1
|
Mentges A, Clark AT, Blowes SA, Kunze C, Hillebrand H, Chase JM. Accounting for effects of growth rate when measuring ecological stability in response to pulse perturbations. Ecol Evol 2024; 14:e11637. [PMID: 39421328 PMCID: PMC11483556 DOI: 10.1002/ece3.11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024] Open
Abstract
Ecological stability is a vital component of natural ecosystems that can inform effective conservation and ecosystem management. Furthermore, there is increasing interest in making comparisons of stability values across sites, systems and taxonomic groups, often using comparative synthetic approaches, such as meta-analysis. However, these synthetic approaches often compare/contrast systems where measures of stability mean very different things to the taxa involved. Here, we present results from theoretical models and empirical data to illustrate how differences in growth rates among taxa influence four widely used metrics of ecological stability of species abundances responding to pulse perturbations: resilience, recovery, resistance and temporal stability. We refer to these classic growth-rate-dependent metrics as 'realised' stability. We show that realised resilience and realised temporal stability vary as a function of organisms' growth rates; realised recovery depends on the relation between growth rate and sampling duration; and realised resistance depends on the relation between growth rate and sampling interval. To account for these influences, we introduce metrics intended to be more independent of growth rates, which we refer to as 'intrinsic' stability. Intrinsic stability can be used to summarise the overall effects of a disturbance, separately from internal recovery processes - thereby allowing more general comparisons of disturbances across organisms and contexts. We argue that joint consideration of both realised and intrinsic stability is important for future comparative studies.
Collapse
Affiliation(s)
- Andrea Mentges
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Computer SciencesMartin Luther UniversityHalleGermany
| | | | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Computer SciencesMartin Luther UniversityHalleGermany
| | - Charlotte Kunze
- Institute for Chemistry and Biology of Marine Environments [ICBM]Carl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments [ICBM]Carl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB]OldenburgGermany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research [AWI]BremerhavenGermany
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Computer SciencesMartin Luther UniversityHalleGermany
| |
Collapse
|
2
|
Wang Y, Zhou K, Wang Y, Zhang J, Xie Y, Wang X, Yang W, Zhang X, Yang J, Wang F. Examining the association of family environment and children emotional/behavioral difficulties in the relationship between parental anxiety and internet addiction in youth. Front Psychiatry 2024; 15:1341556. [PMID: 38895031 PMCID: PMC11184946 DOI: 10.3389/fpsyt.2024.1341556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Associations between parental anxiety and adolescent internet addiction have been documented in the literature; however, few studies have analyzed the role of the family environment in this relationship. This study aims to explore the relationship between parental anxiety and adolescent internet addiction while also investigating the indirect relationships involving multiple dimensions of the family environment and child emotional behavior issues. Methods Surveys were conducted among 6,296 parent-child pairs. We administered SDQ, CIAS-R, and FES-CV to assess adolescents' issues and internet addiction, and evaluate family environment. Additionally, parents completed GAD-7 to assess parental anxiety levels.Results: Correlation analysis revealed that the family environment and adolescent emotional behavior issues played an indirect relationship in the link between parental anxiety and internet addiction. Discussion The findings emphasize the importance of addressing parental anxiety and fostering a positive family environment as effective measures to alleviate adolescent emotional behavior problems and reduce the risk of internet addiction.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Fourth School of Clinical Medicine, Nanjing Medical Universtiy, Nanjing, Jiangsu, China
| | - Keyin Zhou
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanchen Xie
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Fourth School of Clinical Medicine, Nanjing Medical Universtiy, Nanjing, Jiangsu, China
| | - Xin Wang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Wenyi Yang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Xiyan Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jie Yang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Fei Wang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Liaoning, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Magrach A, Montoya D. Stability in plant-pollinator communities across organizational levels: present, gaps, and future. AOB PLANTS 2024; 16:plae026. [PMID: 38840783 PMCID: PMC11151922 DOI: 10.1093/aobpla/plae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Abstract. The study of ecological stability continues to fill the pages of scientific journals almost seven decades after the first ecologists initiated this line of research. The many advances in this field have focused on understanding the stability of populations, communities or functions within single guilds or trophic levels, with less research conducted across multiple trophic levels and considering the different interactions that relate species to each other. Here, we review the recent literature on the multiple dimensions of ecological stability specifically within plant-pollinator communities. We then focus on one of stability´s dimensions, temporal invariability, and adapt an existing partitioning framework that bridges invariability and synchrony measures across spatial scales and organizational levels to accommodate interactions between plants and their pollinators. Finally, we use this framework to analyse temporal invariability in plant reproductive success, partitioning it on invariability and synchrony components across plant and pollinator populations and communities, as well as their interactions, using a well-resolved dataset that encompasses data for two years. Our review of the literature points to several significant gaps in our current knowledge, with simulation studies clearly overrepresented in the literature as opposed to experimental or empirical approaches. Our quantitative approach to partitioning invariability shows similar patterns of decreasing temporal invariability across increasing organizational levels driven by asynchronous dynamics amongst populations and communities, which overall stabilize ecosystem functioning (plant reproductive success). This study represents a first step towards a better comprehension of temporal invariability in ecosystem functions defined by interactions between species and provides a blueprint for the type of spatially replicated multi-year data that needs to be collected in the future to further our understanding of ecological stability within multi-trophic communities.
