1
|
Song J, Yang H, Yan H, Lu Q, Guo L, Zheng H, Zhang T, Lin B, Zhao Z, He C, Shen Y. Structural disruption in subjective cognitive decline and mild cognitive impairment. Brain Imaging Behav 2024; 18:1536-1548. [PMID: 39370448 DOI: 10.1007/s11682-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Subjective cognitive decline (SCD) marks the initial stage in Alzheimer's disease continuum. Nonetheless, current research findings regarding brain structural changes in the SCD are inconsistent. In this study, 37 SCD patients, 28 mild cognitive impairment (MCI) patients, and 42 healthy controls (HC) were recruited to investigate structural alterations. Morphological and microstructural differences among the three groups were analyzed based on T1- and diffusion-weighted images, correlating them with neuropsychological assessments. Additionally, classification analysis was performed by using support vector machines (SVM) categorize participants into three groups based on MRI features. Both SCD and MCI showed decreased volume in left inferior parietal lobe (IPL) compared to HC, while SCD showed altered morphologies in the right inferior temporal gyrus (ITG), right insula and right amygdala, and microstructures in fiber tracts of the right ITG, lateral occipital cortex (LOC) and insula relative to MCI. Moreover, the volume in the left IPL, right LOC, right amygdala and diffusivity value in fiber tracts of right LOC were significantly correlated with cognitive functions across all subjects. The classification models achieved an accuracy of > 0.7 (AUC = 0.8) in distinguishing the three groups. Our findings suggest that SCD and MCI share similar atrophy in the IPL but show more differences in morphological and microstructural features of cortical-subcortical areas.
Collapse
Affiliation(s)
- Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Han Yang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Hailang Yan
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Lei Guo
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Science, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Bin Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhiyong Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
2
|
Wang Y, Wang T, Yu Z, Wang J, Liu F, Ye M, Fang X, Liu Y, Liu J. Alterations in structural integrity of superior longitudinal fasciculus III associated with cognitive performance in cerebral small vessel disease. BMC Med Imaging 2024; 24:138. [PMID: 38858645 PMCID: PMC11165890 DOI: 10.1186/s12880-024-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND This study aimed to investigate the alterations in structural integrity of superior longitudinal fasciculus subcomponents with increasing white matter hyperintensity severity as well as the relationship to cognitive performance in cerebral small vessel disease. METHODS 110 cerebral small vessel disease study participants with white matter hyperintensities were recruited. According to Fazekas grade scale, white matter hyperintensities of each subject were graded. All subjects were divided into two groups. The probabilistic fiber tracking method was used for analyzing microstructure characteristics of superior longitudinal fasciculus subcomponents. RESULTS Probabilistic fiber tracking results showed that mean diffusion, radial diffusion, and axial diffusion values of the left arcuate fasciculus as well as the mean diffusion value of the right arcuate fasciculus and left superior longitudinal fasciculus III in high white matter hyperintensities rating group were significantly higher than those in low white matter hyperintensities rating group (p < 0.05). The mean diffusion value of the left superior longitudinal fasciculus III was negatively related to the Montreal Cognitive Assessment score of study participants (p < 0.05). CONCLUSIONS The structural integrity injury of bilateral arcuate fasciculus and left superior longitudinal fasciculus III is more severe with the aggravation of white matter hyperintensities. The structural integrity injury of the left superior longitudinal fasciculus III correlates to cognitive impairment in cerebral small vessel disease.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Radiology, Eye& ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Tianyao Wang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Liu
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Mengwen Ye
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xianjin Fang
- Anhui University of Science and Technology, Anhui, China
| | - Yinhong Liu
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jun Liu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200050, China.
| |
Collapse
|
3
|
Brain imaging abnormalities in mixed Alzheimer's and subcortical vascular dementia. Neurol Sci 2022:1-14. [PMID: 35614521 DOI: 10.1017/cjn.2022.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer's disease. GeroScience 2021; 43:2015-2039. [PMID: 33900530 DOI: 10.1007/s11357-021-00355-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Traumatic brain injuries (TBIs) are often followed by persistent structural brain alterations and by cognitive sequalae, including memory deficits, reduced neural processing speed, impaired social function, and decision-making difficulties. Although mild TBI (mTBI) is a risk factor for Alzheimer's disease (AD), the extent to which these conditions share patterns of macroscale neurodegeneration has not been quantified. Comparing such patterns can not only reveal how the neurodegenerative trajectories of TBI and AD are similar, but may also identify brain atrophy features which can be leveraged to prognosticate AD risk after TBI. The primary aim of this study is to systematically map how TBI affects white matter (WM) and gray matter (GM) properties in AD-analogous patterns. Our findings identify substantial similarities in the regional macroscale neurodegeneration patterns associated with mTBI and AD. In cerebral GM, such similarities are most extensive in brain areas involved in memory and executive function, such as the temporal poles and orbitofrontal cortices, respectively. Our results indicate that the spatial pattern of cerebral WM degradation observed in AD is broadly similar to the pattern of diffuse axonal injury observed in TBI, which frequently affects WM structures like the fornix, corpus callosum, and corona radiata. Using machine learning, we find that the severity of AD-like brain changes observed during the chronic stage of mTBI can be accurately prognosticated based on acute assessments of post-traumatic mild cognitive impairment. These findings suggest that acute post-traumatic cognitive impairment predicts the magnitude of AD-like brain atrophy, which is itself associated with AD risk.
