1
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Xu D, Ren L, Zhang W, Wu S, Yu M, He X, Wei Z. Therapeutic effects and mechanisms of fecal microbiota transplantation on EAE partly through HPA axis-mediated neuroendocrine regulation. Heliyon 2024; 10:e33214. [PMID: 39021924 PMCID: PMC11252752 DOI: 10.1016/j.heliyon.2024.e33214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background The pathogenesis of multiple sclerosis (MS) may be closely related to immune regulation and inflammatory cytokines induced by specific flora. Repairing the intestinal flora may alter the immune response in MS patients, thus opening up novel approaches for the treatment of MS. Objective We aimed to test the therapeutic effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and the characteristics of intestinal microbiota composition changes, explore the potential mechanisms of FMT treatment. Methods EAE animals were treated with FMT, with the therapeutic effects were evaluated by observing neurological scores and measuring serum levels of cortisol, IL-17, and TLR-2. Fecal microbiome 16S rRNA sequencing was used to profile changes in microbiota composition, and adrenalectomy pretreatment was used to test whether FMT effects were dependent on HPA axis function. Results FMT improved neurological function and reduced serum IL-17 to levels that were close to the control group. FMT reestablished intestinal homeostasis by altering the structure of the intestinal flora, increasing the abundance of beneficial flora, and regulating intestinal metabolites. We found that the therapeutic effects of FMT depended partly on the efferent function of the HPA axis; surgical disruption of the HPA axis altered the abundance and diversity of the intestinal flora. Conclusion FMT showed a neuroprotective effect on EAE by increasing the abundance of the beneficial flora, rebuilding intestinal homeostasis, reducing IL-17 and cortisol serum levels, and promoting serum TLR-2; the therapeutic effect of FMT on EAE is partly dependent on the HPA axis.
Collapse
Affiliation(s)
- Danhong Xu
- Department of Critical Care Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Linxiang Ren
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Wenbin Zhang
- Department of Neurology, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, 518106, China
| | - Shaohua Wu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Minling Yu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Xingxiang He
- Department of Gastroenterology, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhisheng Wei
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| |
Collapse
|
3
|
Sendid B, Cornu M, Cordier C, Bouckaert J, Colombel JF, Poulain D. From ASCA breakthrough in Crohn's disease and Candida albicans research to thirty years of investigations about their meaning in human health. Autoimmun Rev 2024; 23:103486. [PMID: 38040100 DOI: 10.1016/j.autrev.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Anti-Saccharomyces cerevisiae antibodies (ASCA) are human antibodies that can be detected using an enzyme-linked immunosorbent assay involving a mannose polymer (mannan) extracted from the cell wall of the yeast S. cerevisiae. The ASCA test was developed in 1993 with the aim of differentiating the serological response in two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis. The test, which is based on the detection of anti-oligomannosidic antibodies, has been extensively performed worldwide and there have been hundreds of publications on ASCA. The earlier studies concerned the initial diagnostic indications of ASCA and investigations then extended to many human diseases, generally in association with studies on intestinal microorganisms and the interaction of the micro-mycobiome with the immune system. The more information accumulates, the more the mystery of the meaning of ASCA deepens. Many fundamental questions remain unanswered. These questions concern the heterogeneity of ASCA, the mechanisms of their generation and persistence, the existence of self-antigens, and the relationship between ASCA and inflammation and autoimmunity. This review aims to discuss the gray areas concerning the origin of ASCA from an analysis of the literature. Structured around glycobiology and the mannosylated antigens of S. cerevisiae and Candida albicans, this review will address these questions and will try to clarify some lines of thought. The importance of the questions relating to the pathophysiological significance of ASCA goes far beyond IBD, even though these diseases remain the preferred models for their understanding.
