1
|
Lochin P, Malherbe P, Marteau B, Godfroy J, Gerle F, Marshall J, Puijalon S, Singer MB, Stella JC, Piégay H, Vernay A. The ant and the grasshopper: Contrasting responses and behaviors to water stress of riparian trees along a hydroclimatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175916. [PMID: 39226962 DOI: 10.1016/j.scitotenv.2024.175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Riparian trees are particularly vulnerable to drought because they are highly dependent on water availability for their survival. However, the response of riparian tree species to water stress varies depending on regional hydroclimatic conditions, making them unevenly vulnerable to changing drought patterns. Understanding this spatial variability in stress responses requires a comprehensive assessment of water stress across broader spatial and temporal scales. Yet, the precise ecophysiological mechanisms underlying these responses remain poorly linked to remotely sensed indices. To address this gap, the implementation of remote sensing methods coupled with in situ validation is essential to obtain consistent results across diverse spatial and temporal contexts. We conducted a multi-tool analysis combining multispectral and thermal remote sensing indices with in situ ecophysiological measurements at different temporal scales to analyze the responses of white poplar (Populus alba) to seasonal changes in drought along a hydroclimatic gradient. Using this approach, we demonstrate that white poplars along the Rhône River (France) exhibit contrasting responses and behaviors during drought depending on the latitudinal context. White poplars in a Mediterranean climate show rapid stomatal closure to reduce water loss and maintain high minimum water potential levels, although this results in a decrease in remotely sensed greenness. Conversely, white poplars located upstream in a temperate climate show high transpiration and stable greenness but lower minimum water potential and water content. A site in the middle of the gradient has intermediate responses. These results demonstrate that white poplars along a climate gradient can have a range of responses to drought along the iso/anisohydricity continuum. These results are important for future climatic conditions because they show that the same species can have different mechanisms of drought resilience, even in the same river valley. This raises questions regarding how these riparian tree populations will respond to future climatic and hydrological conditions.
Collapse
Affiliation(s)
- Pierre Lochin
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France.
| | - Pauline Malherbe
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France
| | - Baptiste Marteau
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France; LETG UMR 6554, Université Rennes 2, Rennes, France
| | - Julien Godfroy
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France; Univ. Grenoble Alpes, INRAE, LESSEM, F-38402 St-Martin d'Hères, France
| | - Flavie Gerle
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - John Marshall
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic; Leibniz-Zentrum für Agrarlandschaftsforschung, 15374 Müncheberg, Germany; Department of Geological Sciences, Gothenburg University, Gothenburg, Sweden
| | - Sara Puijalon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Michael Bliss Singer
- Earth Research Institute, University of California, Santa Barbara, CA 93106, USA; Water Research Institute, Cardiff University, Cardiff CF10 3AX, UK; School of Earth and Environmental Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - John C Stella
- Department of Sustainable Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Hervé Piégay
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France
| | - Antoine Vernay
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| |
Collapse
|
2
|
Xing Y, Deng S, Bai Y, Wu Z, Luo J. Leaf Functional Traits and Their Influencing Factors in Six Typical Vegetation Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2423. [PMID: 39273907 PMCID: PMC11397209 DOI: 10.3390/plants13172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Leaf functional traits (LFTs) have become a popular topic in ecological research in recent years. Here, we measured eight LFTs, namely leaf area (LA), specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf potassium content (LKC), in six typical vegetation communities (sclerophyllous evergreen broad-leaved forests, temperate evergreen coniferous forests, cold-temperate evergreen coniferous forests, alpine deciduous broad-leaved shrubs, alpine meadows, and alpine scree sparse vegetation) in the Chayu River Basin, southeastern Qinghai-Tibet Plateau. Our aim was to explore their relationships with evolutionary history and environmental factors by combining the RLQ and the fourth-corner method, and the method of testing phylogenetic signal. The results showed that (i) there were significant differences in the eight LFTs among the six vegetation communities; (ii) the K values of the eight LFTs were less than 1; and (iii) except for LCC, all other LFTs were more sensitive to environmental changes. Among these traits, LA was the most affected by the environmental factors, followed by LNC. It showed that the LFTs in the study were minimally influenced by phylogenetic development but significantly by environmental changes. This study further verified the ecological adaptability of plants to changes in environmental factors and provides a scientific basis for predicting the distribution and diffusion direction of plants under global change conditions.
Collapse
Affiliation(s)
- Yuting Xing
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Shiqin Deng
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Yuanyin Bai
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhengjie Wu
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Jian Luo
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| |
Collapse
|
3
|
Laughlin DC. Unifying functional and population ecology to test the adaptive value of traits. Biol Rev Camb Philos Soc 2024. [PMID: 38855941 DOI: 10.1111/brv.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (i) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (ii) distinguish between the fundamental and realized niches of phenotypes, and (iii) articulate the distinctions and relationships between functional traits and life-history traits.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Botany Department, University of Wyoming, Laramie, Wyoming, 82071, USA
| |
Collapse
|
4
|
Bliard L, Paniw M, Childs DZ, Ozgul A. Population Dynamic Consequences of Context-Dependent Trade-Offs across Life Histories. Am Nat 2024; 203:681-694. [PMID: 38781530 DOI: 10.1086/730111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.
