1
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Li H, Lai L, Li X, Wang R, Fang X, Xu N, Zhao J. Electroacupuncture Ameliorates Cognitive Impairment by Regulating γ-Amino Butyric Acidergic Interneurons in the Hippocampus of 5 Familial Alzheimer's Disease Mice. Neuromodulation 2024; 27:730-741. [PMID: 36604241 DOI: 10.1016/j.neurom.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES γ-amino butyric acid (GABA)-ergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). Inhibitory interneurons play an important role in the regulation of E/I balance, synaptic transmission, and network oscillation through manipulation of GABAergic functions, showing positive outcomes in AD animal models. Mice expressing 5 familial AD mutation (5xFAD) exhibited a series of AD-like pathology and learning and memory deficits with age. Because electroacupuncture (EA) treatment has been used for a complementary alternative medicine therapy in patients with AD, we aimed to examine any usefulness of EA therapy in GABA interneuron function and its associated synaptic proteins, to determine whether EA could effectively improve inhibitory transmission and network oscillation and eventually alleviate cognitive impairments in 5xFAD mice, and to further elucidate the GABAergic system function underlying the antidementia response of EA. MATERIALS AND METHODS 5xFAD mice were used to evaluate the potential neuroprotective effect of electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) through behavioral testing, immunofluorescence staining, electrophysiology recording, and molecular biology analysis. RESULTS First, we observed that EA improved memory deficits and inhibitory synaptic protein expression. Second, EA treatment alleviated the decrease of somatostatin-positive interneurons in the dorsal hippocampus. Third, EA attenuated E/I imbalance in 5xFAD mice. Last, EA treatment enhanced theta and gamma oscillation in the hippocampus of 5xFAD mice. CONCLUSIONS EA stimulation at DU20 and DU14 acupoints may be a potential alternative therapy to ameliorate cognitive deficits in AD through the regulation of the function of the GABAergic interneuron.
Collapse
Affiliation(s)
- Hongzhu Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyi Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Fang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Mendoza-Madrigal R, González-Trujano ME, Onofre-Campos D, Moreno-Pérez GF, Castellanos-Mijangos JG, Martínez-Vargas D. Electroencephalographic profile of Salvia amarissima Ortega and amarisolide A in the absence and presence of PTZ-induced seizures in mice. Biomed Pharmacother 2024; 173:116352. [PMID: 38417289 DOI: 10.1016/j.biopha.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024] Open
Abstract
Salvia amarissima Ortega is a plant used in traditional medicine to treat CNS's affections. Despite its depressant properties in anxiety and fibromyalgia, there is no scientific evidence about its capability to control seizure activity. This study aimed to investigate the effects of the S. amarissima aqueous extract (SAAE) and its metabolite amarisolide A (AMA) on the electrocorticographic (ECoG) activity. The ECoG profiles were previously and concurrently analyzed to the pentylenetetrazole (85 mg/kg, i.p.)-induced seizure behavior after thirty min of the administration of several doses of the SAAE (1, 10, 30, and 100 mg/kg, i.p.) and two doses of AMA (0.5 and 1 mg/kg, i.p.). A dosage of AMA (1 mg/kg,i.p.) was selected to explore a possible mechanism of action by using antagonists of inhibitory receptors such as GABAA (picrotoxin, 1 mg/kg, i.p.) or 5-HT1A of serotonin (WAY100635, 1 mg/kg, i.p.). Significant changes in the frequency bands and the spectral power were observed after the treatment alone. Additionally, SAAE and AMA produced significant and dose-dependent anticonvulsant effects by reducing the incidence and severity of seizures and increasing latency or survival. Both antagonists prevented the effects of AMA in the severity score of seizures and survival during the tonic-clonic seizures. In conclusion, our preclinical data support that S. amarissima possesses anticonvulsant properties, in part due to the presence of amarisolide A, mediated by different inhibitory mechanisms of action. Our scientific evidence suggests that this Salvia species and amarisolide A are potential neuroprotective alternatives to control seizures in epilepsy therapy.