Collapse
Affiliation(s)
- Boualem Sendid
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France.
| | - Marjorie Cornu
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Camille Cordier
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France; Pôle de Biologie-Pathologie-Génétique, Institut de Microbiologie, Service de Parasitologie-Mycologie, CHU Lille, F-59000 Lille, France
| | - Julie Bouckaert
- CNRS UMR 8576, Computational Molecular Systems Biology, Université de Lille, F-59000 Lille, France
| | - Jean Frederic Colombel
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Poulain
- INSERM U1285, CNRS UMR 8576, Glycobiology in Fungal Pathogenesis and Clinical Applications, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
4
|
Rahimlou M, Nematollahi S, Husain D, Banaei-Jahromi N, Majdinasab N, Hosseini SA. Probiotic supplementation and systemic inflammation in relapsing-remitting multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Front Neurosci 2022; 16:901846. [PMID: 36203797 PMCID: PMC9531126 DOI: 10.3389/fnins.2022.901846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex inflammatory disease in which demyelination occurs in the central nervous system affecting approximately 2.5 million people worldwide. Intestinal microbiome changes play an important role in the etiology of chronic diseases. Objective This study aimed to investigate the effect of probiotic supplementation on systemic inflammation in patients with MS. Methods A 12-week double-blind clinical trial study was designed and seventy patients with MS were randomly divided into two groups receiving probiotics and placebo. Patients in the intervention group received two capsules containing multi-strain probiotics daily and patients in the control group received the same amount of placebo. Factors associated with systemic inflammation were assessed at the beginning and end of the study. Results Sixty-five patients were included in the final analysis. There was no significant difference between the two groups in terms of baseline variables except for the duration of the disease (P > 0.05). At the end of the study, probiotic supplementation compared to the placebo caused a significant reduction in the serum levels of CRP (-0.93 ± 1.62 vs. 0.05 ± 1.74, P = 0.03), TNF-α (-2.09 ± 1.88 vs. 0.48 ± 2.53, P = 0.015) and IFN-γ (-13.18 ± 7.33 vs. -1.93 ± 5.99, P < 0.001). Also, we found a significant increase in the FOXP3 and TGF-β levels in the intervention group (P < 0.05). Conclusion The results of our study showed that supplementation with probiotics can have beneficial effects on serum levels of some factors associated with systemic inflammation. Clinical trial registration [http://www.irct.ir], identifier [IRCT20181210041 918N1].
Collapse
Affiliation(s)
- Mehran Rahimlou
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shima Nematollahi
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Durdana Husain
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Banaei-Jahromi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Karathanasis DK, Rapti A, Nezos A, Skarlis C, Kilidireas C, Mavragani CP, Evangelopoulos ME. Differentiating central nervous system demyelinating disorders: The role of clinical, laboratory, imaging characteristics and peripheral blood type I interferon activity. Front Pharmacol 2022; 13:898049. [PMID: 36034800 PMCID: PMC9412761 DOI: 10.3389/fphar.2022.898049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: While multiple sclerosis (MS) is considered the cornerstone of autoimmune demyelinating CNS disorders, systemic autoimmune diseases (SADs) are important MS mimickers. We sought to explore whether distinct clinical, laboratory, and imaging characteristics along with quantitation of peripheral blood type I interferon (IFN) activity could aid in differentiating between them. Methods: A total of 193 consecutive patients with imaging features suggesting the presence of CNS demyelinating disease with or without relevant clinical manifestations underwent full clinical, laboratory, and imaging evaluation, including testing for specific antibodies against 15 cellular antigens. Expression analysis of type I IFN-inducible genes (MX-1, IFIT-1, and IFI44) was performed by real-time PCR, and a type I IFN score, reflecting type I IFN peripheral activity, was calculated. After joint neurological/rheumatological evaluation and 1 year of follow-up, patients were classified into MS spectrum and CNS autoimmune disorders. Results: While 66.3% (n = 128) of the patients were diagnosed with MS spectrum disorders (predominantly relapsing–remitting MS), 24.9% (n = 48) were included in the CNS autoimmune group, and out of those, one-fourth met the criteria for SAD (6.7% of the cohort, n = 13); the rest (18.1% of the cohort, n = 35), despite showing evidence of systemic autoimmunity, did not fulfill SAD criteria and comprised