Collapse
|
5
|
Ma SM, Wang L, Su XT, Yang NN, Huang J, Lin LL, Shao JK, Yang JW, Liu CZ. Acupuncture Improves White Matter Perfusion and Integrity in Rat Model of Vascular Dementia: An MRI-Based Imaging Study. Front Aging Neurosci 2020; 12:582904. [PMID: 33328963 PMCID: PMC7719770 DOI: 10.3389/fnagi.2020.582904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022] Open
Abstract
White matter lesions induced by chronic cerebral hypoperfusion are associated with cognitive impairment in vascular dementia (VaD). Previous studies have shown that acupuncture can ameliorate the cognitive deficits of individuals with VaD. However, the neuroimaging mechanisms of acupuncture on white matter perfusion and integrity remain elusive. In this study, the VaD model was induced by bilateral common carotid arteries occlusion (BCCAO) in rats. Novel object recognition task and Morris water maze were performed to evaluate short-term memory and spatial learning and memory. Arterial spin labeling and diffusion tensor imaging (DTI) were used to measure the cerebral blood flow (CBF) and the white matter integrity. Pathological examinations detected the myelin loss and concomitant neuroinflammation. The results demonstrate that BCCAO rats with reduced CBF exhibited worse performance and altered DTI parameters, including decreased fractional anisotropy, increased radial diffusivity, and axial diffusivity in white matter regions. Acupuncture ameliorated cognitive impairment, increased CBF, and protected the myelin sheath integrity but not the axons of BCCAO rats. These protective effects of acupuncture on white matter were significantly correlated with improved CBF. Pathological examination confirmed that the loss of myelin basic protein and microglial accumulation associated IL-1β and IL-6 production were attenuated by acupuncture treatment. Our findings suggest that acupuncture protects cognitive function of BCCAO rats by improving white matter perfusion and integrity.
Collapse
Affiliation(s)
- Si-Ming Ma
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Tong Su
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Huang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu-Lu Lin
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Kai Shao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Leong SL, Robertson IH, Lawlor B, Vanneste S. Associations between Hypertension, Treatment, and Cognitive Function in the Irish Longitudinal Study on Ageing. J Clin Med 2020; 9:jcm9113735. [PMID: 33233792 PMCID: PMC7699900 DOI: 10.3390/jcm9113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022] Open
Abstract
Epidemiological studies have produced conflicting results regarding the associations between the use of different hypertensive drugs and cognition. Data from the Irish Longitudinal Study on Ageing (TILDA), a nationwide prospective longitudinal study of adults aged 50 or more years, was used to explore the associations between hypertensive status, categories of antihypertensive and cognitive function controlling for age, education, and other demographic and lifestyle factors. The study sample included 8173 participants. ANCOVAs and multivariate regressions were used to assess the cross-sectional and longitudinal associations between cognitive function and hypertension status and the different categories of hypertensive medication. Hypertension was not associated with decline in global cognitive and executive functions and were fully explained by age and education. Different hypertensive medications were not associated with cognitive function. Consistent with previous studies, changes in cognition can largely be explained by age and education. The use of antihypertensive medications is neither harmful nor protective for cognition.
Collapse
Affiliation(s)
- Sook Ling Leong
- Global Brain Health Institute & Trinity Institute of Neuroscience, Trinity College Dublin, DO2 PN40 Dublin, Ireland; (S.L.L.); (I.H.R.); (B.L.)
- School of Psychology, Trinity College Dublin, DO2 PN40 Dublin, Ireland
| | - Ian H. Robertson
- Global Brain Health Institute & Trinity Institute of Neuroscience, Trinity College Dublin, DO2 PN40 Dublin, Ireland; (S.L.L.); (I.H.R.); (B.L.)
| | - Brian Lawlor
- Global Brain Health Institute & Trinity Institute of Neuroscience, Trinity College Dublin, DO2 PN40 Dublin, Ireland; (S.L.L.); (I.H.R.); (B.L.)
| | - Sven Vanneste
- Global Brain Health Institute & Trinity Institute of Neuroscience, Trinity College Dublin, DO2 PN40 Dublin, Ireland; (S.L.L.); (I.H.R.); (B.L.)
- School of Psychology, Trinity College Dublin, DO2 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
7
|
Chong JSX, Jang H, Kim HJ, Ng KK, Na DL, Lee JH, Seo SW, Zhou J. Amyloid and cerebrovascular burden divergently influence brain functional network changes over time. Neurology 2019; 93:e1514-e1525. [DOI: 10.1212/wnl.0000000000008315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/21/2019] [Indexed: 01/30/2023] Open
Abstract
ObjectiveTo examine the effects of baseline Alzheimer disease and cerebrovascular disease markers on longitudinal default mode network (DMN) and executive control network (ECN) functional connectivity (FC) changes in mild cognitive impairment (MCI).MethodsWe studied 30 patients with amnestic MCI (aMCI) and 55 patients with subcortical vascular MCI (svMCI) with baseline Pittsburgh Compound B (PiB)–PET scans and longitudinal MRI scans. Participants were followed up clinically with annual MRI for up to 4 years (aMCI: 26 with 2 timepoints, 4 with 3 timepoints; svMCI: 13 with 2 timepoints, 16 with 3 timepoints, 26 with 4 timepoints).Resultsβ-Amyloid (Aβ) burden was associated with longitudinal DMN FC declines, while cerebrovascular burden was associated with longitudinal ECN FC changes. When patients were divided into PiB+ and PiB− groups, PiB+ patients showed longitudinal DMN FC declines, while patients with svMCI showed longitudinal ECN FC increases. Direct comparisons between the 2 groups without mixed pathology (aMCI PiB+ and svMCI PiB−) recapitulated this divergent pattern: aMCI PiB+ patients showed steeper longitudinal DMN FC declines, while svMCI PiB− patients showed steeper longitudinal ECN FC increases. Finally, using baseline PiB uptake and lacune numbers as continuous variables, baseline PiB uptake showed inverse U-shape associations with longitudinal DMN FC changes in both MCI subtypes, while baseline lacune numbers showed mainly inverse U-shape relationships with longitudinal ECN FC changes in patients with svMCI.ConclusionsOur findings underscore the divergent effects of Aβ and cerebrovascular burden on longitudinal FC changes in the DMN and ECN in the predementia stage, which reflect the underlying pathology and may be used to track early changes in Alzheimer disease and cerebrovascular disease.
