1
|
Samanta D. Cognitive and behavioral impact of antiseizure medications, neuromodulation, ketogenic diet, and surgery in lennox-gastaut syndrome: A comprehensive review. Epilepsy Behav 2025; 164:110272. [PMID: 39854829 DOI: 10.1016/j.yebeh.2025.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy marked by drug-resistant seizures and profound cognitive and behavioral impairments, with nearly 95% of individuals affected by moderate to severe intellectual disability. This review comprehensively explores the cognitive and behavioral impacts of current treatment options for LGS, including antiseizure medications (ASMs), neuromodulation strategies, the ketogenic diet, and surgical interventions. Given the limited availability of LGS-specific data for several ASMs, the evidence base is supplemented with findings from general epilepsy populations and individuals with epilepsy and intellectual disabilities. The evidence reveals that ASMs exert varied cognitive and behavioral effects in LGS. Medications such as valproate, lamotrigine, cannabidiol, fenfluramine, levetiracetam, brivaracetam, felbamate, and rufinamide generally support cognitive stability, while topiramate and zonisamide are associated with cognitive challenges. Behavioral outcomes also vary: stability is observed with valproate, lamotrigine, rufinamide, cannabidiol, and fenfluramine, whereas medications like levetiracetam, perampanel, brivaracetam, clobazam, and zonisamide can increase aggression or irritability. Nonpharmacological therapies, particularly when they reduce seizure frequency, typically provide greater cognitive and behavioral stability, with some offering improvement. Early intervention-especially through surgical options-appears most beneficial for preserving cognitive function. Additionally, therapies such as the ketogenic diet and neuromodulation may provide independent cognitive benefits beyond seizure control. This review emphasizes the importance of personalized treatment strategies, integrating cognitive and behavioral evaluations in therapy selection. Key components include baseline cognitive and behavioral assessments, followed by regular follow-up evaluations, particularly after therapy changes. Consideration of minimizing ASM polytherapy, careful evaluation of drug-drug interactions, pharmacogenomic implications, and the need for therapeutic drug monitoring in cases of cognitive adverse effects is essential. Future research should focus on developing assessment tools tailored to the unique needs of individuals with LGS, utilizing connectivity measures to assess intervention impacts, and advancing precision therapeutics to improve cognitive and behavioral outcomes.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Macdonald-Laurs E, Warren AEL, Leventer RJ, Harvey AS. Why did my seizures start now? Influences of lesion connectivity and genetic etiology on age at seizure onset in focal epilepsy. Epilepsia 2024; 65:1644-1657. [PMID: 38488289 DOI: 10.1111/epi.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron E L Warren
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - A Simon Harvey
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Park KM, Park S, Hur YJ. Brain network reconstruction of abnormal functional connectivity in Lennox-Gastaut syndrome according to drug responsiveness: A retrospective study. Epilepsy Res 2024; 200:107312. [PMID: 38309034 DOI: 10.1016/j.eplepsyres.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Functional network effects of resective or palliative epilepsy surgery in Lennox-Gastaut syndrome (LGS) patients are different according to the seizure outcome. This study aimed to clarify whether the response to antiseizure medications (ASM) can affect to alteration of brain network connectivity. METHODS In this retrospective study, 37 patients with LGS who underwent 1st electroencephalography (EEG) and 40 healthy controls were enrolled. Among them, 24 LGS patients had follow-up EEG data and were classified as drug responders and non-responders according to the ASM response. Graphical theoretical analysis was used to assess functional connectivity using resting-state EEG. RESULTS The 1st EEG showed a decreased radius in patients with LGS compared with that in healthy controls (3.987 vs. 4.279, P = 0.003). Follow-up EEG data of patients with LGS revealed significant differences in functional connectivity depending on the ASM response. On follow-up EEG, non-responders (n = 11) demonstrated significant increases in global network parameters, whereas responders (n = 13) showed no significant difference in functional connectivity compared with healthy controls. CONCLUSIONS The functional connectivity patterns in patients with LGS differed from those in healthy controls. Functional connectivity in drug-responsive patients with LGS tended to preserve the network of brain connections in a pattern similar to that in healthy controls, whereas non-responders showed more disrupted functional connectivity.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea
| | - Soyoung Park
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea; Yonsei University College of Medicine, Graduate School, Seoul, Republic of Korea
| | - Yun Jung Hur
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea.