the “demyelinating disease with autoimmune features” (DAF) subgroup. Compared to the MS spectrum, CNS autoimmune patients were older, more frequently females, with increased rates of hypertension/hyperlipidemia, family history of autoimmunity, cortical dysfunction, anti-nuclear antibody titers ≥1/320, anticardiolipin IgM positivity, and atypical for MS magnetic resonance imaging lesions. Conversely, lower rates of infratentorial and callosal MRI lesions, CSF T2 oligoclonal bands, and IgG-index positivity were observed in CNS autoimmune patients. Patients fulfilling SAD criteria, but not the DAF group, had significantly higher peripheral blood type I IFN scores at baseline compared to MS spectrum [median (IQR)]: 50.18 (152.50) vs. −0.64 (6.75), p-value: 0.0001. Conclusion: Our study suggests that underlying systemic autoimmunity is not uncommon in patients evaluated for possible CNS demyelination. Distinct clinical, imaging and laboratory characteristics can aid in early differentiation between MS and CNS-involving systemic autoimmunity allowing for optimal therapeutic strategies. Activated type I IFN pathway could represent a key mediator among MS-like-presenting SADs and therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Dimitris K. Karathanasis
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Fourth Department of Internal Medicine, School of Medicine, University Hospital Attikon, National and Kapodistrian University of Athens, Haidari, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Eleftheria Evangelopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Maria Eleftheria Evangelopoulos,
| |
Collapse
|
6
|
Gargano F, Guerrera G, Piras E, Serafini B, Di Paola M, Rizzetto L, Buscarinu MC, Annibali V, Vuotto C, De Bardi M, D’Orso S, Ruggieri S, Gasperini C, Pavarini L, Ristori G, Picozza M, Rosicarelli B, Ballerini C, Mechelli R, Vitali F, Cavalieri D, Salvetti M, Angelini DF, Borsellino G, De Filippo C, Battistini L. Proinflammatory mucosal-associated invariant CD8+ T cells react to gut flora yeasts and infiltrate multiple sclerosis brain. Front Immunol 2022; 13:890298. [PMID: 35979352 PMCID: PMC9376942 DOI: 10.3389/fimmu.2022.890298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The composition of the intestinal microbiota plays a critical role in shaping the immune system. Modern lifestyle, the inappropriate use of antibiotics, and exposure to pollution have significantly affected the composition of commensal microorganisms. The intestinal microbiota has been shown to sustain inappropriate autoimmune responses at distant sites in animal models of disease, and may also have a role in immune-mediated central nervous system (CNS) diseases such as multiple sclerosis (MS). We studied the composition of the gut mycobiota in fecal samples from 27 persons with MS (pwMS) and in 18 healthy donors (HD), including 5 pairs of homozygous twins discordant for MS. We found a tendency towards higher fungal abundance and richness in the MS group, and we observed that MS twins showed a higher rate of food-associated strains, such as Saccharomyces cerevisiae. We then found that in pwMS, a distinct population of cells with antibacterial and antifungal activity is expanded during the remitting phase and markedly decreases during clinically and/or radiologically active disease. These cells, named MAIT (mucosal-associated invariant T cells) lymphocytes, were significantly more activated in pwMS compared to HD in response to S. cerevisiae and Candida albicans strains isolated from fecal samples. This activation was also mediated by fungal-induced IL-23 secretion by innate immune cells. Finally, immunofluorescent stainings of MS post-mortem brain tissues from persons with the secondary progressive form of the disease showed that MAIT cells cross the blood–brain barrier (BBB) and produce pro-inflammatory cytokines in the brain. These results were in agreement with the hypothesis that dysbiosis of the gut microbiota might determine the inappropriate response of a subset of pathogenic mucosal T cells and favor the development of systemic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Gargano
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Barbara Serafini
- Istituto Superiore di Sanità, Department of Neuroscience, Rome, Italy
| | - Monica Di Paola
- University of Florence, Department of Biology, Florence, Italy
| | - Lisa Rizzetto
- Research and Innovation Centre – Fondazione Edmund Mach, S. Michele all’Adige (TN), Italy
| | - Maria Chiara Buscarinu
- Neurology and Centre for Experimental Neurological therapies (CENTERS), S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Viviana Annibali
- Neurology and Centre for Experimental Neurological therapies (CENTERS), S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Claudia Vuotto
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Silvia D’Orso