Collapse
|
8
|
White matter lesions, cerebral inflammation and cognitive function in a mouse model of cerebral hypoperfusion. Brain Res 2019; 1711:193-201. [DOI: 10.1016/j.brainres.2019.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/05/2023]
|
9
|
Kim KW, Kwon H, Kim YE, Yoon CW, Kim YJ, Kim YB, Lee JM, Yoon WT, Kim HJ, Lee JS, Jang YK, Kim Y, Jang H, Ki CS, Youn YC, Shin BS, Bang OY, Kim GM, Chung CS, Kim SJ, Na DL, Duering M, Cho H, Seo SW. Multimodal imaging analyses in patients with genetic and sporadic forms of small vessel disease. Sci Rep 2019; 9:787. [PMID: 30692550 PMCID: PMC6349863 DOI: 10.1038/s41598-018-36580-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/24/2018] [Indexed: 11/09/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is thought to be a pure genetic form of subcortical vascular cognitive impairment (SVCI). The aim of this study was to compare white matter integrity and cortical thickness between typical CADASIL, a genetic form, and two sporadic forms of SVCI (with NOTCH3 and without NOTCH3 variants). We enrolled typical CADASIL patients (N = 11) and SVCI patients [with NOTCH3 variants (N = 15), without NOTCH3 variants (N = 101)]. To adjust the age difference, which reflects the known difference in clinical and radiologic courses between typical CADASIL patients and SVCI patients, we constructed a W-score of measurement for diffusion tensor image and cortical thickness. Typical CADASIL patients showed more frequent white matter hyperintensities in the bilateral posterior temporal region compared to SVCI patients (p < 0.001, uncorrected). We found that SVCI patients, regardless of the presence of NOTCH3 variants, showed significantly greater microstructural alterations (W-score, p < 0.05, FWE-corrected) and cortical thinning (W-score, p < 0.05, FDR-corrected) than typical CADASIL patients. In this study, typical CADASIL and SVCI showed distinct anatomic vulnerabilities in the cortical and subcortical structures. However, there was no difference between SVCI with NOTCH3 variants and SVCI without NOTCH3 variants.
Collapse
Affiliation(s)
- Ko Woon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Neurology, Chonbuk National University Medical School & Hospital, Jeonju, Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Young-Eun Kim
- Genome Research Center, Green Cross Genome, Yong-in, Korea
| | - Cindy W Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - Yeo Jin Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Yong Bum Kim
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Won Tae Yoon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Young Kyoung Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byoung-Soo Shin
- Department of Neurology, Chonbuk National University Medical School & Hospital, Jeonju, Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Joo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, and Departments of, Clinical Research Design and Evaluation, Seoul, Korea.
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Korea. .,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
10
|
Liu X, Cheng R, Chen L, Luo T, Lv F, Gong J, Jiang P. Alterations of White Matter Integrity in Subcortical Ischemic Vascular Disease with and Without Cognitive Impairment: a TBSS Study. J Mol Neurosci 2019; 67:595-603. [PMID: 30685818 DOI: 10.1007/s12031-019-01266-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Patients with subcortical ischemic vascular disease (SIVD) may exhibit a high risk of cognitive impairment (CI) by disruption of white matter (WM) integrity. Diffusion tensor imaging (DTI) is recommended as a sensitive method to explore whole brain WM alterations at an asymptomatic stage of the disease, which might be correlated with underlying cognitive disorders. We aim to investigate alterations in WM microstructures and evaluate the relationships between the mean values of diffusion metrics (FA, MD, AD, and RD) and cognitive assessments in SIVD patients. Fifty SIVD patients with (SVCI, N = 25) and without (pre-SVCI, N = 25) cognitive impairments and normal controls (NC, N = 23) underwent DTI and neuropsychological examinations. DTI data were analyzed via TBSS to detect significant changes in WM tracts. Spearman correlation analysis was performed to evaluate relationships between the mean values of diffusion indices and the cognitive assessments. In general, extensive symmetrically altered areas that involved approximately the entire cerebral WM were noted in the pre-SVCI group but were less distinct than that noted in the SVCI group compared with NCs. The genu of corpus callosum exhibited the most damaged WM fiber. Throughout WM, FA was decreased, whereas MD, AD, and RD were increased. Some specific WM tracts in patient groups were significantly correlated with the severity of white matter hyperintensity (WMH), cognitive assessments about executive functions and processing speed. WM integrity has already been damaged at the pre-SVCI stage, which would be associate with future cognitive dysfunction. DTI could potentially establish early biomarkers to detect underlying mechanisms of SIVD.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- The Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianyou Luo
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - FaJin Lv
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Gong
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiling Jiang
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Palesi F, De Rinaldis A, Vitali P, Castellazzi G, Casiraghi L, Germani G, Bernini S, Anzalone N, Ramusino MC, Denaro FM, Sinforiani E, Costa A, Magenes G, D'Angelo E, Gandini Wheeler-Kingshott CAM, Micieli G. Specific Patterns of White Matter Alterations Help Distinguishing Alzheimer's and Vascular Dementia. Front Neurosci 2018; 12:274. [PMID: 29922120 PMCID: PMC5996902 DOI: 10.3389/fnins.2018.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) and vascular dementia (VaD) together represent the majority of dementia cases. Since their neuropsychological profiles often overlap and white matter lesions are observed in elderly subjects including AD, differentiating between VaD and AD can be difficult. Characterization of these different forms of dementia would benefit by identification of quantitative imaging biomarkers specifically sensitive to AD or VaD. Parameters of microstructural abnormalities derived from diffusion tensor imaging (DTI) have been reported to be helpful in differentiating between dementias, but only few studies have used them to compare AD and VaD with a voxelwise approach. Therefore, in this study a whole brain statistical analysis was performed on DTI data of 93 subjects (31 AD, 27 VaD, and 35 healthy controls—HC) to identify specific white matter patterns of alteration in patients affected by VaD and AD with respect to HC. Parahippocampal tracts were found to be mainly affected in AD, while VaD showed more spread white matter damages associated with thalamic radiations involvement. The genu of the corpus callosum was predominantly affected in VaD, while the splenium was predominantly affected in AD revealing the existence of specific patterns of alteration useful in distinguishing between VaD and AD. Therefore, DTI parameters of these regions could be informative to understand the pathogenesis and support the etiological diagnosis of dementia. Further studies on larger cohorts of subjects, characterized for brain amyloidosis, will allow to confirm and to integrate the present findings and, furthermore, to elucidate the mechanisms of mixed dementia. These steps will be essential to translate these advances to clinical practice.