Collapse
Affiliation(s)
- Rodrigo Mendoza-Madrigal
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico; Laboratorio de Neurofisiología del Control y la Regulación, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Copilco Universidad, Coyoacán, 4360, Ciudad Universitaria, Ciudad de México , Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico.
| | - Daniela Onofre-Campos
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico; Laboratorio de Neurofisiología del Control y la Regulación, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Gabriel Fernando Moreno-Pérez
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Jazmin Guadalupe Castellanos-Mijangos
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico; Laboratorio de Neurofisiología del Control y la Regulación, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico; Universidad Autónoma de Yucatán, Avenida Rafael Matos Escobedo, Mérida, Yucatán, 97160, Mexico
| | - David Martínez-Vargas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección deInvestigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de laFuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico.
| |
Collapse
|
4
|
Taylor SR, Kobayashi M, Vilella A, Tiwari D, Zolboot N, Du JX, Spencer KR, Hartzell A, Girgiss C, Abaci YT, Shao Y, De Sanctis C, Bellenchi GC, Darnell RB, Gross C, Zoli M, Berg DK, Lippi G. MicroRNA-218 instructs proper assembly of hippocampal networks. eLife 2023; 12:e82729. [PMID: 37862092 PMCID: PMC10637775 DOI: 10.7554/elife.82729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Collapse
Affiliation(s)
- Seth R Taylor
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Durgesh Tiwari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Norjin Zolboot
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Jessica X Du
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Kathryn R Spencer
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Andrea Hartzell
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Carol Girgiss
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yusuf T Abaci
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yufeng Shao
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | | | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics A Buzzati-TraversoNaplesItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Christina Gross
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Darwin K Berg
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Giordano Lippi
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
5
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-cage Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557226. [PMID: 37745312 PMCID: PMC10515855 DOI: 10.1101/2023.09.11.557226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Fukushi I, Ikeda K, Takeda K, Yoshizawa M, Kono Y, Hasebe Y, Pokorski M, Okada Y. Minocycline prevents hypoxia-induced seizures. Front Neural Circuits 2023; 17:1006424. [PMID: 37035503 PMCID: PMC10073501 DOI: 10.3389/fncir.2023.1006424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Severe hypoxia induces seizures, which reduces ventilation and worsens the ictal state. It is a health threat to patients, particularly those with underlying hypoxic respiratory pathologies, which may be conducive to a sudden unexpected death in epilepsy (SUDEP). Recent studies provide evidence that brain microglia are involved with both respiratory and ictal processes. Here, we investigated the hypothesis that microglia could interact with hypoxia-induced seizures. To this end, we recorded electroencephalogram (EEG) and acute ventilatory responses to hypoxia (5% O2 in N2) in conscious, spontaneously breathing adult mice. We compared control vehicle pre-treated animals with those pre-treated with minocycline, an inhibitory modulator of microglial activation. First, we histologically confirmed that hypoxia activates microglia and that pre-treatment with minocycline blocks hypoxia-induced microglial activation. Then, we analyzed the effects of minocycline pre-treatment on ventilatory responses to hypoxia by plethysmography. Minocycline alone failed to affect respiratory variables in room air or the initial respiratory augmentation in hypoxia. The comparative results showed that hypoxia caused seizures, which were accompanied by the late phase ventilatory suppression in all but one minocycline pre-treated mouse. Compared to the vehicle pre-treated, the minocycline pre-treated mice showed a delayed occurrence of seizures. Further, minocycline pre-treated mice tended to resist post-ictal respiratory arrest. These results suggest that microglia are conducive to seizure activity in severe hypoxia. Thus, inhibition of microglial activation may help suppress or prevent hypoxia-induced ictal episodes.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- *Correspondence: Isato Fukushi