Collapse
Affiliation(s)
- Ainhoa Magrach
- Basque Centre for Climate Change (BC3), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Daniel Montoya
- Basque Centre for Climate Change (BC3), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
4
|
Lü D, Lü Y, Gao G, Sun S, Wang Y, Fu B. A landscape persistence-based methodological framework for assessing ecological stability. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100300. [PMID: 37560752 PMCID: PMC10407666 DOI: 10.1016/j.ese.2023.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023]
Abstract
Ecological stability is a critical factor in global sustainable development, yet its significance has been overlooked. Here we introduce a landscape-oriented framework to evaluate ecological stability in the Qingzang Plateau (QP). Our findings reveal a medium-high stability level in the QP, with minimal changes over recent years. The driving factors vary across landscape types, with climate and anthropogenic factors emerging as crucial determinants. While anthropogenic factors are strong but unstable due to policy changes and economic development, climatic factors exert a consistent influence. Based on our results, we propose site-specific ecological conservation and restoration measures. The ecological stability assessment framework provides a practical tool to understand the link between environmental conditions and ecosystems.
Collapse
Affiliation(s)
- Da Lü
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihe Lü
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyao Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
| | - Siqi Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Ross SRPJ, Friedman NR, Dudley KL, Yoshida T, Yoshimura M, Economo EP, Armitage DW, Donohue I. Divergent ecological responses to typhoon disturbance revealed via landscape-scale acoustic monitoring. GLOBAL CHANGE BIOLOGY 2024; 30:e17067. [PMID: 38273562 DOI: 10.1111/gcb.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
Climate change is increasing the frequency, intensity, and duration of extreme weather events across the globe. Understanding the capacity for ecological communities to withstand and recover from such events is critical. Typhoons are extreme weather events that are expected to broadly homogenize ecological dynamics through structural damage to vegetation and longer-term effects of salinization. Given their unpredictable nature, monitoring ecological responses to typhoons is challenging, particularly for mobile animals such as birds. Here, we report spatially variable ecological responses to typhoons across terrestrial landscapes. Using a high temporal resolution passive acoustic monitoring network across 24 sites on the subtropical island of Okinawa, Japan, we found that typhoons elicit divergent ecological responses among Okinawa's diverse terrestrial habitats, as indicated by increased spatial variability of biological sound production (biophony) and individual species detections. This suggests that soniferous communities are capable of a diversity of different responses to typhoons. That is, spatial insurance effects among local ecological communities provide resilience to typhoons at the landscape scale. Even though site-level typhoon impacts on soundscapes and bird detections were not particularly strong, monitoring at scale with high temporal resolution across a broad spatial extent nevertheless enabled detection of spatial heterogeneity in typhoon responses. Further, species-level responses mirrored those of acoustic indices, underscoring the utility of such indices for revealing insight into fundamental questions concerning disturbance and stability. Our findings demonstrate the significant potential of landscape-scale acoustic sensor networks to capture the understudied ecological impacts of unpredictable extreme weather events.