Collapse
Affiliation(s)
- Fulvia Palesi
- Department of Physics, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Andrea De Rinaldis
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Vitali
- Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Gloria Castellazzi
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Letizia Casiraghi
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giancarlo Germani
- Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bernini
- Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica M Denaro
- Department of Emergency Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Sinforiani
- Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giovanni Magenes
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Giuseppe Micieli
- Department of Emergency Neurology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke Vasc Neurol 2018; 3:131-139. [PMID: 30294468 PMCID: PMC6169607 DOI: 10.1136/svn-2017-000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 01/26/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Vascular cognitive impairment (VCI) describes all forms of cognitive impairment caused by any type of cerebrovascular disease. Early identification of VCI is quite difficult due to the lack of both sensitive and specific biomarkers. Extensive damage to the white matter tracts, which connect the cortical and subcortical regions, has been shown in subcortical VCI (SVCI), the most common subtype of VCI that is caused by small vessel disease. Two specific MRI sequences, including diffusion tensor imaging (DTI) and functional MRI (fMRI), have emerged as useful tools for identifying subtle white matter changes and the intrinsic connectivity between distinct cortical regions. This review describes the advantages of these two modalities in SVCI research and the current DTI and fMRI findings on SVCI. Using DTI technique, a variety of studies found that white matter microstructural damages in the anterior and superior areas are more specific to SVCI. Similarly, functional brain abnormalities detected by fMRI have also been mainly shown in anterior brain areas in SVCI. The characteristic distribution of brain abnormalities in SVCI interrupts the prefrontal-subcortical loop that results in cognitive impairments in particular domains, which further confirms the ‘disconnection syndrome’ hypothesis. In addition, another MRI technique, arterial spin labelling (ASL), has been used to describe the disconnection patterns in a variety of conditions by measuring cerebral blood flow. The role of the ASL technique in SVCI research is also assessed. Finally, the review proposes the application of multimodality fusion in the investigation of SVCI pathogenesis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
13
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
14
|
Yun HJ, Moon SH, Kim HJ, Lockhart SN, Choe YS, Lee KH, Na DL, Lee JM, Seo SW. Centiloid method evaluation for amyloid PET of subcortical vascular dementia. Sci Rep 2017; 7:16322. [PMID: 29176753 PMCID: PMC5701176 DOI: 10.1038/s41598-017-16236-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022] Open
Abstract
Reference region selection is important for proper amyloid PET analysis, especially in subcortical vascular dementia (SVaD) patients. We investigated reference region differences between SVaD and Alzheimer's disease (AD) using Centiloid scores. In 57 [C-11] Pittsburgh compound B (PiB) positive (+) AD and 23 PiB (+) SVaD patients, we assessed standardized PiB uptake and Centiloid scores in disease-specific cortical regions, with several reference regions: cerebellar gray (CG), whole cerebellum (WC), WC with brainstem (WC + B), pons, and white matter (WM). We calculated disease group differences from young controls (YC) and YC variance according to reference region. SVaD patients showed large effect sizes (Cohen's d > 0.8) using all reference regions. WM and pons showed larger YC variances than other regions. Findings were similar for AD patients. CG, WC, and WC + B, but not WM or pons, are reliable reference regions for amyloid imaging analysis in SVaD.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Korea
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, 94720, CA, USA
- Department of Internal Medicine, Division of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyung Han Lee
- Department of Nuclear Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea.
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Korea.
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
15
|
Jang H, Kwon H, Yang JJ, Hong J, Kim Y, Kim KW, Lee JS, Jang YK, Kim ST, Lee KH, Lee JH, Na DL, Seo SW, Kim HJ, Lee JM. Correlations between Gray Matter and White Matter Degeneration in Pure Alzheimer's Disease, Pure Subcortical Vascular Dementia, and Mixed Dementia. Sci Rep 2017; 7:9541. [PMID: 28842654 PMCID: PMC5573310 DOI: 10.1038/s41598-017-10074-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease dementia (ADD) and subcortical vascular dementia (SVaD) both show cortical thinning and white matter (WM) microstructural changes. We evaluated different patterns of correlation between gray matter (GM) and WM microstructural changes in pure ADD, pure SVaD, and mixed dementia. We enrolled 40 Pittsburgh compound B (PiB) positive ADD patients without WM hyperintensities (pure ADD), 32 PiB negative SVaD patients (pure SVaD), 23 PiB positive SVaD patients (mixed dementia), and 56 normal controls. WM microstructural integrity was quantified using fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) values. We used sparse canonical correlation analysis to show correlated regions of cortical thinning and WM microstructural changes. In pure ADD patients, lower FA in the frontoparietal area correlated with cortical thinning in the left inferior parietal lobule and bilateral paracentral lobules. In pure SVaD patients, lower FA and higher DR across extensive WM regions correlated with cortical thinning in bilateral fronto-temporo-parietal regions. In mixed dementia patients, DR and DA changes across extensive WM regions correlated with cortical thinning in the bilateral fronto-temporo-parietal regions. Our findings showed that the relationships between GM and WM degeneration are distinct in pure ADD, pure SVaD, and mixed dementia, suggesting that different pathomechanisms underlie their correlations.