| | - Keiko Ikeda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
7
|
Feinberg PA, Becker SC, Chung L, Ferrari L, Stellwagen D, Anaclet C, Durán-Laforet V, Faust TE, Sumbria RK, Schafer DP. Elevated TNF-α Leads to Neural Circuit Instability in the Absence of Interferon Regulatory Factor 8. J Neurosci 2022; 42:6171-6185. [PMID: 35790400 PMCID: PMC9374154 DOI: 10.1523/jneurosci.0601-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor necessary for the maturation of microglia, as well as other peripheral immune cells. It also regulates the transition of microglia and other immune cells to a pro-inflammatory phenotype. Irf8 is also a known risk gene for multiple sclerosis and lupus, and it has recently been shown to be downregulated in schizophrenia. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits. Here, we show by RNAseq from Irf8 -/- male and female mouse brains that several genes involved in regulation of neural activity are dysregulated. We then show that these molecular changes are reflected in heightened neural excitability and a profound increase in susceptibility to lethal seizures in male and female Irf8 -/- mice. Finally, we identify that TNF-α is elevated specifically in microglia in the CNS, and genetic or acute pharmacological blockade of TNF-α in the Irf8 -/- CNS rescued the seizure phenotype. These results provide important insights into the consequences of IRF8 signaling and TNF-α on neural circuits. Our data further suggest that neuronal function is impacted by loss of IRF8, a factor involved in neuropsychiatric and neurodegenerative diseases.SIGNIFICANCE STATEMENT Here, we identify a previously unknown and key role for interferon regulator factor 8 (IRF8) in regulating neural excitability and seizures. We further determine that these effects on neural circuits are through elevated TNF-α in the CNS. As IRF8 has most widely been studied in the context of regulating the development and inflammatory signaling in microglia and other immune cells, we have uncovered a novel function. Further, IRF8 is a risk gene for multiple sclerosis and lupus, IRF8 is dysregulated in schizophrenia, and elevated TNF-α has been identified in a multitude of neurologic conditions. Thus, elucidating these IRF8 and TNF-α-dependent effects on brain circuit function has profound implications for understanding underlying, therapeutically relevant mechanisms of disease.
Collapse
Affiliation(s)
- Philip A Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Shannon C Becker
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Leeyup Chung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec Canada H3G 1A4
| | - Christelle Anaclet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618
- Department of Neurology, University of California, Irvine, California 92868
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
8
|
Schirmer C, Abboud MA, Lee SC, Bass JS, Mazumder AG, Kamen JL, Krishnan V. Home-cage behavior in the Stargazer mutant mouse. Sci Rep 2022; 12:12801. [PMID: 35896608 PMCID: PMC9329369 DOI: 10.1038/s41598-022-17015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
In many childhood-onset genetic epilepsies, seizures are accompanied by neurobehavioral impairments and motor disability. In the Stargazer mutant mouse, genetic disruptions of Cacng2 result in absence-like spike-wave seizures, cerebellar gait ataxia and vestibular dysfunction, which limit traditional approaches to behavioral phenotyping. Here, we combine videotracking and instrumented home-cage monitoring to resolve the neurobehavioral facets of the murine Stargazer syndrome. We find that despite their gait ataxia, stargazer mutants display horizontal hyperactivity and variable rates of repetitive circling behavior. While feeding rhythms, circadian or ultradian oscillations in activity are unchanged, mutants exhibit fragmented bouts of behaviorally defined "sleep", atypical licking dynamics and lowered sucrose preference. Mutants also display an attenuated response to visual and auditory home-cage perturbations, together with profound reductions in voluntary wheel-running. Our results reveal that the seizures and ataxia of Stargazer mutants occur in the context of a more pervasive behavioral syndrome with elements of encephalopathy, repetitive behavior and anhedonia. These findings expand our understanding of the function of Cacng2.
