1
|
Ellner SP, Snyder RE, Adler PB, Hernández CM, Hooker G. It's about (taking up) space: Discreteness of individuals and the strength of spatial coexistence mechanisms. Ecology 2024; 105:e4404. [PMID: 39370719 DOI: 10.1002/ecy.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/30/2024] [Accepted: 04/13/2024] [Indexed: 10/08/2024]
Abstract
One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation-based approach to quantifying IGRs in this situation, building on our previous approach for spatially non-varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth-density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.
Collapse
Affiliation(s)
- Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Robin E Snyder
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter B Adler
- Department of Wildland Resources & The Ecology Center, Utah State University, Logan, Utah, USA
| | - Christina M Hernández
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Biology, Oxford University, Oxford, UK
| | - Giles Hooker
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Fung T, Pande J, Shnerb NM, O'Dwyer JP, Chisholm RA. Processes governing species richness in communities exposed to temporal environmental stochasticity: A review and synthesis of modelling approaches. Math Biosci 2024; 369:109131. [PMID: 38113973 DOI: 10.1016/j.mbs.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jayant Pande
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra 412115, India
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - James P O'Dwyer
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505, South Goodwin Avenue, Urbana, IL 61801, United States
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
3
|
Yamamichi M, Letten AD, Schreiber SJ. Eco-evolutionary maintenance of diversity in fluctuating environments. Ecol Lett 2023; 26 Suppl 1:S152-S167. [PMID: 37840028 DOI: 10.1111/ele.14286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023]
Abstract
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Andrew D Letten
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Schreiber SJ, Levine JM, Godoy O, Kraft NJB, Hart SP. Does deterministic coexistence theory matter in a finite world? Ecology 2023; 104:e3838. [PMID: 36168209 DOI: 10.1002/ecy.3838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
Contemporary studies of species coexistence are underpinned by deterministic models that assume that competing species have continuous (i.e., noninteger) densities, live in infinitely large landscapes, and coexist over infinite time horizons. By contrast, in nature, species are composed of discrete individuals subject to demographic stochasticity and occur in habitats of finite size where extinctions occur in finite time. One consequence of these discrepancies is that metrics of species' coexistence derived from deterministic theory may be unreliable predictors of the duration of species coexistence in nature. These coexistence metrics include invasion growth rates and niche and fitness differences, which are now commonly applied in theoretical and empirical studies of species coexistence. In this study, we tested the efficacy of deterministic coexistence metrics on the duration of species coexistence in a finite world. We introduce new theoretical and computational methods to estimate coexistence times in stochastic counterparts of classic deterministic models of competition. Importantly, we parameterized this model using experimental field data for 90 pairwise combinations of 18 species of annual plants, allowing us to derive biologically informed estimates of coexistence times for a natural system. Strikingly, we found that for species expected to deterministically coexist, community sizes containing only 10 individuals had predicted coexistence times of more than 1000 years. We also found that invasion growth rates explained 60% of the variation in intrinsic coexistence times, reinforcing their general usefulness in studies of coexistence. However, only by integrating information on both invasion growth rates and species' equilibrium population sizes could most (>99%) of the variation in species coexistence times be explained. This integration was achieved with demographically uncoupled single-species models solely determined by the invasion growth rates and equilibrium population sizes. Moreover, because of a complex relationship between niche overlap/fitness differences and equilibrium population sizes, increasing niche overlap and increasing fitness differences did not always result in decreasing coexistence times, as deterministic theory would predict. Nevertheless, our results tend to support the informed use of deterministic theory for understanding the duration of species' coexistence while highlighting the need to incorporate information on species' equilibrium population sizes in addition to invasion growth rates.
Collapse
Affiliation(s)
- Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Simon P Hart
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Schreiber SJ. Temporally auto-correlated predator attacks structure ecological communities. Biol Lett 2022; 18:20220150. [PMID: 35857890 PMCID: PMC9256083 DOI: 10.1098/rsbl.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
For species primarily regulated by a common predator, the P* rule of Holt & Lawton (Holt & Lawton, 1993. Am. Nat.142, 623-645. (doi:10.1086/285561)) predicts that the prey species that supports the highest mean predator density (P*) excludes the other prey species. This prediction is re-examined in the presence of temporal fluctuations in the vital rates of the interacting species including predator attack rates. When the fluctuations in predator attack rates are temporally uncorrelated, the P* rule still holds even when the other vital rates are temporally auto-correlated. However, when temporal auto-correlations in attack rates are positive but not too strong, the prey species can coexist due to the emergence of a positive covariance between predator density and prey vulnerability. This coexistence mechanism is similar to the storage effect for species regulated by a common resource. Negative or strongly positive auto-correlations in attack rates generate a negative covariance between predator density and prey vulnerability and a stochastic priority effect can emerge: with non-zero probability either prey species is excluded. These results highlight how temporally auto-correlated species' interaction rates impact the structure and dynamics of ecological communities.