Collapse
Affiliation(s)
- Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jinwoo Hong
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yeshin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ko Woon Kim
- Department of Neurology, Chonbuk National University Hospital, Chonbuk National University Medical school, JeonJu, Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Young Kyoung Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sung Tae Kim
- Radiology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Han Lee
- Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, Ulsan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
16
|
Ji F, Pasternak O, Liu S, Loke YM, Choo BL, Hilal S, Xu X, Ikram MK, Venketasubramanian N, Chen CLH, Zhou J. Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:63. [PMID: 28818116 PMCID: PMC5561637 DOI: 10.1186/s13195-017-0292-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mixed vascular and neurodegenerative dementia, such as Alzheimer's disease (AD) with concomitant cerebrovascular disease, has emerged as the leading cause of age-related cognitive impairment. The brain white matter (WM) microstructural changes in neurodegeneration well-documented by diffusion tensor imaging (DTI) can originate from brain tissue or extracellular free water changes. The differential microstructural and free water changes in AD with and without cerebrovascular disease, especially in normal-appearing WM, remain largely unknown. To cover these gaps, we aimed to characterize the WM free water and tissue microstructural changes in AD and mixed dementia as well as their associations with cognition using a novel free water imaging method. METHODS We compared WM free water and free water-corrected DTI measures as well as white matter hyperintensity (WMH) in patients with AD with and without cerebrovascular disease, patients with vascular dementia, and age-matched healthy control subjects. RESULTS The cerebrovascular disease groups had higher free water than the non-cerebrovascular disease groups. Importantly, besides the cerebrovascular disease groups, patients with AD without cerebrovascular disease also had increased free water in normal-appearing WM compared with healthy control subjects, reflecting mild vascular damage. Such free water increases in WM or normal-appearing WM (but not WMH) contributed to dementia severity. Whole-brain voxel-wise analysis revealed a close association between widespread free water increases and poorer attention, executive functioning, visual construction, and motor performance, whereas only left hemispheric free water increases were related to language deficits. Moreover, compared with the original DTI metrics, the free water-corrected DTI metric revealed tissue damage-specific (frontal and occipital) microstructural differences between the cerebrovascular disease and non-cerebrovascular disease groups. In contrast to both lobar and subcortical/brainstem free water increases, only focal lobar microstructural damage was associated with poorer cognitive performance. CONCLUSIONS Our findings suggest that free water analysis isolates probable mild vascular damage from WM microstructural alterations and underscore the importance of normal-appearing WM changes underlying cognitive and functional impairment in AD with and without cerebrovascular disease. Further developed, the combined free water and tissue neuroimaging assays could help in differential diagnosis, treatment planning, and disease monitoring of patients with mixed dementia.
Collapse
Affiliation(s)
- Fang Ji
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, 8 College Road, 06-15, Singapore, 169857, Singapore
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siwei Liu
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, 8 College Road, 06-15, Singapore, 169857, Singapore
| | - Yng Miin Loke
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, 8 College Road, 06-15, Singapore, 169857, Singapore
| | - Boon Linn Choo
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, 8 College Road, 06-15, Singapore, 169857, Singapore
| | - Saima Hilal
- Department of Pharmacology, Clinical Research Centre, National University Health System, National University of Singapore, Singapore, 117600, Singapore.,Memory Aging & Cognition Centre, National University Health System, National University of Singapore, Singapore, Singapore
| | - Xin Xu
- Department of Pharmacology, Clinical Research Centre, National University Health System, National University of Singapore, Singapore, 117600, Singapore.,Memory Aging & Cognition Centre, National University Health System, National University of Singapore, Singapore, Singapore
| | - Mohammad Kamran Ikram
- Department of Pharmacology, Clinical Research Centre, National University Health System, National University of Singapore, Singapore, 117600, Singapore.,Memory Aging & Cognition Centre, National University Health System, National University of Singapore, Singapore, Singapore
| | | | - Christopher Li-Hsian Chen
- Department of Pharmacology, Clinical Research Centre, National University Health System, National University of Singapore, Singapore, 117600, Singapore.,Memory Aging & Cognition Centre, National University Health System, National University of Singapore, Singapore, Singapore
| | - Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, 8 College Road, 06-15, Singapore, 169857, Singapore. .,Clinical Imaging Research Centre, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
17
|
Blair GW, Hernandez MV, Thrippleton MJ, Doubal FN, Wardlaw JM. Advanced Neuroimaging of Cerebral Small Vessel Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017. [PMID: 28620783 PMCID: PMC5486578 DOI: 10.1007/s11936-017-0555-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cerebral small vessel disease (SVD) is characterised by damage to deep grey and white matter structures of the brain and is responsible for a diverse range of clinical problems that include stroke and dementia. In this review, we describe advances in neuroimaging published since January 2015, mainly with magnetic resonance imaging (MRI), that, in general, are improving quantification, observation and investigation of SVD focussing on three areas: quantifying the total SVD burden, imaging brain microstructural integrity and imaging vascular malfunction. Methods to capture ‘whole brain SVD burden’ across the spectrum of SVD imaging changes will be useful for patient stratification in clinical trials, an approach that we are already testing. More sophisticated imaging measures of SVD microstructural damage are allowing the disease to be studied at earlier stages, will help identify specific factors that are important in development of overt SVD imaging features and in understanding why specific clinical consequences may occur. Imaging vascular function will help establish the precise blood vessel and blood flow alterations at early disease stages and, together with microstructural integrity measures, may provide important surrogate endpoints in clinical trials testing new interventions. Better knowledge of SVD pathophysiology will help identify new treatment targets, improve patient stratification and may in future increase efficiency of clinical trials through smaller sample sizes or shorter follow-up periods. However, most of these methods are not yet sufficiently mature to use with confidence in clinical trials, although rapid advances in the field suggest that reliable quantification of SVD lesion burden, tissue microstructural integrity and vascular dysfunction are imminent.
Collapse
Affiliation(s)
- Gordon W Blair
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Maria Valdez Hernandez
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Michael J Thrippleton
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Fergus N Doubal
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
18
|
Lin WC, Hu LY, Tsai SJ, Yang AC, Shen CC. Depression and the risk of vascular dementia: a population-based retrospective cohort study. Int J Geriatr Psychiatry 2017; 32:556-563. [PMID: 27161941 DOI: 10.1002/gps.4493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the association between the risks of depression and vascular dementia (VaD) based on Taiwan's National Health Insurance Research Database. METHODS This retrospective longitudinal matched-cohort study used National Health Insurance Research Database data from 49,955 participants (9,991 with new onset depression, 39,964 controls). A Cox regression analysis was performed on the whole sample and the subgroup of patients with depression. We further excluded patients who developed VaD within 3 or 5 years after enrollment to evaluate depression as an independent risk factor for or a prodrome of VaD. RESULTS During the 10-year follow-up period, the incidence rate ratio of VaD between patients with depression and controls was 4.24 [95% confidence interval (CI) 2.90-6.21, P < 0.001]. After adjustment for covariates, the hazard ratio (HR) of VaD in patients with depression was 3.10 (95% CI 2.13-4.52, P < 0.001). In the whole sample, risk factors for VaD besides depression were aged ≥60 years (HR = 20.08), hypertension (HR = 1.70), diabetes (HR = 1.61), coronary artery disease (HR = 2.26), head injury (HR = 2.20), and cerebrovascular disease (HR = 3.02). In patients with depression, aged ≥60 years (HR = 32.16), coronary artery disease (HR = 2.82), head injury (HR = 2.06), and cerebrovascular disease (HR = 2.37) remained risk factors for VaD. After excluding those who developed VaD within 3 or 5 years, HRs remained high (3.28, 95% CI 2.03-5.31, P < 0.001; 2.12, 95% CI 1.05-4.25, P = 0.035, respectively). CONCLUSIONS Our findings suggest that depression is an independent risk factor for subsequent VaD. Older age, cerebrovascular disease, head injury, and coronary artery disease might increase the risk of VaD among patients with depression.