Collapse
Affiliation(s)
- Samuel R P-J Ross
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Nicholas R Friedman
- Environmental Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Kenneth L Dudley
- Environmental Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Takuma Yoshida
- Environmental Science Section, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Masashi Yoshimura
- Environmental Science Section, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Evan P Economo
- Biodiversity & Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - David W Armitage
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
White HJ, Bailey JJ, Bogdan C, Ross SRPJ. Response trait diversity and species asynchrony underlie the diversity-stability relationship in Romanian bird communities. J Anim Ecol 2023; 92:2309-2322. [PMID: 37859560 DOI: 10.1111/1365-2656.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
Biodiversity-stability relationships have frequently been studied in ecology, with the recent integration of traits to explain community stability over time. Classical theory underlying the biodiversity-stability relationship posits that different species' responses to the environment should stabilise community-level properties (e.g. biomass or abundance) through compensatory dynamics. However, functional response traits, which aim to predict how species respond to environmental change, are still rarely integrated into studies of ecological stability. Such traits should mechanistically drive community stability, both in terms of community abundance (functional variability) and composition (compositional variability). In turn, whether and how functional or compositional stability scales to affect temporal variation in functional effect traits (a proxy for ecosystem functioning) remains largely unknown, but is key to consistent ecosystem functioning under environmental change. Here, we explore the diversity-stability relationship in bird communities using annual survey data across 98 sites in central Romania, in combination with global trait databases and structural equation models. We show that higher response trait diversity promotes compositional variability directly, and functional variability indirectly via species asynchrony. In turn, functional variability impacts the temporal stability of effect trait diversity. Multiple facets of diversity and community stability differ between natural forests and agricultural or human-dominated survey sites, and the relationship between response diversity and functional variability is mediated by land cover. Further integration of response-and-effect trait frameworks into studies of community stability will enhance understanding of the drivers of biodiversity change, allowing targeted conservation decision-making with a focus on stable ecosystem functioning in the face of global environmental change.
Collapse
Affiliation(s)
- Hannah J White
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Joseph J Bailey
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
- Operation Wallacea, Lincolnshire, UK
| | - Ciortan Bogdan
- Operation Wallacea, Lincolnshire, UK
- Romanian Ornithological Society (SOR), Bucharest, Romania
| | - Samuel R P-J Ross
- Integrative Community Ecology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
7
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Rejmánek M. Book Review: On ecological networks and biological invasions. NEOBIOTA 2023. [DOI: 10.3897/neobiota.81.99512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Medeiros LP, Allesina S, Dakos V, Sugihara G, Saavedra S. Ranking species based on sensitivity to perturbations under non-equilibrium community dynamics. Ecol Lett 2023; 26:170-183. [PMID: 36318189 PMCID: PMC10092288 DOI: 10.1111/ele.14131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.
Collapse
Affiliation(s)
- Lucas P Medeiros
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA.,Institute of Marine Sciences, University of California Santa Cruz, California, Santa Cruz, USA
| | - Stefano Allesina
- Department of Ecology & Evolution, University of Chicago, Illinois, Chicago, USA.,Northwestern Institute on Complex Systems, Northwestern University, Illinois, Evanston, USA
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Montpellier, France
| | - George Sugihara
- Scripps Institution of Oceanography, University of California San Diego, California, La Jolla, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA
| |
Collapse
|
10
|
de Godoy IBS, McGrane-Corrigan B, Mason O, Moral RDA, Godoy WAC. Plant-host shift, spatial persistence, and the viability of an invasive insect population. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Song C, Fortin MJ, Gonzalez A. Metapopulation persistence can be inferred from incomplete surveys. Proc Biol Sci 2022; 289:20222029. [PMID: 36515114 PMCID: PMC9748775 DOI: 10.1098/rspb.2022.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Habitat destruction and fragmentation are principal causes of species loss. While a local population might go extinct, a metapopulation-populations inhabiting habitat patches connected by dispersal-can persist regionally by recolonizing empty patches. To assess metapopulation persistence, two widely adopted indicators in conservation management are metapopulation capacity and patch importance. However, we face a fundamental limitation in that assessing metapopulation persistence requires that we survey or sample all the patches in a landscape: often these surveys are logistically challenging to conduct and repeat, which raises the question whether we can learn enough about the metapopulation persistence from an incomplete survey. Here, we provide a robust statistical approach to infer metapopulation capacity and patch importance by sampling a portion of all patches. We provided analytic arguments on why the metapopulation capacity and patch importance can be well predicted from sub-samples of habitat patches. Full-factorial simulations with more complex models corroborate our analytic predictions. We applied our model to an empirical metapopulation of mangrove hummingbirds (Amazilia boucardi). On the basis of our statistical framework, we provide some sampling suggestion for monitoring metapopulation persistence. Our approach allows for rapid and effective inference of metapopulation persistence from incomplete patch surveys.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