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Serena Ruggieri
- Department of Neuroscience “Lancisi”, S. Camillo Hospital, Rome, Italy
| | - Claudio Gasperini
- Department of Neuroscience “Lancisi”, S. Camillo Hospital, Rome, Italy
| | - Lorenzo Pavarini
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- University of Florence, Department of Biology, Florence, Italy
| | - Giovanni Ristori
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Neurology and Centre for Experimental Neurological therapies (CENTERS), S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Mario Picozza
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | | | - Clara Ballerini
- University of Florence, Clinical and Experimental Medicine, Florence, Italy
| | - Rosella Mechelli
- Neurology and Centre for Experimental Neurological therapies (CENTERS), S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Francesco Vitali
- National Research Council, Institute of Agricultural Biology and Biotechnology, Pisa, Italy
| | | | - Marco Salvetti
- Neurology and Centre for Experimental Neurological therapies (CENTERS), S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Daniela F. Angelini
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- *Correspondence: Giovanna Borsellino, ; Luca Battistini,
| | - Carlotta De Filippo
- National Research Council, Institute of Agricultural Biology and Biotechnology, Pisa, Italy
| | - Luca Battistini
- Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- *Correspondence: Giovanna Borsellino, ; Luca Battistini,
| |
Collapse
|
7
|
Passali M, Antvorskov J, Frederiksen J, Josefsen K. The role of gluten in multiple sclerosis, psoriasis, autoimmune thyroid diseases and type 1 diabetes. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:223-246. [DOI: 10.1016/b978-0-12-821571-5.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
9
|
Uzonyi B, Szabó Z, Trojnár E, Hyvärinen S, Uray K, Nielsen HH, Erdei A, Jokiranta TS, Prohászka Z, Illes Z, Józsi M. Autoantibodies Against the Complement Regulator Factor H in the Serum of Patients With Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:660382. [PMID: 33986750 PMCID: PMC8111293 DOI: 10.3389/fimmu.2021.660382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.
Collapse
Affiliation(s)
- Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsóka Szabó
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Trojnár
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Satu Hyvärinen
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Giuffrè M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M, Di Bella S, Antonello RM, Luzzati R, Crocè LS. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J Clin Med 2020; 9:E3705. [PMID: 33218203 PMCID: PMC7699249 DOI: 10.3390/jcm9113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen-host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Giuseppina Campisciano
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | | | | | - Manola Comar
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberta Maria Antonello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberto Luzzati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| |
Collapse
|
11
|
Current Evidence on the Efficacy of Gluten-Free Diets in Multiple Sclerosis, Psoriasis, Type 1 Diabetes and Autoimmune Thyroid Diseases. Nutrients 2020; 12:nu12082316. [PMID: 32752175 PMCID: PMC7468712 DOI: 10.3390/nu12082316] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we summarize the clinical data addressing a potential role for gluten in multiple sclerosis (MS), psoriasis, type 1 diabetes (T1D) and autoimmune thyroid diseases (ATDs). Furthermore, data on the prevalence of celiac disease (CD) and gluten-related antibodies in the above patient groups are presented. Adequately powered and properly controlled intervention trials investigating the effects of a gluten-free diet (GFD) in non-celiac patients with MS, psoriasis, T1D or ATDs are lacking. Only one clinical trial has studied the effects of a GFD among patients with MS. The trial found significant results, but it is subject to major methodological limitations. A few publications have found beneficial effects of a GFD in a subgroup of patients with psoriasis that were seropositive for anti-gliadin or deamidated gliadin antibodies, but no effects were seen among seronegative patients. Studies on the role of gluten in T1D are contradictive, however, it seems likely that a GFD may contribute to normalizing metabolic control without affecting levels of islet autoantibodies. Lastly, the effects of a GFD in non-celiac patients with ATDs have not been studied yet, but some publications report that thyroid-related antibodies respond to a GFD in patients with concomitant CD and ATDs. Overall, there is currently not enough evidence to recommend a GFD to non-celiac patients with MS, psoriasis, ATDs or T1D.