| |
Collapse
|
6
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Cohen NT, Xie H, Gholipour T, Gaillard WD. A scoping review of the functional magnetic resonance imaging-based functional connectivity of focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:3130-3142. [PMID: 37731142 DOI: 10.1111/epi.17775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, George Washington University Epilepsy Center, Washington, District of Columbia, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, Yonemoto K, Akamine S, Motomura Y, Sanefuji M, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Sakai Y, Ohga S. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023:S0168-0102(23)00051-2. [PMID: 36871873 DOI: 10.1016/j.neures.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epileptic seizures are distinct but frequent comorbidities in children with autism spectrum disorder (ASD). The hyperexcitability of cortical and subcortical neurons appears to be involved in both phenotypes. However, little information is available concerning which genes are involved and how they regulate the excitability of the thalamocortical network. In this study, we investigate whether an ASD-associated gene, SH3 and multiple ankyrin repeat domains 3 (Shank3), plays a unique role in the postnatal development of thalamocortical neurons. We herein report that Shank3a/b, the splicing isoforms of mouse Shank3, were uniquely expressed in the thalamic nuclei, peaking from two to four weeks after birth. Shank3a/b-knockout mice showed lower parvalbumin signals in the thalamic nuclei. Consistently, Shank3a/b-knockout mice were more susceptible to generalized seizures than wild-type mice after kainic acid treatments. Together, these data indicate that NT-Ank domain of Shank3a/b regulates molecular pathways that protect thalamocortical neurons from hyperexcitability during the early postnatal period of mice.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Balfroid T, Warren AE, Dalic LJ, Aeby A, Berlangieri SU, Archer JS. Frontoparietal 18F-FDG-PET hypo-metabolism in Lennox-Gastaut syndrome: further evidence highlighting the key network. Epilepsy Res 2023; 192:107131. [PMID: 37054522 DOI: 10.1016/j.eplepsyres.2023.107131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.
Collapse
|
10
|
Perinelli MG, Riva A, Amadori E, Follo R, Striano P. Learnings in developmental and epileptic encephalopathies: what do we know? Expert Rev Neurother 2023; 23:45-57. [PMID: 36726225 DOI: 10.1080/14737175.2023.2176221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Developmental and Epileptic Encephalopathies (DEEs) encompass a group of neurological disorders caused by either abnormal neuronal development and white matter maturation or even by weak synaptic plasticity. Hitherto, patients commonly have epileptic seizures featuring cognitive dysfunction, such as neurosensory disorders, difficulties in learning, behavioral disturbances, or speech delay. AREAS COVERED This paper provides a comprehensive review of the current knowledge of DEEs and cognition. Medline/Pubmed database was screened for in-English articles published between 1967-2022 dealing with the topic of DEEs and cognitive development. Two authors independently screened the title and abstract of each record and reviewed the selected articles. Reviews, randomized clinical trials, and case reports were selected. EXPERT OPINION Scientific literature has never explicitly dealt with the early neuro-psychomotor rehabilitation and neuropsychological assessment of patients with DEEs. Targeted intervention and environmental stimuli can influence the maturation of neuronal circuits and shape changes in physical and mental development based on neuronal plasticity, particularly if applied in 'critical periods' liable to heightened sensitivity. Thus, 'early neurorehabilitation interventions' are worthy of being more and more applied to clinical practice to improve the quality of life and reduce the psychosocial burden on families and caregivers.
Collapse
Affiliation(s)
- Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
11
|
Tang F, Li L, Peng D, Yu J, Xin H, Tang X, Li K, Zeng Y, Xie W, Li H. Abnormal static and dynamic functional network connectivity in stable chronic obstructive pulmonary disease. Front Aging Neurosci 2022; 14:1009232. [PMID: 36325191 PMCID: PMC9618865 DOI: 10.3389/fnagi.2022.1009232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Many studies have explored the neural mechanisms of cognitive impairment in chronic obstructive pulmonary disease (COPD) patients using the functional MRI. However, the dynamic properties of brain functional networks are still unclear. The purpose of this study was to explore the changes in dynamic functional network attributes and their relationship with cognitive impairment in stable COPD patients. Materials and methods The resting-state functional MRI and cognitive assessments were performed on 19 stable COPD patients and 19 age-, sex-, and education-matched healthy controls (HC). We conducted the independent component analysis (ICA) method on the resting-state fMRI data, and obtained seven resting-state networks (RSNs). After that, the static and dynamic functional network connectivity (sFNC and dFNC) were respectively constructed, and the differences of functional connectivity (FC) were compared between the COPD patients and the HC groups. In addition, the correlation between the dynamic functional network attributes and cognitive assessments was analyzed in COPD patients. Results Compared to HC, there were significant differences in sFNC among COPD patients between and within networks. COPD patients showed significantly longer mean dwell time and higher fractional windows in weaker connected State I than that in HC. Besides, in comparison to HC, COPD patients had more extensive abnormal FC in weaker connected State I and State IV, and less abnormal FC in stronger connected State II and State III, which were mainly located in the default mode network, executive control network, and visual network. In addition, the dFNC properties including mean dwell time and fractional windows, were significantly correlated with some essential clinical indicators such as FEV1, FEV1/FVC, and c-reactive protein (CRP) in COPD patients. Conclusion These findings emphasized the differences in sFNC and dFNC of COPD patients, which provided a new perspective for understanding the cognitive neural mechanisms, and these indexes may serve as neuroimaging biomarkers of cognitive performance in COPD patients.