12
|
Spaak JW, Ke P, Letten AD, De Laender F. Different measures of niche and fitness differences tell different tales. OIKOS 2022. [DOI: 10.1111/oik.09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jurg W. Spaak
- Dept of Ecology and Evolutionary Biology, Cornell Univ. Ithaca NY USA
| | - Po‐Ju Ke
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ. Taipei Taiwan
- Dept of Ecology&Evolutionary Biology, Princeton Univ. Princeton NJ USA
| | - Andrew D. Letten
- School of Biological Sciences, Univ. of Queensland Brisbane QLD Australia
| | - Frederik De Laender
- Univ. of Namur Namur Belgium
- Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Belgium
| |
Collapse
|
13
|
Clark AT, Mühlbauer LK, Hillebrand H, Karakoç C. Measuring stability in ecological systems without static equilibria. Ecosphere 2022. [DOI: 10.1002/ecs2.4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg Oldenburg Germany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research Bremerhaven Germany
| | - Canan Karakoç
- Department of Biology Indiana University Bloomington Indiana USA
| |
Collapse
|
14
|
Jarillo J, Cao-García FJ, De Laender F. Spatial and Ecological Scaling of Stability in Spatial Community Networks. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.861537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are many scales at which to quantify stability in spatial and ecological networks. Local-scale analyses focus on specific nodes of the spatial network, while regional-scale analyses consider the whole network. Similarly, species- and community-level analyses either account for single species or for the whole community. Furthermore, stability itself can be defined in multiple ways, including resistance (the inverse of the relative displacement caused by a perturbation), initial resilience (the rate of return after a perturbation), and invariability (the inverse of the relative amplitude of the population fluctuations). Here, we analyze the scale-dependence of these stability properties. More specifically, we ask how spatial scale (local vs. regional) and ecological scale (species vs. community) influence these stability properties. We find that regional initial resilience is the weighted arithmetic mean of the local initial resiliences. The regional resistance is the harmonic mean of local resistances, which makes regional resistance particularly vulnerable to nodes with low stability, unlike regional initial resilience. Analogous results hold for the relationship between community- and species-level initial resilience and resistance. Both resistance and initial resilience are “scale-free” properties: regional and community values are simply the biomass-weighted means of the local and species values, respectively. Thus, one can easily estimate both stability metrics of whole networks from partial sampling. In contrast, invariability generally is greater at the regional and community-level than at the local and species-level, respectively. Hence, estimating the invariability of spatial or ecological networks from measurements at the local or species level is more complicated, requiring an unbiased estimate of the network (i.e., region or community) size. In conclusion, we find that scaling of stability depends on the metric considered, and we present a reliable framework to estimate these metrics.
Collapse
|
15
|
Ebel CR, Case MF, Werner CM, Porensky LM, Veblen KE, Wells HBM, Kimuyu DM, Langendorf RE, Young TP, Hallett LM. Herbivory and Drought Reduce the Temporal Stability of Herbaceous Cover by Increasing Synchrony in a Semi-arid Savanna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.867051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics.
Collapse
|
16
|
Ross SRPJ, García Molinos J, Okuda A, Johnstone J, Atsumi K, Futamura R, Williams MA, Matsuoka Y, Uchida J, Kumikawa S, Sugiyama H, Kishida O, Donohue I. Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. GLOBAL CHANGE BIOLOGY 2022; 28:403-416. [PMID: 34689388 DOI: 10.1111/gcb.15956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Amidst the global extinction crisis, climate change will expose ecosystems to more frequent and intense extreme climatic events, such as heatwaves. Yet, whether predator species loss-a prevailing characteristic of the extinction crisis-will exacerbate the ecological consequences of extreme climatic events remains largely unknown. Here, we show that the loss of predator species can interact with heatwaves to moderate the compositional stability of ecosystems. We exposed multitrophic stream communities, with and without a dominant predator species, to realistic current and future heatwaves and found that heatwaves destabilised algal communities by homogenising them in space. However, this happened only when the predator was absent. Additional heatwave impacts on multiple aspects of stream communities, including changes to the structure of algal and macroinvertebrate communities, as well as total algal biomass and its temporal variability, were not apparent during heatwaves and emerged only after the heatwaves had passed. Taken together, our results suggest that the ecological consequences of heatwaves can amplify over time as their impacts propagate through biological interaction networks, but the presence of predators can help to buffer such impacts. These findings underscore the importance of conserving trophic structure, and highlight the potential for species extinctions to amplify the effects of climate change and extreme events.