Collapse
Affiliation(s)
- Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Che Shen
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan.,Department of Information Management, National Chung-Cheng University, Chiayi, Taiwan
| |
Collapse
|
19
|
Roseborough A, Ramirez J, Black SE, Edwards JD. Associations between amyloid β and white matter hyperintensities: A systematic review. Alzheimers Dement 2017; 13:1154-1167. [PMID: 28322203 DOI: 10.1016/j.jalz.2017.01.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This systematic review synthesizes current evidence for associations between cortical amyloid β, visualized on amyloid positron emission tomography imaging, and white matter hyperintensity (WMH) burden on magnetic resonance imaging in healthy elderly adults and individuals with cognitive impairment and dementia. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review guidelines, we systematically searched MEDLINE, Embase, Cochrane, and PsycINFO databases from January 2000 to September 2015. RESULTS Our search returned 492 articles, 34 of which met criteria for inclusion in the final selection. Most studies reported no significant relationships between amyloid β and WMH burden across diagnostic groups. DISCUSSION Findings of this systematic review suggest that amyloid accumulation and WMH are independent but additive processes. The limited number of independent cohorts, lack of longitudinal data, and exclusion of individuals with mixed dementia limit the generalizability of these findings. Further studies are required to elucidate the putative contributions of vascular processes to neurodegenerative pathology.
Collapse
Affiliation(s)
- Austyn Roseborough
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Sandra E Black
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jodi D Edwards
- LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Chappell FM, Del Carmen Valdés Hernández M, Makin SD, Shuler K, Sakka E, Dennis MS, Armitage PA, Muñoz Maniega S, Wardlaw JM. Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: results of a prospective cohort study. Trials 2017; 18:78. [PMID: 28222778 PMCID: PMC5320698 DOI: 10.1186/s13063-017-1825-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Background White matter hyperintensities (WMHs) are commonly seen on in brain imaging and are associated with stroke and cognitive decline. Therefore, they may provide a relevant intermediate outcome in clinical trials. WMH can be measured as a volume or visually on the Fazekas scale. We investigated predictors of WMH progression and design of efficient studies using WMH volume and Fazekas score as an intermediate outcome. Methods We prospectively recruited 264 patients with mild ischaemic stroke and measured WMH volume, Fazekas score, age and cardiovascular risk factors at baseline and 1 year. We modelled predictors of WMH burden at 1 year and used the results in sample size calculations for hypothetical randomised controlled trials with different analysis plans and lengths of follow-up. Results Follow-up WMH volume was predicted by baseline WMH: a 0.73-ml (95% CI 0.65–0.80, p < 0.0001) increase per 1-ml baseline volume increment, and a 2.93-ml increase (95% CI 1.76–4.10, p < 0.0001) per point on the Fazekas scale. Using a mean difference of 1 ml in WMH volume between treatment groups, 80% power and 5% alpha, adjusting for all predictors and 2-year follow-up produced the smallest sample size (n = 642). Other study designs produced samples sizes from 2054 to 21,270. Sample size calculations using Fazekas score as an outcome with the same power and alpha, as well as an OR corresponding to a 1-ml difference, were sensitive to assumptions and ranged from 2504 to 18,886. Conclusions Baseline WMH volume and Fazekas score predicted follow-up WMH volume. Study size was smallest using volumes and longer-term follow-up, but this must be balanced against resources required to measure volumes versus Fazekas scores, bias due to dropout and scanner drift. Samples sizes based on Fazekas scores may be best estimated with simulation studies.
Collapse
Affiliation(s)
- Francesca M Chappell
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Maria Del Carmen Valdés Hernández
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Stephen D Makin
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Kirsten Shuler
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Eleni Sakka
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Martin S Dennis
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Paul A Armitage
- Academic Unit of Radiology, University of Sheffield, C Floor, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | - Susana Muñoz Maniega
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Neuroimaging Sciences, Centre for Clinical Brain Sciences (CCBS) FU303e, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
21
|
Jung NY, Han CE, Kim HJ, Yoo SW, Kim HJ, Kim EJ, Na DL, Lockhart SN, Jagust WJ, Seong JK, Seo SW. Tract-Specific Correlates of Neuropsychological Deficits in Patients with Subcortical Vascular Cognitive Impairment. J Alzheimers Dis 2016; 50:1125-35. [PMID: 26836179 DOI: 10.3233/jad-150841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The white matter tract-specific correlates of neuropsychological deficits are not fully established in patients with subcortical vascular cognitive impairment (SVCI), where white matter tract damage may be a critical factor in cognitive impairment. The purpose of this study is to investigate the tract-specific correlates of neuropsychological deficits in SVCI patients using tract-specific statistical analysis (TSSA). We prospectively recruited 114 SVCI patients, and 55 age-, gender-, and education-matched individuals with normal cognition (NC). All participants underwent diffusion weighted imaging and neuropsychological testing. We classified tractography results into fourteen major fiber tracts and analyzed group comparison and correlation with cognitive impairments. Relative to NC subjects, SVCI patients showed decreased fractional anisotropy values in bilateral anterior-thalamic radiation, cingulum, superior-longitudinal fasciculus, uncinate fasciculus, corticospinal tract, and left inferior-longitudinal fasciculus. Focal disruptions in specific tracts were associated with specific cognitive impairments. Our findings suggest that disconnection of specific white matter tracts, especially those neighboring and providing connections between gray matter regions important to certain cognitive functions, may contribute to specific cognitive impairments in SVCI.