Collapse
Affiliation(s)
- Catharina Schirmer
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - Mark A Abboud
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - Samuel C Lee
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - John S Bass
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - Arindam G Mazumder
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - Jessica L Kamen
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza St, Neurosensory BCM: MS NB302, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Cuesta P, Ochoa-Urrea M, Funke M, Hasan O, Zhu P, Marcos A, López ME, Schulz PE, Lhatoo S, Pantazis D, Mosher JC, Maestu F. OUP accepted manuscript. Brain Commun 2022; 4:fcac012. [PMID: 35282163 PMCID: PMC8914494 DOI: 10.1093/braincomms/fcac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pablo Cuesta
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, Madrid, Spain
- Correspondence to: Pablo Cuesta Prieto, Associate professor Department of Radiology, Rehabilitation and Physiotherapy, Medicine School Complutense University of Madrid Plaza, Ramón y Cajal, s/n. Ciudad Universitaria 28040 Madrid, Spain E-mail:
| | - Manuela Ochoa-Urrea
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Omar Hasan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ping Zhu
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, USA
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alberto Marcos
- Neurology Department, Hospital Clinico San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Maria Eugenia López
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid, Madrid, Spain
| | - Paul E. Schulz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samden Lhatoo
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - John C. Mosher
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernando Maestu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Zhang K, Sun J, Sun Y, Niu K, Wang P, Wu C, Chen Q, Wang X. Pretreatment Source Location and Functional Connectivity Network Correlated With Therapy Response in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:692126. [PMID: 34413824 PMCID: PMC8368437 DOI: 10.3389/fneur.2021.692126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aims to investigate the differences between antiepileptic drug (AED) responders and nonresponders among patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the neuromagnetic signals of the brain neurons were correlated with the response to therapy. Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency bandwidths during ictal periods. The source location and functional connectivity were analyzed using accumulated source imaging and correlation analysis, respectively. All patients were treated with appropriate AED, at least 1 year after their MEG recordings, their outcome was assessed, and they were consequently divided into responders and nonresponders. Results: The source location of the nonresponders was mainly in the frontal cortex at a frequency range of 8–12 and 30–80 Hz, especially 8–12 Hz, while the source location of the nonresponders was mostly in the medial frontal cortex, which was chosen as the region of interest. The nonresponders showed strong positive local frontal connections and deficient anterior and posterior connections at 80–250 Hz. Conclusion: The frontal cortex and especially the medial frontal cortex at α band might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic network at 80–250 Hz in our study might further reveal underlying cerebral abnormalities even before treatment in CAE patients, which could cause them to be nonresponsive to AED. One single mechanism cannot explain AED resistance; the nonresponders may represent a subgroup of CAE who is refractory to several antiepileptic drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Iacone Y, Morais TP, David F, Delicata F, Sandle J, Raffai T, Parri HR, Weisser JJ, Bundgaard C, Klewe IV, Tamás G, Thomsen MS, Crunelli V, Lőrincz ML. Systemic administration of ivabradine, a hyperpolarization-activated cyclic nucleotide-gated channel inhibitor, blocks spontaneous absence seizures. Epilepsia 2021; 62:1729-1743. [PMID: 34018186 PMCID: PMC9543052 DOI: 10.1111/epi.16926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. METHODS We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. RESULTS Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4-7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. SIGNIFICANCE These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs.