Collapse
Affiliation(s)
- Fuqiu Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lan Li
- Department of Infection Management, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huizhen Xin
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Haijun Li,
| |
Collapse
|
12
|
Eisermann M, Fillon L, Saitovitch A, Boisgontier J, Vinçon-Leite A, Dangouloff-Ros V, Blauwblomme T, Bourgeois M, Dangles MT, Coste-Zeitoun D, Vignolo-Diard P, Aubart M, Kossorotoff M, Hully M, Losito E, Chemaly N, Zilbovicius M, Desguerre I, Nabbout R, Boddaert N, Kaminska A. Periodic electroencephalographic discharges and epileptic spasms involve cortico-striatal-thalamic loops on Arterial Spin Labeling Magnetic Resonance Imaging. Brain Commun 2022; 4:fcac250. [PMID: 36324869 PMCID: PMC9598541 DOI: 10.1093/braincomms/fcac250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Periodic discharges are a rare peculiar electroencephalogram pattern, occasionally associated with motor or other clinical manifestations, usually observed in critically ill patients. Their underlying pathophysiology remains poorly understood. Epileptic spasms in clusters and periodic discharges with motor manifestations share similar electroencephalogram pattern and some aetiologies of unfavourable prognosis such as subacute sclerosing panencephalitis or herpes encephalitis. Arterial spin labelling magnetic resonance imaging identifies localizing ictal and inter-ictal changes in neurovascular coupling, therefore assumed able to reveal concerned cerebral structures. Here, we retrospectively analysed ictal and inter-ictal arterial spin labelling magnetic resonance imaging in patients aged 6 months to 15 years (median 3 years 4 months) with periodic discharges including epileptic spasms, and compared these findings with those of patients with drug-resistant focal epilepsy who never presented periodic discharges nor epileptic spasms as well as to those of age-matched healthy controls. Ictal electroencephalogram was recorded either simultaneously with arterial spin labelling magnetic resonance imaging or during the close time lapse of patients' periodic discharges, whereas inter-ictal examinations were performed during the patients' active epilepsy but without seizures during the arterial spin labelling magnetic resonance imaging. Ictal arterial spin labelling magnetic resonance imaging was acquired in five patients with periodic discharges [subacute sclerosing panencephalitis (1), stroke-like events (3), West syndrome with cortical malformation (1), two of them also had inter-ictal arterial spin labelling magnetic resonance imaging]. Inter-ictal group included patients with drug-resistant epileptic spasms of various aetiologies (14) and structural drug-resistant focal epilepsy (8). Cortex, striatum and thalamus were segmented and divided in six functional subregions: prefrontal, motor (rostral, caudal), parietal, occipital and temporal. Rest cerebral blood flow values, absolute and relative to whole brain, were compared with those of age-matched controls for each subregion. Main findings were diffuse striatal as well as cortical motor cerebral blood flow increase during ictal examinations in generalized periodic discharges with motor manifestations (subacute sclerosing panencephalitis) and focal cerebral blood flow increase in corresponding cortical-striatal-thalamic subdivisions in lateralized periodic discharges with or without motor manifestations (stroke-like events and asymmetrical epileptic spasms) with straight topographical correlation with the electroencephalogram focus. For inter-ictal examinations, patients with epileptic spasms disclosed cerebral blood flow changes in corresponding cortical-striatal-thalamic subdivisions (absolute-cerebral blood flow decrease and relative-cerebral blood flow increase), more frequently when compared with the group of drug-resistant focal epilepsies, and not related to Vigabatrin treatment. Our results suggest that corresponding cortical-striatal-thalamic circuits are involved in periodic discharges with and without motor manifestations, including epileptic spasms, opening new insights in their pathophysiology and new therapeutical perspectives. Based on these findings, we propose a model for the generation of periodic discharges and of epileptic spasms combining existing pathophysiological models of cortical-striatal-thalamic network dynamics.