Collapse
|
12
|
Luo J, Shi X, Lin Y, Cheng N, Shi Y, Wang Y, Wu BQ. Cytomegalovirus Infection in an Adult Patient With Neuromyelitis Optica and Acute Hemorrhagic Rectal Ulcer: Case Report and Literature Review. Front Immunol 2020; 11:1634. [PMID: 32849558 PMCID: PMC7417347 DOI: 10.3389/fimmu.2020.01634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Previous infectious or inflammatory events may be involved in the pathogenesis of neuromyelitis optica (NMO), potentially by triggering an autoimmune response. Cytomegalovirus (CMV)-related NMO (CMV-NMO) is rarely reported. Acute hemorrhagic rectal ulcer (AHRU) is a rare disease with a largely unknown pathogenesis. Herein, we reported a co-NMO and AHRU case associated with CMV infection. In addition, we review previously reported cases of CMV-NMO and CMV-AHRU. Case presentation: A 40-year-old female diagnosed with aquaporin4 (AQP4)-IgG+ NMO and a poor response to high-dose intravenous methylprednisolone and immunoglobulin, followed by three rounds of plasma exchange was transferred to Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. She developed repeated acute lower gastrointestinal hemorrhage from the third day of admission. Abdominal computed tomography angiography (CTA) and interventional angiography did not detect any bleeding vessel. Bedside colonoscopy revealed a large ulcer-like lesion at 10 cm above the anus. Rectal biopsy pathology confirmed a CMV infection on day 23 post-admission, and cerebrospinal fluid (CSF) pathogen gene sequencing detected CMV gene copies on day 25 post-admission. After 2 weeks of treatment with ganciclovir and sodium phosphinate, the patient's lower gastrointestinal bleeding stopped, and her limb muscle strength and visual acuity gradually improved. After 4 weeks of antiviral therapy, colonoscopy showed that the intestinal wall of the original lesion was smooth. Hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) of a biopsy specimen was negative for CMV, her right eye vision was normal, and limb muscle strength had recovered. Serum AQP4-IgG was negative, and lesions on brain magnetic resonance imaging (MRI) manifested shrinkage. Conclusions: The benefits of antiviral therapy remain unclear; however, clinicians should be aware of the possibility of CMV-related NMO, if NMO was refractory to high-dose intravenous methylprednisolone, immunoglobulin, and plasma exchange. Moreover, clinicians should consider the possibility of CMV-related AHRU when recurrent acute lower gastrointestinal bleeding occurs in a patient.
Collapse
Affiliation(s)
- Jinmei Luo
- Medical Intensive Care Unit and Division of Respiratory Diseases, Department of Internal Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Shi
- Medical Intensive Care Unit and Division of Respiratory Diseases, Department of Internal Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Cheng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Shi
- Medical Intensive Care Unit and Division of Respiratory Diseases, Department of Internal Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhong Wang
- Medical Intensive Care Unit and Division of Respiratory Diseases, Department of Internal Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ben-Quan Wu
- Medical Intensive Care Unit and Division of Respiratory Diseases, Department of Internal Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ben-Quan Wu
| |
Collapse
|
13
|
Papp V, Iljicsov A, Rajda C, Magyari M, Koch‐Henriksen N, Petersen T, Jakab G, Deme I, Nagy F, Imre P, Lohner Z, Kovács K, Birkás AJ, Köves Á, Rum G, Nagy Z, Kerényi L, Vécsei L, Bencsik K, Jobbágy Z, Diószeghy P, Horváth L, Galántai G, Kasza J, Molnár G, Simó M, Sátori M, Rózsa C, Ács P, Berki T, Lovas G, Komoly S, Illes Z. A population‐based epidemiological study of neuromyelitis optica spectrum disorder in Hungary. Eur J Neurol 2019; 27:308-317. [DOI: 10.1111/ene.14079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 11/27/2022]
|
14
|
Nemati R, Mehdizadeh S, Salimipour H, Yaghoubi E, Alipour Z, Tabib SM, Assadi M. Neurological manifestations related to Crohn's disease: a boon for the workforce. Gastroenterol Rep (Oxf) 2019; 7:291-297. [PMID: 31413837 PMCID: PMC6688734 DOI: 10.1093/gastro/gox034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
The neurological manifestations of Crohn's disease and its prevalence are not well known. Here, we report five patients of confirmed Crohn's disease with different neurological presentations. The neurological presentations include anterior ischemic optic neuropathy, myelopathy, posterior reversible encephalopathy syndrome, chronic inflammatory demyelinating polyneuropathy, and chronic axonal sensory and motor polyneuropathy. These manifestations should be kept in mind in the assessment of Crohn's disease.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Neurology, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Mehdizadeh
- Department of Pathology, Rasul-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Salimipour