Collapse
Affiliation(s)
- Sebastian J. Schreiber
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Pande J, Tsubery Y, Shnerb NM. Quantifying invasibility. Ecol Lett 2022; 25:1783-1794. [PMID: 35717561 PMCID: PMC9543749 DOI: 10.1111/ele.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Invasibility, the chance of a population to grow from rarity and become established, plays a fundamental role in population genetics, ecology, epidemiology and evolution. For many decades, the mean growth rate of a species when it is rare has been employed as an invasion criterion. Recent studies show that the mean growth rate fails as a quantitative metric for invasibility, with its magnitude sometimes even increasing while the invasibility decreases. Here we provide two novel formulae, based on the diffusion approximation and a large‐deviations (Wentzel–Kramers–Brillouin) approach, for the chance of invasion given the mean growth and its variance. The first formula has the virtue of simplicity, while the second one holds over a wider parameter range. The efficacy of the formulae, including their accompanying data analysis technique, is demonstrated using synthetic time series generated from canonical models and parameterised with empirical data.
Collapse
Affiliation(s)
- Jayant Pande
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| | | | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Fung T, O'Dwyer JP, Chisholm RA. Effects of temporal environmental stochasticity on species richness: a mechanistic unification spanning weak to strong temporal correlations. OIKOS 2021. [DOI: 10.1111/oik.08667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tak Fung
- National Univ. of Singapore, Dept of Biological Sciences Singapore Singapore
| | - James P. O'Dwyer
- Dept of Plant Biology, School of Integrative Biology, Univ. of Illinois Urbana IL USA
| | - Ryan A. Chisholm
- National Univ. of Singapore, Dept of Biological Sciences Singapore Singapore
| |
Collapse
|
8
|
Arnoldi J, Barbier M, Kelly R, Barabás G, Jackson AL. Invasions of ecological communities: Hints of impacts in the invader's growth rate. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ruth Kelly
- Agri‐Food and Biosciences Institute Belfast UK
| | - György Barabás
- Division of Theoretical Biology Department of IFM Linköping University Linköping Sweden
- ELTE‐MTA Theoretical Biology and Evolutionary Ecology Research Group Budapest Hungary
| | - Andrew L. Jackson
- Zoology Department School of Natural Sciences Trinity College Dublin University of Dublin Dublin Ireland
| |
Collapse
|
9
|
Spaak JW, Godoy O, De Laender F. Mapping species niche and fitness differences for communities with multiple interaction types. OIKOS 2021. [DOI: 10.1111/oik.08362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jürg W. Spaak
- Univ. of Namur, Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Rue de Bruxelles Belgium
| | - Oscar Godoy
- Depto de Biología, Inst. Universitario de Investigación Marina (INMAR), Univ. de Cádiz Puerto Real Spain
| | - Frederik De Laender
- Univ. of Namur, Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Rue de Bruxelles Belgium
| |
Collapse
|
10
|
Lyberger KP, Osmond MM, Schreiber SJ. Is Evolution in Response to Extreme Events Good for Population Persistence? Am Nat 2021; 198:44-52. [PMID: 34143724 DOI: 10.1086/714419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractClimate change is predicted to increase the severity of environmental perturbations, including storms and droughts, which act as strong selective agents. These extreme events are often of finite duration (pulse disturbances). Hence, while evolution during an extreme event may be adaptive, the resulting phenotypic changes may become maladaptive when the event ends. Using individual-based models and analytic approximations that fuse quantitative genetics and demography, we explore how heritability and phenotypic variance affect population size and extinction risk in finite populations under an extreme event of fixed duration. Since more evolution leads to greater maladaptation and slower population recovery following an extreme event, greater heritability can increase extinction risk when the extreme event is short. Alternatively, when an extreme event is sufficiently long, heritability often helps a population persist. We also find that when events are severe, the buffering effect of phenotypic variance can outweigh the increased load it causes.
Collapse
|
11
|
Pande J, Fung T, Chisholm R, Shnerb NM. Invasion growth rate and its relevance to persistence: a response to Technical Comment by Ellner et al. Ecol Lett 2020; 23:1725-1726. [PMID: 32851799 DOI: 10.1111/ele.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Ellner et al. (2020) state that identifying the mechanisms producing positive invasion growth rates (IGR) is useful in characterising species persistence. We agree about the importance of the sign of IGR as a binary indicator of persistence, but question whether its magnitude provides much information once the sign is given.
Collapse
Affiliation(s)
- Jayant Pande
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Tak Fung
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Ryan Chisholm
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|