Collapse
Affiliation(s)
- Na-Yeon Jung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Cheol E Han
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Wook Yoo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee-Jong Kim
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Affiliation(s)
- A H V Schapira
- Clinical Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
23
|
Meng D, Hosseini AA, Simpson RJ, Shaikh Q, Tench CR, Dineen RA, Auer DP. Lesion Topography and Microscopic White Matter Tract Damage Contribute to Cognitive Impairment in Symptomatic Carotid Artery Disease. Radiology 2016; 282:502-515. [PMID: 27598537 PMCID: PMC5283872 DOI: 10.1148/radiol.2016152685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Subcortical disconnection of cognitive neural networks is a key mechanism of cognitive impairment in patients with probable vascular cognitive disorder. Purpose To investigate associations between neuroimaging markers of cerebrovascular disease, including lesion topography and extent and severity of strategic and global cerebral tissue injury, and cognition in carotid artery disease (CAD). Materials and Methods All participants gave written informed consent to undergo brain magnetic resonance imaging and the Addenbrooke’s Cognitive Examination–Revised. One hundred eight patients with symptomatic CAD but no dementia were included, and a score less than 82 represented cognitive impairment. Group comparison and interrelations between global cognitive and fluency performance, lesion topography, and ultrastructural damage were assessed with voxel-based statistics. Associations between cognition, medial temporal lobe atrophy (MTA), lesion volumes, and global white matter ultrastructural damage indexed as increased mean diffusivity were tested with regression analysis by controlling for age. Diagnostic accuracy of imaging markers selected from a multivariate prediction model was tested with receiver operating characteristic analysis. Results Cognitively impaired patients (n = 53 [49.1%], classified as having probable vascular cognitive disorder) were older than nonimpaired patients (P = .027) and had more frequent MTA (P < .001), more cortical infarctions (P = .016), and larger volumes of acute (P = .028) and chronic (P = .009) subcortical ischemic lesions. Lesion volumes did not correlate with global cognitive performance (lacunar infarctions, P = .060; acute lesions, P = .088; chronic subcortical ischemic lesions, P = .085). In contrast, cognitive performance correlated with presence of chronic ischemic lesions within the interhemispheric tracts and thalamic radiation (P < .05, false discovery rate corrected). Skeleton mean diffusivity showed the closest correlation with cognition (R2 = 0.311, P < .001) and promising diagnostic accuracy for vascular cognitive disorder (area under the curve, 0.82 [95% confidence interval: 0.75, 0.90]). Findings were confirmed in subjects with a low risk of preclinical Alzheimer disease indexed by the absence of MTA (n = 85). Conclusion Subcortical white matter ischemic lesion locations and severity of ultrastructural tract damage contribute to cognitive impairment in symptomatic CAD, which suggests that subcortical disconnection within large-scale cognitive neural networks is a key mechanism of vascular cognitive disorder. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Dewen Meng
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Akram A Hosseini
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Richard J Simpson
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Quratulain Shaikh
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Christopher R Tench
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Robert A Dineen
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| | - Dorothee P Auer
- From the Department of Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, England (D.M., A.A.H., R.J.S., Q.S., R.A.D., D.P.A.); Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England (D.M., R.J.S., R.A.D., D.P.A.); Department of Vascular Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, England (R.J.S.); and Department of Clinical Neurology, Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, England (C.R.T.)
| |
Collapse
|
24
|
Smith CD, Johnson ES, Van Eldik LJ, Jicha GA, Schmitt FA, Nelson PT, Kryscio RJ, Murphy RR, Wellnitz CV. Peripheral (deep) but not periventricular MRI white matter hyperintensities are increased in clinical vascular dementia compared to Alzheimer's disease. Brain Behav 2016; 6:e00438. [PMID: 26925303 PMCID: PMC4754499 DOI: 10.1002/brb3.438] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular dementia (VAD) is a complex diagnosis at times difficult to distinguish from Alzheimer's disease (AD). MRI scans often show white matter hyperintensities (WMH) in both conditions. WMH increase with age, and both VAD and AD are associated with aging, thus presenting an attribution conundrum. In this study, we sought to show whether the amount of WMH in deep white matter (dWMH), versus periventricular white matter (PVH), would aid in the distinction between VAD and AD, independent of age. METHODS Blinded semiquantitative ratings of WMH validated by objective quantitation of WMH volume from standardized MRI image acquisitions. PVH and dWMH were rated separately and independently by two different examiners using the Scheltens scale. Receiver operator characteristic (ROC) curves were generated using logistic regression to assess classification of VAD (13 patients) versus AD (129 patients). Clinical diagnoses were made in a specialty memory disorders clinic. RESULTS Using PVH rating alone, overall classification (area under the ROC curve, AUC) was 75%, due only to the difference in age between VAD and AD patients in our study and not PVH. In contrast, dWMH rating produced 86% classification accuracy with no independent contribution from age. A global Longstreth rating that combines dWMH and PVH gave an 88% AUC. CONCLUSIONS Increased dWMH indicate a higher likelihood of VAD versus AD. Assessment of dWMH on MRI scans using Scheltens and Longstreth scales may aid the clinician in distinguishing the two conditions.
Collapse
Affiliation(s)
- Charles D Smith
- Department of Neurology University of Kentucky College of Medicine Lexington Kentucky; Magnetic Resonance Imaging and Spectroscopy Center University of Kentucky Lexington Kentucky
| | - Eleanor S Johnson
- Magnetic Resonance Imaging and Spectroscopy Center University of Kentucky Lexington Kentucky
| | - Linda J Van Eldik
- Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky; Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington Kentucky
| | - Gregory A Jicha
- Department of Neurology University of Kentucky College of Medicine Lexington Kentucky; Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky
| | - Frederick A Schmitt
- Department of Neurology University of Kentucky College of Medicine Lexington Kentucky; Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky
| | - Peter T Nelson
- Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky; Department of Pathology & Laboratory Medicine University of Kentucky College of Medicine Lexington Kentucky
| | - Richard J Kryscio
- Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky; Department of Statistics University of Kentucky Lexington Kentucky
| | - Ronan R Murphy
- Department of Neurology University of Kentucky College of Medicine Lexington Kentucky; Alzheimers Disease Center Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky
| | | |
Collapse
|
25
|
Abstract
Hypertension is a highly prevalent condition with numerous health risks, and the incidence of hypertension is greatest among older adults. Traditional discussions of hypertension have largely focused on the risks for cardiovascular disease and associated events. However, there are a number of collateral effects, including risks for dementia, physical disability, and falls/fractures which are increasingly garnering attention in the hypertension literature. Several key mechanisms--including inflammation, oxidative stress, and endothelial dysfunction--are common to biologic aging and hypertension development and appear to have key mechanistic roles in the development of the cardiovascular and collateral risks of late-life hypertension. The objective of the present review is to highlight the multi-dimensional risks of hypertension among older adults and discuss potential strategies for treatment and future areas of research for improving overall care for older adults with hypertension.