- Department of Neurology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ehsan Yaghoubi
- Department of Neurology, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zeinab Alipour
- Department of Gastroenterology and Hepatology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Masoud Tabib
- Department of Gastroenterology and Hepatology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
15
|
Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Espejo C, Álvarez-Cermeño JC, Villar LM, Guaza C. Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1374. [PMID: 31258540 PMCID: PMC6587398 DOI: 10.3389/fimmu.2019.01374] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota dysbiosis has been implicated in MS and other immune diseases, although it remains unclear how manipulating the gut microbiota may affect the disease course. Using a well-established model of progressive MS triggered by intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), we sought to determine whether dysbiosis induced by oral antibiotics (ABX) administered on pre-symptomatic and symptomatic phases of the disease influences its course. We also addressed the effects of microbiota recolonization after ABX withdrawn in the presence or absence of probiotics. Central and peripheral immunity, plasma acetate and butyrate levels, axon damage and motor disability were evaluated. The cocktail of ABX prevented motor dysfunction and limited axon damage in mice, which had fewer CD4+ and CD8+ T cells in the CNS, while gut microbiota recolonization worsened motor function and axonal integrity. The underlying mechanisms of ABX protective effects seem to involve CD4+CD39+ T cells and CD5+CD1d+ B cells into the CNS. In addition, microglia adopted a round amoeboid morphology associated to an anti-inflammatory gene profile in the spinal cord of TMEV mice administered ABX. The immune changes in the spleen and mesenteric lymph nodes were modest, yet ABX treatment of mice limited IL-17 production ex vivo. Collectively, our results provide evidence of the functional relevance of gut microbiota manipulation on the neurodegenerative state and disease severity in a model of progressive MS and reinforce the role of gut microbiota as target for MS treatment.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | | | - Miriam Mecha
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Feliú
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Carmen Espejo
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Servei de Neurología-Neuroimmunología, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Carlos Álvarez-Cermeño
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luisa María Villar
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| |
Collapse
|
16
|
Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Front Immunol 2018; 9:2325. [PMID: 30344525 PMCID: PMC6182051 DOI: 10.3389/fimmu.2018.02325] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function. However, the current understanding of the mechanisms controlling the maturation and function of microglia is obscure, especially regarding the extrinsic factors affecting microglial function during the developmental process. The gut microflora has been shown to significantly influence microglia from before birth until adulthood, and the metabolites generated by the microbiota regulate the inflammation response mediated by microglia in the CNS; this inspired our hypothesis that microglia act as a critical mediator between the gut microbiome and CNS diseases. Herein, we highlight and discuss current findings that show the influence of host microbiome, as a crucial extrinsic factor, on microglia within the CNS. In addition, we summarize the CNS diseases associated with both the host microbiome and microglia and explore the potential pathways by which the gut bacteria influence the pathogenesis of CNS diseases. Our work is thus a comprehensive theoretical foundation for studies on the gut-microglia connection in the development of CNS diseases; and provides great potential for researchers to target pathways associated with the gut-microglia connection and overcome CNS diseases.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Janakiraman M, Krishnamoorthy G. Emerging Role of Diet and Microbiota Interactions in Neuroinflammation. Front Immunol 2018; 9:2067. [PMID: 30254641 PMCID: PMC6141752 DOI: 10.3389/fimmu.2018.02067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023] Open
Abstract
Commensal gut microbiota exerts multifarious effects on intestinal and extra-intestinal immune homeostasis. A disruption in the microbial composition of the gut has been associated with many neurological disorders with inflammatory components. Here we review known associations between gut microbiota and neurological disorders. Further we highlight the emerging role of diet and microbiota interrelationship in regulating neuroinflammation.