Collapse
|
5
|
Liu X, Zhou S, Hu J, Zou X, Tie L, Li Y, Cui X, Huang C, Sardans J, Peñuelas J. Variations and trade-offs in leaf and culm functional traits among 77 woody bamboo species. BMC PLANT BIOLOGY 2024; 24:387. [PMID: 38724946 PMCID: PMC11084126 DOI: 10.1186/s12870-024-05108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.
Collapse
Affiliation(s)
- Xiong Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain
| | - Shixing Zhou
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China
| | - Junxi Hu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China
| | - Xingcheng Zou
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Ying Li
- College of Grassland Science, Beijing Forestry University, Beijing, 100091, China
| | - Xinglei Cui
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China
| | - Congde Huang
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain
| |
Collapse
|
6
|
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O' Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. Functional traits of fossil plants. THE NEW PHYTOLOGIST 2024; 242:392-423. [PMID: 38409806 DOI: 10.1111/nph.19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Collapse
Affiliation(s)
- Jennifer C McElwain
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - William J Matthaeus
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Catarina Barbosa
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Katie O' Dea
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Bea Jackson
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Antonietta B Knetge
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Kamila Kwasniewska
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Richard Nair
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Joseph D White
- Department of Biology, Baylor University, Waco, 76798-7388, TX, USA
| | - Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, Pennsylvania, 19041, PA, USA
| | - Isabel P Montañez
- UC Davis Institute of the Environment, University of California, Davis, CA, 95616, USA
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Sandra Nogué
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| |
Collapse
|
7
|
Healy K, Kelly R, Carnevale A, Buckley YM. Measuring the shape of mortality across animals and plants: Alternatives to H entropy metrics reveal hidden type IV survivorship curves and associations with parental care at macro-ecological scales. Ecol Evol 2023; 13:e10076. [PMID: 37206684 PMCID: PMC10191775 DOI: 10.1002/ece3.10076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
The shape of mortality, or how mortality is spread across an organism's life course, is fundamental to a range of biological processes, with attempts to quantify it rooted in ecology, evolution, and demography. One approach to quantify the distribution of mortality over an organism's life is the use of entropy metrics whose values are interpreted within the classical framework of survivorship curves ranging from type I distributions, with mortality concentrated in late life stages, to type III survivorship curves associated with high early stage mortality. However, entropy metrics were originally developed using restricted taxonomic groups and the behavior of entropy metrics over larger scales of variation may make them unsuitable for wider-ranging contemporary comparative studies. Here, we revisit the classic survivorship framework and, using a combination of simulations and comparative analysis of demography data spanning the animal and plant kingdoms, we show that commonly used entropy metrics cannot distinguish between the most extreme survivorship curves, which in turn can mask important macroecological patterns. We show how using H entropy masks a macroecological pattern of how parental care is associated with type I and type II species and for macroecological studies recommend the use of metrics, such as measures of area under the curve. Using frameworks and metrics that capture the full range of variation of survivorship curves will aid in our understanding of the links between the shape of mortality, population dynamics, and life history traits.
Collapse
Affiliation(s)
- Kevin Healy
- School of Natural Sciences, Ollscoil na GaillimheUniversity of GalwayGalwayIreland
- School of Natural Sciences, ZoologyTrinity College DublinDublinIreland
| | - Ruth Kelly
- School of Natural Sciences, ZoologyTrinity College DublinDublinIreland
- Environment and Marine Sciences DivisionAgri‐Food and Biosciences InstituteBelfastUK
| | - Angela Carnevale
- School of Mathematical and Statistical Sciences, Ollscoil na GaillimheUniversity of GalwayGalwayIreland
| | - Yvonne M. Buckley
- School of Natural Sciences, ZoologyTrinity College DublinDublinIreland
| |
Collapse
|
8
|
Siefert A, Laughlin DC. Estimating the net effect of functional traits on fitness across species and environments. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Andrew Siefert
- Department of Botany University of Wyoming Laramie Wyoming USA
| | | |
Collapse
|
9
|
Gremer JR. Looking to the past to understand the future: linking evolutionary modes of response with functional and life history traits in variable environments. THE NEW PHYTOLOGIST 2023; 237:751-757. [PMID: 36349401 DOI: 10.1111/nph.18605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In a variable world, plants must have strategies to deal with environmental conditions as they change. Understanding these strategies is critical since climate change not only affects mean conditions but also affects variability and predictability of those conditions. Doing so requires identifying how functional and life history traits interact throughout the life cycle to drive responses, as well as exploring how past variability will shape future responses. Here, I highlight relevant life history theory for predicting strategies in relation to the nature of environmental variability, relate theory to empirical studies integrating functional and life history traits to understand responses, and identify key areas for future research that will facilitate the application of this understanding toward predicting responses to climate change.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
