|
21
|
Dataset on Substrate-Borne Vibrations of Constrictotermes cyphergaster (Blattodea: Isoptera) Termites. DATA 2019. [DOI: 10.3390/data4020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here we present data on distinct stimuli as elicitors of substrate-borne vibrations performed by groups of termites belonging to the species Constrictotermes cyphergaster (Blattodea: Isoptera: Termitidae: Nasutitermitinae). The study consisted of assays where termite workers and soldiers were exposed to different airborne stimuli and the vibrations thereby elicited were captured by an accelerometer attached under the floor of the arena in which the termites were confined. A video camera was also used as a visual complement. The data provided here contribute to fill a gap currently existing in published datasets on termite communication.
Collapse
|
22
|
Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R. Predator-Prey Interactions and Eavesdropping in Vibrational Communication Networks. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00203] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Ecological Drivers of Species Distributions and Niche Overlap for Three Subterranean Termite Species in the Southern Appalachian Mountains, USA. INSECTS 2019; 10:insects10010033. [PMID: 30669589 PMCID: PMC6359368 DOI: 10.3390/insects10010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
In both managed and unmanaged forests, termites are functionally important members of the dead-wood-associated (saproxylic) insect community. However, little is known about regional-scale environmental drivers of geographic distributions of termite species, and how these environmental factors impact co-occurrence among congeneric species. Here we focus on the southern Appalachian Mountains-a well-known center of endemism for forest biota-and use Ecological Niche Modeling (ENM) to examine the distributions of three species of Reticulitermes termites (i.e., R. flavipes, R. virginicus, and R. malletei). To overcome deficiencies in public databases, ENMs were underpinned by field-collected high-resolution occurrence records coupled with molecular taxonomic species identification. Spatial overlap among areas of predicted occurrence of each species was mapped, and aspects of niche similarity were quantified. We also identified environmental factors that most strongly contribute to among-species differences in occupancy. Overall, we found that R. flavipes and R. virginicus showed significant niche divergence, which was primarily driven by dry-season precipitation. Also, all three species were most likely to co-occur in the mid-latitudes of the study area (i.e., northern Alabama and Georgia, eastern Tennessee and western North Carolina), which is an area of considerable topographic complexity. This work provides important baseline information for follow-up studies of local-scale drivers of these species' distributions. It also identifies specific geographic areas where future assessments of the frequency of true syntopy vs. micro-allopatry, and associated interspecific competitive interactions, should be focused.
Collapse
|
24
|
Xiong H, Chen X, Wen Y, Layne M, Sun Z, Ma T, Wen X, Wang C. Escaping and repairing behaviors of the termite Odontotermes formosanus (Blattodea: Termitidae) in response to disturbance. PeerJ 2018; 6:e4513. [PMID: 29576978 PMCID: PMC5858535 DOI: 10.7717/peerj.4513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/26/2018] [Indexed: 11/20/2022] Open
Abstract
The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.). The black-winged termite, Odontotermes formosanus (Shiraki), is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min) were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach), individual escaping (single termites moving downward), and massive, unidirectional escaping flows (groups of termites moving downward). Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants) were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans) simultaneously carrying out pathway repairs and emergency evacuation without congestion.
Collapse
Affiliation(s)
- Hongpeng Xiong
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuan Chen
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Yuzhen Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Michael Layne
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Zhaohui Sun
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tao Ma
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Wen XL, Wen P, Dahlsjö CAL, Sillam-Dussès D, Šobotník J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc Biol Sci 2018; 284:rspb.2017.0121. [PMID: 28446695 DOI: 10.1098/rspb.2017.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/26/2017] [Indexed: 11/12/2022] Open
Abstract
Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversaO. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis, Macrotermes yunnanensis, Ancistrotermes dimorphus). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3Z)-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3Z,6Z)-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species.
Collapse
Affiliation(s)
- Xiao-Lan Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China.,Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204 Yunnan, People's Republic of China
| | - Ping Wen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Cecilia A L Dahlsjö
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - David Sillam-Dussès
- IRD - Sorbonne Universités, iEES-Paris, U 242, Bondy, France.,University Paris 13 - Sorbonne Paris Cité, LEEC, EA 4443, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
|