Collapse
Affiliation(s)
- Mathangi Janakiraman
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gurumoorthy Krishnamoorthy
- Research Group Neuroinflammation and Mucosal Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
18
|
Spear ET, Holt EA, Joyce EJ, Haag MM, Mawe SM, Hennig GW, Lavoie B, Applebee AM, Teuscher C, Mawe GM. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterol Motil 2018; 30:e13349. [PMID: 29644797 PMCID: PMC6153444 DOI: 10.1111/nmo.13349] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that, in addition to motor, sensory, and cognitive symptoms, also causes constipation, which is poorly understood. Here, we characterize gastrointestinal (GI) dysmotility in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and evaluate whether autoantibodies target the enteric nervous system (ENS) and cause dysmotility. METHODS EAE was induced in male SJL and B6 mice. GI motility was assessed in vivo and ex vivo in wild type (WT) and B cell-deficient mice. MS and EAE serum was used to survey potential targets in the ENS and changes in the ENS structure were characterized using immunohistochemistry. KEY RESULTS EAE mice developed accelerated gastric emptying and delayed whole GI transit with reduced colonic motility. Fecal water content was reduced, and colonic migrating myoelectrical complexes (CMMC) and slow waves were less frequent. Colons from EAE mice exhibited decreased GFAP levels in glia. Sera from MS patients and from EAE mice targeted ENS neurons and glia. B-cell deficiency in EAE protected against colonic dysmotility. CONCLUSIONS & INFERENCES Consistent with symptoms experienced in MS, we demonstrate that EAE mice widely exhibit features of GI dysmotility that persisted in the absence of extrinsic innervation, suggesting direct involvement of ENS neurocircuitry. The absence of GI dysmotility in B cell-deficient mice with EAE together with EAE and MS serum immunoreactivity against ENS targets suggests that MS could be classified among other diseases known to induce autoimmune GI dysmotility.
Collapse
Affiliation(s)
- E. T. Spear
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - E. A. Holt
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - E. J. Joyce
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - M. M. Haag
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - S. M. Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - G. W. Hennig
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA,Department of Pharmacology, The University of Vermont, Burlington, VT, USA
| | - B. Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - A. M. Applebee
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - C. Teuscher
- Department of Medicine, The University of Vermont, Burlington, VT, USA
| | - G. M. Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA,Department of Pharmacology, The University of Vermont, Burlington, VT, USA,Department of Medicine, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Ma W, Chen J, Meng Y, Yang J, Cui Q, Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol 2018; 9:1336. [PMID: 29988362 PMCID: PMC6023991 DOI: 10.3389/fmicb.2018.01336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023] Open
Abstract
In recent years, the first-line anti-diabetic drug metformin has been shown to be also useful for the treatment of other diseases like cancer. To date, few reports were about the impact of metformin on gut microbiota. To fully understand the mechanism of action of metformin in treating diseases other than diabetes, it is especially important to investigate the impact of long-term metformin treatment on the gut microbiome in non-diabetic status. In this study, we treated healthy mice with metformin for 30 days, and observed 46 significantly changed gut microbes by using the 16S rRNA-based microbiome profiling technique. We found that microbes from the Verrucomicrobiaceae and Prevotellaceae classes were enriched, while those from Lachnospiraceae and Rhodobacteraceae were depleted. We further compared the altered microbiome profile with the profiles under various disease conditions using our recently developed comparative microbiome tool known as MicroPattern. Interestingly, the treatment of diabetes patients with metformin positively correlates with colon cancer and type 1 diabetes, indicating a confounding effect on the gut microbiome in patients with diabetes. However, the treatment of healthy mice with metformin exhibits a negative correlation with multiple inflammatory diseases, indicating a protective anti-inflammatory role of metformin in non-diabetes status. This result underscores the potential effect of metformin on gut microbiome homeostasis, which may contribute to the treatment of non-diabetic diseases.
Collapse
Affiliation(s)
- Wei Ma
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Central Laboratory, PLA Navy General Hospital, Beijing, China
| | - Ji Chen
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhong Meng
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jichun Yang
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Gut dysbiosis and neuroimmune responses to brain infection with Theiler's murine encephalomyelitis virus. Sci Rep 2017; 7:44377. [PMID: 28290524 PMCID: PMC5349526 DOI: 10.1038/srep44377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4+ and CD8+ T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4+ and CD8+T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mice.
Collapse
|
21
|
Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology? J Immunol Res 2017; 2017:7904821. [PMID: 28316999 PMCID: PMC5337874 DOI: 10.1155/2017/7904821] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/31/2016] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.