Collapse
|
26
|
Lin N, Xiong LL, Zhang RP, Zheng H, Wang L, Qian ZY, Zhang P, Chen ZW, Gao FB, Wang TH. Injection of Aβ1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew. Apoptosis 2016; 21:621-40. [DOI: 10.1007/s10495-016-1227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Valdés Hernández MDC, González-Castro V, Ghandour DT, Wang X, Doubal F, Muñoz Maniega S, Armitage PA, Wardlaw JM. On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology. Neuroradiology 2016; 58:475-85. [PMID: 26833053 PMCID: PMC4846712 DOI: 10.1007/s00234-016-1648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Subtle inhomogeneities in the scanner's magnetic fields (B0 and B1) alter the intensity levels of the structural magnetic resonance imaging (MRI) affecting the volumetric assessment of WMH changes. Here, we investigate the influence that (1) correcting the images for the B1 inhomogeneities (i.e. bias field correction (BFC)) and (2) selection of the WMH change assessment method can have on longitudinal analyses of WMH progression and discuss possible solutions. METHODS We used brain structural MRI from 46 mild stroke patients scanned at stroke onset and 3 years later. We tested three BFC approaches: FSL-FAST, N4 and exponentially entropy-driven homomorphic unsharp masking (E(2)D-HUM) and analysed their effect on the measured WMH change. Separately, we tested two methods to assess WMH changes: measuring WMH volumes independently at both time points semi-automatically (MCMxxxVI) and subtracting intensity-normalised FLAIR images at both time points following image gamma correction. We then combined the BFC with the computational method that performed best across the whole sample to assess WMH changes. RESULTS Analysis of the difference in the variance-to-mean intensity ratio in normal tissue between BFC and uncorrected images and visual inspection showed that all BFC methods altered the WMH appearance and distribution, but FSL-FAST in general performed more consistently across the sample and MRI modalities. The WMH volume change over 3 years obtained with MCMxxxVI with vs. without FSL-FAST BFC did not significantly differ (medians(IQR)(with BFC) = 3.2(6.3) vs. 2.9(7.4)ml (without BFC), p = 0.5), but both differed significantly from the WMH volume change obtained from subtracting post-processed FLAIR images (without BFC)(7.6(8.2)ml, p < 0.001). This latter method considerably inflated the WMH volume change as subtle WMH at baseline that became more intense at follow-up were counted as increase in the volumetric change. CONCLUSIONS Measurement of WMH volume change remains challenging. Although the overall volumetric change was not significantly affected by the application of BFC, these methods distorted the image intensity distribution affecting subtle WMH. Subtracting the FLAIR images at both time points following gamma correction seems a promising technique but is adversely affected by subtle WMH. It is important to take into account not only the changes in volume but also in the signal intensity.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Victor González-Castro
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Dina T Ghandour
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xin Wang
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Fergus Doubal
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Paul A Armitage
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield, UK
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
28
|
Xu Y, Wang Q, Liu Y, Cui R, Lu K, Zhao Y. Association between Helicobacter pylori infection and carotid atherosclerosis in patients with vascular dementia. J Neurol Sci 2016; 362:73-7. [PMID: 26944122 DOI: 10.1016/j.jns.2016.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/03/2016] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Accumulating evidence indicates that various infections contribute to the pathogenesis of atherosclerosis. Helicobacter pylori (Hp) has been implicated as a risk factor of atherosclerosis for stroke and other cardiovascular disease, but limited data exist regarding vascular dementia (VD). This study aimed to investigate the relationship between Hp infection and carotid atherosclerosis in patients with VD. METHODS A total of 354 patients who were diagnosed with VD were enrolled. Patients were divided into Hp positive VD group (n=208) and Hp negative VD group (n=156) using the (13)C-urea breath test ((13)C-UBT). Serum YKL-40, a marker for inflammation, were analyzed by ELISA. Traditional atherosclerotic risk factors including age, gender, body mass index (BMI), total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and fasting blood glucose (FBG) were collected or detected. Carotid intima-media thickness (CIMT) was determined by color Doppler ultrasound. RESULTS CIMT values and serum YKL-40 significantly increased in Hp positive VD group in comparison with Hp negative VD group (p<0.05). In Hp positive VD group, serum YKL-40 was positively correlated with CIMT (r=0.412, p<0.05), and the association was independent of traditional atherosclerotic risk factors (β=0.381, p<0.001). CONCLUSIONS CIMT and serum YKL-4 were significantly higher in Hp positive patients than Hp negative patients. Hp-induced inflammation may be a risk factor for atherosclerosis in patients with VD.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Central Hospital of Tai'an, Taishan Medical College, Tai'an, Shandong Province, China
| | - Yunlin Liu
- Department of Neurology, The Central Hospital of Tai'an, Taishan Medical College, Tai'an, Shandong Province, China
| | - Ruiting Cui
- Department of Neurology, The Central Hospital of Tai'an, Taishan Medical College, Tai'an, Shandong Province, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
29
|
Eisenmenger LB, Huo EJ, Hoffman JM, Minoshima S, Matesan MC, Lewis DH, Lopresti BJ, Mathis CA, Okonkwo DO, Mountz JM. Advances in PET Imaging of Degenerative, Cerebrovascular, and Traumatic Causes of Dementia. Semin Nucl Med 2016; 46:57-87. [DOI: 10.1053/j.semnuclmed.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|