Collapse
Affiliation(s)
- Yasmine Iacone
- Neuroscience ResearchH. Lundbeck A/S, ValbyCopenhagenDenmark
- Biomedical SciencesFaculty of Health and Medical SciencesCopenhagen UniversityCopenhagenDenmark
| | - Tatiana P. Morais
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
| | - François David
- Integrative Neuroscience and Cognition CenterUniversity of ParisParisFrance
| | | | - Joanna Sandle
- Department of Anatomy, Physiology, and NeuroscienceMTA‐SZTE Research Group for Cortical MicrocircuitsUniversity of SzegedSzegedHungary
| | - Timea Raffai
- Department of Physiology, Anatomy, and NeuroscienceFaculty of SciencesUniversity of SzegedSzegedHungary
- Department of PhysiologyFaculty of MedicineUniversity of SzegedSzegedHungary
| | | | | | | | | | - Gábor Tamás
- Department of Anatomy, Physiology, and NeuroscienceMTA‐SZTE Research Group for Cortical MicrocircuitsUniversity of SzegedSzegedHungary
| | | | - Vincenzo Crunelli
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
- Department of Physiology and BiochemistryFaculty of Medicine and SurgeryUniversity of MaltaMsidaMalta
| | - Magor L. Lőrincz
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
- Department of Physiology, Anatomy, and NeuroscienceFaculty of SciencesUniversity of SzegedSzegedHungary
- Department of PhysiologyFaculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
12
|
Lim HK, You N, Bae S, Kang BM, Shon YM, Kim SG, Suh M. Differential contribution of excitatory and inhibitory neurons in shaping neurovascular coupling in different epileptic neural states. J Cereb Blood Flow Metab 2021; 41:1145-1161. [PMID: 32669018 PMCID: PMC8054729 DOI: 10.1177/0271678x20934071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the neurovascular coupling (NVC) underlying hemodynamic changes in epilepsy is crucial to properly interpreting functional brain imaging signals associated with epileptic events. However, how excitatory and inhibitory neurons affect vascular responses in different epileptic states remains unknown. We conducted real-time in vivo measurements of cerebral blood flow (CBF), vessel diameter, and excitatory and inhibitory neuronal calcium signals during recurrent focal seizures. During preictal states, decreases in CBF and arteriole diameter were closely related to decreased γ-band local field potential (LFP) power, which was linked to relatively elevated excitatory and reduced inhibitory neuronal activity levels. Notably, this preictal condition was followed by a strengthened ictal event. In particular, the preictal inhibitory activity level was positively correlated with coherent oscillating activity specific to inhibitory neurons. In contrast, ictal states were characterized by elevated synchrony in excitatory neurons. Given these findings, we suggest that excitatory and inhibitory neurons differentially contribute to shaping the ictal and preictal neural states, respectively. Moreover, the preictal vascular activity, alongside with the γ-band, may reflect the relative levels of excitatory and inhibitory neuronal activity, and upcoming ictal activity. Our findings provide useful insights into how perfusion signals of different epileptic states are related in terms of NVC.
Collapse
Affiliation(s)
- Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Nayeon You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
13
|
Villasana-Salazar B, Hernández-Soto R, Guerrero-Gómez ME, Ordaz B, Manrique-Maldonado G, Salgado-Puga K, Peña-Ortega F. Chronic intermittent hypoxia transiently increases hippocampal network activity in the gamma frequency band and 4-Aminopyridine-induced hyperexcitability in vitro. Epilepsy Res 2020; 166:106375. [PMID: 32745888 DOI: 10.1016/j.eplepsyres.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic intermittent hypoxia (CIH) is the most distinct feature of obstructive sleep apnea (OSA), a common breathing and sleep disorder that leads to several neuropathological consequences, including alterations in the hippocampal network and in seizure susceptibility. However, it is currently unknown whether these alterations are permanent or remit upon normal oxygenation. Here, we investigated the effects of CIH on hippocampal spontaneous network activity and hyperexcitability in vitro and explored whether these alterations endure or fade after normal oxygenation. Results showed that applying CIH for 21 days to adult rats increases gamma-band hippocampal network activity and aggravates 4-Aminopyridine-induced epileptiform activity in vitro. Interestingly, these CIH-induced alterations remit after 30 days of normal oxygenation. Our findings indicate that hippocampal network alterations and increased seizure susceptibility induced by CIH are not permanent and can be spontaneously reverted, suggesting that therapeutic interventions against OSA in patients with epilepsy, such as surgery or continuous positive airway pressure (CPAP), could be favorable for seizure control.