- Center for Population Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
10
|
He Y, Li T, Zhang R, Wang J, Zhu J, Li Y, Chen X, Pan J, Shen Y, Wang F, Li J, Tian D. Plant Evolution History Overwhelms Current Environment Gradients in Affecting Leaf Chlorophyll Across the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:941983. [PMID: 35898216 PMCID: PMC9309890 DOI: 10.3389/fpls.2022.941983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
AIMS Leaf chlorophyll (Chl) is a fundamental component and good proxy for plant photosynthesis. However, we know little about the large-scale patterns of leaf Chl and the relative roles of current environment changes vs. plant evolution in driving leaf Chl variations. LOCATIONS The east to west grassland transect of the Tibetan Plateau. METHODS We performed a grassland transect over 1,600 km across the Tibetan Plateau, measuring leaf Chl among 677 site-species. RESULTS Leaf Chl showed a significantly spatial pattern across the grasslands in the Tibetan Plateau, decreasing with latitude but increasing with longitude. Along with environmental gradient, leaf Chl decreased with photosynthetically active radiation (PAR), but increased with water availability and soil nitrogen availability. Furthermore, leaf Chl also showed significant differences among functional groups (C4 > C3 species; legumes < non-legume species), but no difference between annual and perennial species. However, we surprisingly found that plant evolution played a dominant role in shaping leaf Chl variations when comparing the sum and individual effects of all the environmental factors above. Moreover, we revealed that leaf Chl non-linearly decreased with plant evolutionary divergence time. This well-matches the non-linearly increasing trend in PAR or decreasing trend in temperature during the geological time-scale uplift of the Tibetan Plateau. MAIN CONCLUSION This study highlights the dominant role of plant evolution in determining leaf Chl variations across the Tibetan Plateau. Given the fundamental role of Chl for photosynthesis, these results provide new insights into reconsidering photosynthesis capacity in alpine plants and the carbon cycle in an evolutionary view.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Shen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Animal Ecology and Conservation Biology, China Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Furong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Buckley YM, Puy J. The macroecology of plant populations from local to global scales. THE NEW PHYTOLOGIST 2022; 233:1038-1050. [PMID: 34536970 DOI: 10.1111/nph.17749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Population ecologists develop theoretical and pragmatic knowledge of how and why populations change or remain stable, how life histories evolve and devise management strategies for populations of concern. However, forecasting the effects of global change or recommending management strategies is often urgent, requiring ecologists to work without detailed local evidence while using data and models from outside the focal location or species. Here we explore how the comparative ecology of populations, population macroecology, can be used to develop generalisations within and between species across different scales, using available demographic, environmental, life history, occurrence and trait data. We outline the strengths and weaknesses of using broad climatic variables and suitability inferred from probability of occupancy models to represent environmental variation in comparative analyses. We evaluate the contributions of traits, environment and their interaction as drivers of life history strategy. We propose that insights from life history theory, together with the adaptive capacity of populations and individuals, can inform on 'persist in place' vs 'shift in space' responses to changing conditions. As demographic data accumulate at landscape and regional scales for single species, and throughout plant phylogenies, we will have new opportunities for testing macroecological generalities within and across species.
Collapse
Affiliation(s)
- Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
- School of Biological Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Javier Puy
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
12
|
Han X, Huang J, Zang R. Shifts in ecological strategy spectra of typical forest vegetation types across four climatic zones. Sci Rep 2021; 11:14127. [PMID: 34239014 PMCID: PMC8266834 DOI: 10.1038/s41598-021-93722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Ecological strategy spectrum is the relative proportion of species in different categories of ecological strategies in a biotic community. Here, we explored ecological strategy spectra in typical forest vegetation types across four climatic zones in China. We classified ecological strategy categories by using the "StrateFy" ordination method based on three leaf functional traits. Results showed that the predominant ecological strategies of species in the tropical rainforest were CS-selected, and the predominant categories in the evergreen-deciduous broadleaved mixed forest and warm-temperate coniferous-broadleaved mixed forest were CSR and S/CSR categories respectively, whereas those in the cold-temperate coniferous forest were the S-selected ones. Ecological strategy richness of forest vegetation decreased significantly with the increase of latitude. The categories of ecological strategies with more component S increased while those with more component C decreased with the change of typical forest vegetation types from tropical rainforest through evergreen-deciduous broadleaved mixed forest and warm-temperate coniferous-broadleaved mixed forest to cool-temperate coniferous forest. Our findings highlight the usefulness of Grime's C-S-R scheme for predicting the responses of vegetation to environmental changes, and the results are helpful in further elucidating species coexistence and community assembly in varied climatic and geographic settings.
Collapse
Affiliation(s)
- Xin Han
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jihong Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runguo Zang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|