Collapse
Affiliation(s)
- Samuel R P-J Ross
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jorge García Molinos
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Atsushi Okuda
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jackson Johnstone
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Keisuke Atsumi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Futamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Takaoka, Hokkaido, Japan
| | - Maureen A Williams
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
- Biology Department, McDaniel College, Westminster, Maryland, USA
| | - Yuichi Matsuoka
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jiro Uchida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Shoji Kumikawa
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Hiroshi Sugiyama
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Corrigendum. Ecol Lett 2021; 24:2533. [PMID: 34510671 DOI: 10.1111/ele.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Eagle LJB, Milner AM, Klaar MJ, Carrivick JL, Wilkes M, Brown LE. Extreme flood disturbance effects on multiple dimensions of river invertebrate community stability. J Anim Ecol 2021; 90:2135-2146. [PMID: 34363703 DOI: 10.1111/1365-2656.13576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Multidimensional analysis of community stability has recently emerged as an overarching approach to evaluating ecosystem response to disturbance. However, the approach has previously been applied only in experimental and modelling studies. We applied this concept to an 18-year time series (2000-2017) of macroinvertebrate community dynamics from a southeast Alaskan river to further develop and test the approach in relation to the effects of two extreme flood events occurring in 2005 (event 1) and 2014 (event 2). Five components of stability were calculated for pairs of pre- or post-event years. Individual components were tested for differences between pre- and post-event time periods. Stability components' pairwise correlations were assessed and ellipsoids of stability were developed for each time period and compared to a null model derived from the permuted dataset. Only one stability component demonstrated a significant difference between time periods. In contrast, 80% of moderate and significant correlations between stability components were degraded post-disturbance and significant changes to the form of stability ellipsoids were observed. Ellipsoids of stability for all periods after the initial disturbance (2005) were not different to the null model. Our results illustrate that the dimensionality of stability approach can be applied to natural ecosystem time-series data. The major increase in dimensionality of stability observed following disturbance potentially indicates significant shifts in the processes which drive stability following disturbance. This evidence improves our understanding of community response beyond what is possible through analysis of individual stability components.
Collapse
Affiliation(s)
| | - Alexander M Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Megan J Klaar
- School of Geography and water@leeds, University of Leeds, Leeds, UK
| | | | - Martin Wilkes
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - Lee E Brown
- School of Geography and water@leeds, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Valdivia N, López DN, Fica‐Rojas E, Catalán AM, Aguilera MA, Araya M, Betancourtt C, Burgos‐Andrade K, Carvajal‐Baldeon T, Escares V, Gartenstein S, Grossmann M, Gutiérrez B, Kotta J, Morales‐Torres DF, Riedemann‐Saldivia B, Rodríguez SM, Velasco‐Charpentier C, Villalobos VI, Broitman BR. Stability of rocky intertidal communities, in response to species removal, varies across spatial scales. OIKOS 2021. [DOI: 10.1111/oik.08267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nelson Valdivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Daniela N. López
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Univ. Católica de Chile Santiago Chile
| | - Eliseo Fica‐Rojas
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Alexis M. Catalán
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Moisés A. Aguilera
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez, Diagonal Las Torres Santiago Chile
| | - Marjorie Araya
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Claudia Betancourtt
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Katherine Burgos‐Andrade
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Thais Carvajal‐Baldeon
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Valentina Escares
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Simon Gartenstein
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Mariana Grossmann
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Bárbara Gutiérrez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Jonne Kotta
- Estonian Marine Inst., Univ. of Tartu Tallinn Estonia
| | - Diego F. Morales‐Torres
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bárbara Riedemann‐Saldivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Sara M. Rodríguez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | | | - Vicente I. Villalobos
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bernardo R. Broitman
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez Viña del Mar Chile
- Instituto Milenio en Socio‐Ecologia Costera (SECOS) & Núcleo Milenio UPWELL
| |
Collapse
|