Collapse
Affiliation(s)
- Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - María Estefanía Guerrero-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Guadalupe Manrique-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
14
|
Mazziotti R, Cacciante F, Sagona G, Lupori L, Gennaro M, Putignano E, Alessandrì MG, Ferrari A, Battini R, Cioni G, Pizzorusso T, Baroncelli L. Novel translational phenotypes and biomarkers for creatine transporter deficiency. Brain Commun 2020; 2:fcaa089. [PMID: 32954336 PMCID: PMC7472907 DOI: 10.1093/braincomms/fcaa089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Creatine transporter deficiency is a metabolic disorder characterized by intellectual disability, autistic-like behaviour and epilepsy. There is currently no cure for creatine transporter deficiency, and reliable biomarkers of translational value for monitoring disease progression and response to therapeutics are sorely lacking. Here, we found that mice lacking functional creatine transporter display a significant alteration of neural oscillations in the EEG and a severe epileptic phenotype that are recapitulated in patients with creatine transporter deficiency. In-depth examination of knockout mice for creatine transporter also revealed that a decrease in EEG theta power is predictive of the manifestation of spontaneous seizures, a frequency that is similarly affected in patients compared to healthy controls. In addition, knockout mice have a highly specific increase in haemodynamic responses in the cerebral cortex following sensory stimuli. Principal component and Random Forest analyses highlighted that these functional variables exhibit a high performance in discriminating between pathological and healthy phenotype. Overall, our findings identify novel, translational and non-invasive biomarkers for the analysis of brain function in creatine transporter deficiency, providing a very reliable protocol to longitudinally monitor the efficacy of potential therapeutic strategies in preclinical, and possibly clinical, studies.
Collapse
Affiliation(s)
- Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | | | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Leonardo Lupori
- BIO@SNS Lab, Scuola Normale Superiore di Pisa, Pisa I-56125, Italy
| | - Mariangela Gennaro
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| |
Collapse
|
15
|
Mohammed HS, Aboul Ezz HS, Zedan A, Ali MA. Electrophysiological and Neurochemical Assessment of Selenium Alone or Combined with Carbamazepine in an Animal Model of Epilepsy. Biol Trace Elem Res 2020; 195:579-590. [PMID: 31444771 DOI: 10.1007/s12011-019-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/18/2019] [Indexed: 11/08/2022]
Abstract
The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa Zedan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Abstract
In epilepsy research, the analysis of rodent electroencephalogram (EEG) has been performed by many laboratories with a variety of techniques. However, the acquisition and basic analysis of rodent EEG have only recently been standardized. Since a number of software platforms and increased computational power have become widely available, advanced rodent EEG analysis is now more accessible to investigators working with rodent models of epilepsy. In this review, the approach to the analysis of rodent EEG will be examined, including the evaluation of both epileptiform and background activity. Major caveats when employing these analyses, cellular and circuit-level correlates of EEG changes, and important differences between rodent and human EEG are also reviewed. The currently available techniques show great promise in gaining a deeper understanding of the complexities hidden within the EEG in rodent models of epilepsy.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132:104610. [PMID: 31494287 DOI: 10.1016/j.nbd.2019.104610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Feed-forward inhibition (FFI) is an essential mechanism within the brain, to regulate neuronal firing and prevent runaway excitation. In the cortico-thalamocortical (CTC) network, fast spiking parvalbumin-expressing (PV+) inhibitory interneurons regulate the firing of pyramidal cells in the cortex and relay neurons in the thalamus. PV+ interneuron dysfunction has been implicated in several neurological disorders, including epilepsy. Previously, we demonstrated that loss of excitatory AMPA-receptors, specifically at synapses on PV+ interneurons in CTC feedforward microcircuits, occurs in the stargazer mouse model of absence epilepsy. These mice present with absence seizures characterized by spike and wave discharges (SWDs) on electroencephalogram (EEG) and concomitant behavioural arrest, similar to childhood absence epilepsy. The aim of the current study was to investigate the impact of loss of FFI within the CTC on absence seizure generation and behaviour using new Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology. We crossed PV-Cre mice with Cre-dependent hM4Di DREADD strains of mice, which allowed Cre-recombinase-mediated restricted expression of inhibitory Gi-DREADDs in PV+ interneurons. We then tested the impact of global and focal (within the CTC network) silencing of PV+ interneurons. CNO mediated silencing of all PV+ interneurons by intraperitoneal injection caused the impairment of motor control, decreased locomotion and increased anxiety in a dose-dependent manner. Such silencing generated pathological oscillations similar to absence-like seizures. Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits, induced SWD-like oscillations and associated behavioural arrest. Epileptiform activity on EEG appeared significantly sooner after focal injection compared to peripheral injection of CNO. However, the mean duration of each oscillatory burst and spike frequency was similar, irrespective of mode of CNO delivery. No significant changes were observed in vehicle-treated or non-DREADD wild-type control animals. These data suggest that dysfunctional feed-forward inhibition in CTC microcircuits may be an important target for future therapy strategies for some patients with absence seizures. Additionally, silencing of PV+ interneurons in other brain regions may contribute to anxiety related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
18
|
Edwards III GA, Gamez N, Escobedo Jr. G, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer's Disease. Front Aging Neurosci 2019; 11:146. [PMID: 31293412 PMCID: PMC6601685 DOI: 10.3389/fnagi.2019.00146] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Since first described in the early 1900s, Alzheimer's disease (AD) has risen exponentially in prevalence and concern. Research still drives to understand the etiology and pathogenesis of this disease and what risk factors can attribute to AD. With a majority of AD cases being of sporadic origin, the increasing exponential growth of an aged population and a lack of treatment, it is imperative to discover an easy accessible preventative method for AD. Some risk factors can increase the propensity of AD such as aging, sex, and genetics. Moreover, there are also modifiable risk factors-in terms of treatable medical conditions and lifestyle choices-that play a role in developing AD. These risk factors have their own biological mechanisms that may contribute to AD etiology and pathological consequences. In this review article, we will discuss modifiable risk factors and discuss the current literature of how each of these factors interplay into AD development and progression and if strategically analyzed and treated, could aid in protection against this neurodegenerative disease.
Collapse
Affiliation(s)
- George A. Edwards III
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Nazaret Gamez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| | - Gabriel Escobedo Jr.
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Olivia Calderon
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
19
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
20
|
Maheshwari A, Akbar A, Wang M, Marks RL, Yu K, Park S, Foster BL, Noebels JL. Persistent aberrant cortical phase-amplitude coupling following seizure treatment in absence epilepsy models. J Physiol 2017; 595:7249-7260. [PMID: 28901011 DOI: 10.1113/jp274696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice. There are distinct gene-linked patterns of aberrant phase-amplitude coupling in the interictal EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal phase-amplitude coupling remains. Seizure-free stg/+ mice have normal power and phase-amplitude coupling, but beta/gamma power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network phenotype that is separable from, and therefore not a result of, seizures. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from epileptiform activity, and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment. ABSTRACT In childhood absence epilepsy, cortical seizures are brief and intermittent; however there are extended periods without behavioural or electrographic ictal events. This genetic disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional biomarkers that might provide insight into interictal cortical function have been described. Previous work in monogenic mouse models of absence epilepsy have shown that the interictal EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type calcium channel mutation. To further evaluate the interictal EEG, we quantified phase-amplitude coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice, therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neurotransmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers in the absence of epileptiform activity and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Abraham Akbar
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mai Wang
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Rice University, Houston, TX, USA
| | - Rachel L Marks
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Yu
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Rice University, Houston, TX, USA
| | - Suhyeorn Park
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Brett L Foster
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Electrocorticographic Dynamics as a Novel Biomarker in Five Models of Epileptogenesis. J Neurosci 2017; 37:4450-4461. [PMID: 28330876 DOI: 10.1523/jneurosci.2446-16.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Abstract