Collapse
|
22
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
23
|
Takata K, Tomita T, Okuno T, Kinoshita M, Koda T, Honorat JA, Takei M, Hagihara K, Sugimoto T, Mochizuki H, Sakoda S, Nakatsuji Y. Reply to comment on: Dietary yeasts reduce inflammation in central nervous system via microflora. Ann Clin Transl Neurol 2015; 2:1040. [PMID: 26862541 PMCID: PMC4693619 DOI: 10.1002/acn3.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kazushiro Takata
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| | - Takayuki Tomita
- Discovery Research Laboratories Kyorin Pharmaceutical Co., ltd. 2399-1 Nogi, Nogi-machi Shimotsuga-gun Tochigi 329-0114 Japan
| | - Tatsusada Okuno
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| | - Makoto Kinoshita
- Osaka General Medical Center 3-1-56 Mandaihigashi, Sumiyoshi Osaka Osaka 558-0056 Japan
| | - Toru Koda
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| | - Josephe A Honorat
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| | - Masaya Takei
- Discovery Research Laboratories Kyorin Pharmaceutical Co., ltd. 2399-1 Nogi, Nogi-machi Shimotsuga-gun Tochigi 329-0114 Japan
| | - Kouichiro Hagihara
- Discovery Research Laboratories Kyorin Pharmaceutical Co., ltd. 2399-1 Nogi, Nogi-machi Shimotsuga-gun Tochigi 329-0114 Japan
| | - Tomoyuki Sugimoto
- Research Division Hirosaki University Graduate School of Science and Technology 3-Bunkyocho Hirosaki Aomori 036-8560 Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| | - Saburo Sakoda
- Department of Neurology National Hospital Organization Toneyama 5-5-1 Toneyama Toyonaka Osaka 560-8552 Japan
| | - Yuji Nakatsuji
- Department of Neurology Osaka University Graduate School of Medicine D4 2-2 Yamada-oka Suita Osaka 565-0871 Japan
| |
Collapse
|
24
|
De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015; 6:207-13. [PMID: 25835343 PMCID: PMC4616908 DOI: 10.1080/19490976.2015.1035855] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
Through extensive microbial-mammalian co-metabolism, the intestinal microbiota have evolved to exert a marked influence on health and disease via gut-brain-microbiota interactions. In this addendum, we summarize the findings of our recent study on the fecal microbiota and metabolomes of children with pervasive developmental disorder-not otherwise specified (PDD-NOS) or autism (AD) compared with healthy children (HC). Children with PDD-NOS or AD have altered fecal microbiota and metabolomes (including neurotransmitter molecules). We hypothesize that the degree of microbial alteration correlates with the severity of the disease since fecal microbiota and metabolomes alterations were higher in children with PDD-NOS and, especially, AD compared to HC. Our study indicates that the levels of free amino acids (FAA) and volatile organic compounds (VOC) differ in AD subjects compared to children with PDD-NOS, who are more similar to HC. Finally, we propose a new perspective on the implications for the interaction between intestinal microbiota and AD.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| | - Ruggiero Francavilla
- Department of Interdisciplinary Medicine;
University of Bari Aldo Moro; Bari, Italy
| | - Maria Piccolo
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| | - Andrea De Giacomo
- Child Neurological and Psychiatric Unit;
Department of Neurological and Psychiatric Sciences; University of Bari Aldo
Moro; Bari, Italy
| | - Marco Gobbetti
- Department of Soil; Plant and Food Sciences;
University of Bari Aldo Moro; Bari, Italy
| |
Collapse
|
25
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 520] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
26
|
Wunsch M, Rovituso DM, Kuerten S. KIR4.1 Antibodies as Biomarkers in Multiple Sclerosis. Front Neurol 2014; 5:62. [PMID: 24817862 PMCID: PMC4012188 DOI: 10.3389/fneur.2014.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie Wunsch
- Department of Anatomy and Cell Biology, University of Wuerzburg , Wuerzburg , Germany
| | - Damiano M Rovituso
- Department of Anatomy and Cell Biology, University of Wuerzburg , Wuerzburg , Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Wuerzburg , Wuerzburg , Germany
| |
Collapse
|