Postinjury epilepsy (PIE) is a devastating sequela of various brain insults. While recent studies offer novel insights into the mechanisms underlying epileptogenesis and discover potential preventive treatments, the lack of PIE biomarkers hinders the clinical implementation of such treatments. Here we explored the biomarker potential of different electrographic features in five models of PIE. Electrocorticographic or intrahippocampal recordings of epileptogenesis (from the insult to the first spontaneous seizure) from two laboratories were analyzed in three mouse and two rat PIE models. Time, frequency, and fractal and nonlinear properties of the signals were examined, in addition to the daily rate of epileptiform spikes, the relative power of five frequency bands (theta, alpha, beta, low gamma, and high gamma) and the dynamics of these features over time. During the latent pre-seizure period, epileptiform spikes were more frequent in epileptic compared with nonepileptic rodents; however, this feature showed limited predictive power due to high inter- and intra-animal variability. While nondynamic rhythmic representation failed to predict epilepsy, the dynamics of the theta band were found to predict PIE with a sensitivity and specificity of >90%. Moreover, theta dynamics were found to be inversely correlated with the latency period (and thus predict the onset of seizures) and with the power change of the high-gamma rhythm. In addition, changes in theta band power during epileptogenesis were associated with altered locomotor activity and distorted circadian rhythm. These results suggest that changes in theta band during the epileptogenic period may serve as a diagnostic biomarker for epileptogenesis, able to predict the future onset of spontaneous seizures.SIGNIFICANCE STATEMENT Postinjury epilepsy is an unpreventable and devastating disorder that develops following brain injuries, such as traumatic brain injury and stroke, and is often associated with neuropsychiatric comorbidities. As PIE affects as many as 20% of brain-injured patients, reliable biomarkers are imperative before any preclinical therapeutics can find clinical translation. We demonstrate the capacity to predict the epileptic outcome in five different models of PIE, highlighting theta rhythm dynamics as a promising biomarker for epilepsy. Our findings prompt the exploration of theta dynamics (using repeated electroencephalographic recordings) as an epilepsy biomarker in brain injury patients.
Collapse
|
22
|
Barad Z, Grattan DR, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep 2017; 7:42926. [PMID: 28220891 PMCID: PMC5318904 DOI: 10.1038/srep42926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
In the stargazer mouse model of absence epilepsy, altered corticothalamic excitation of reticular thalamic nucleus (RTN) neurons has been suggested to contribute to abnormal synchronicity in the corticothalamic-thalamocortical circuit, leading to spike-wave discharges, the hallmark of absence seizures. AMPA receptor expression and function are decreased in stargazer RTN, due to a mutation of AMPAR auxiliary subunit stargazin. It is unresolved and debated, however, if decreased excitation of RTN is compatible with epileptogenesis. We tested the hypothesis that relative NMDAR expression may be increased in RTN and/or thalamic synapses in stargazers using Western blot on dissected thalamic nuclei and biochemically isolated synapses, as well as immunogold cytochemistry in RTN. Expression of main NMDAR subunits was variable in stargazer RTN and relay thalamus; however, mean expression values were not statistically significantly different compared to controls. Furthermore, no systematic changes in synaptic NMDAR levels could be detected in stargazer thalamus. In contrast, AMPAR subunits were markedly decreased in both nucleus-specific and synaptic preparations. Thus, defective AMPAR trafficking in stargazer thalamus does not appear to lead to a ubiquitous compensatory increase in total and synaptic NMDAR expression, suggesting that elevated NMDAR function is not mediated by changes in protein expression in stargazer mice.
Collapse
Affiliation(s)
- Z Barad
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Perescis MFJ, de Bruin N, Heijink L, Kruse C, Vinogradova L, Lüttjohann A, van Luijtelaar G, van Rijn CM. Cannabinoid antagonist SLV326 induces convulsive seizures and changes in the interictal EEG in rats. PLoS One 2017; 12:e0165363. [PMID: 28151935 PMCID: PMC5289424 DOI: 10.1371/journal.pone.0165363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of “muscle spasms” were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition.
Collapse
Affiliation(s)
- Martin F. J. Perescis
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- HAS University of Applied Sciences, ‘s-Hertogenbosch, The Netherlands
- * E-mail:
| | - Natasja de Bruin
- Abbott Healthcare Products BV (formerly Solvay Pharmaceuticals), Weesp, The Netherlands
| | - Liesbeth Heijink
- Abbott Healthcare Products BV (formerly Solvay Pharmaceuticals), Weesp, The Netherlands
| | - Chris Kruse
- Abbott Healthcare Products BV (formerly Solvay Pharmaceuticals), Weesp, The Netherlands
| | - Lyudmila Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Annika Lüttjohann
- Institut für Physiologie I, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clementina M. van Rijn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|