Collapse
Affiliation(s)
- Monika Eisermann
- Correspondence to: Monika Eisermann Clinical Neurophysiology, Hôpital Necker Enfants Malades AP-HP, Paris Université, 149 rue de Sèvres75015 Paris, France E-mail:
| | | | - Ana Saitovitch
- Pediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, F-75015, Paris, France
- Université de Paris, Institut Imagine INSERM U1163, F-75015, France
- INSERM U1299 Trajectoires développementales & psychiatrie, Paris, France
| | - Jennifer Boisgontier
- Pediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, F-75015, Paris, France
- Université de Paris, Institut Imagine INSERM U1163, F-75015, France
- INSERM U1299 Trajectoires développementales & psychiatrie, Paris, France
| | - Alice Vinçon-Leite
- Pediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, F-75015, Paris, France
- Université de Paris, Institut Imagine INSERM U1163, F-75015, France
- INSERM U1299 Trajectoires développementales & psychiatrie, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, F-75015, Paris, France
- Université de Paris, Institut Imagine INSERM U1163, F-75015, France
- INSERM U1299 Trajectoires développementales & psychiatrie, Paris, France
| | - Thomas Blauwblomme
- Pediatric Neurosurgery, Hôpital Necker, APHP, Paris France, Université de Paris, Paris, France, INSERM U1163, IHU Imagine, Paris, France
| | - Marie Bourgeois
- Pediatric Neurosurgery, Hôpital Necker, APHP, Paris France, Université de Paris, Paris, France, INSERM U1163, IHU Imagine, Paris, France
| | - Marie-Thérèse Dangles
- Clinical Neurophysiology, Hôpital Necker Enfants Malades, AP-HP, Paris Université, Paris, France
| | - Delphine Coste-Zeitoun
- Clinical Neurophysiology, Hôpital Necker Enfants Malades, AP-HP, Paris Université, Paris, France
| | - Patricia Vignolo-Diard
- Clinical Neurophysiology, Hôpital Necker Enfants Malades, AP-HP, Paris Université, Paris, France
| | - Mélodie Aubart
- Pediatric Neurology Department, Hôpital Necker Enfants Malades, AP-HP, INSERM U1163, Paris Université, Institut Imagine, Paris, France
| | - Manoelle Kossorotoff
- Pediatric Neurology Department, Necker Enfants Malades Hospital, AP-HP, Paris Université, Paris, France
| | - Marie Hully
- Pediatric Neurology Department, Necker Enfants Malades Hospital, AP-HP, Paris Université, Paris, France
| | - Emma Losito
- Clinical Neurophysiology, Hôpital Necker Enfants Malades, AP-HP, Paris Université, Paris, France
| | - Nicole Chemaly
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Member of EPICARE Network, Institute Imagine INSERM 1163, Université de Paris, Paris, France
| | - Monica Zilbovicius
- Pediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, F-75015, Paris, France
- Université de Paris, Institut Imagine INSERM U1163, F-75015, France
- INSERM U1299 Trajectoires développementales & psychiatrie, Paris, France
| | - Isabelle Desguerre
- Pediatric Neurology Department, Hôpital Necker Enfants Malades, AP-HP, INSERM U1163, Paris Université, Institut Imagine, Paris, France
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Member of EPICARE Network, Institute Imagine INSERM 1163, Université de Paris, Paris, France
| | | | | |
Collapse
|
13
|
Ikemoto S, von Ellenrieder N, Gotman J. EEG-fMRI of epileptiform discharges: non-invasive investigation of the whole brain. Epilepsia 2022; 63:2725-2744. [PMID: 35822919 DOI: 10.1111/epi.17364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Simultaneous EEG-fMRI is a unique and non-invasive method for investigating epileptic activity. Interictal epileptiform discharge-related EEG-fMRI provides cortical and subcortical blood oxygen level-dependent (BOLD) signal changes specific to epileptic discharges. As a result, EEG-fMRI has revealed insights into generators and networks involved in epileptic activity in different types of epilepsy, demonstrating-for instance-the implication of the thalamus in human generalized spike and wave discharges and the role of the Default Mode Network (DMN) in absences and focal epilepsy, and proposed a mechanism for the cortico-subcortical interactions in Lennox-Gastaut syndrome discharges. EEG-fMRI can find deep sources of epileptic activity not available to scalp EEG or MEG and provides critical new information to delineate the epileptic focus when considering surgical treatment or electrode implantation. In recent years, methodological advances, such as artifact removal and automatic detection of events have rendered this method easier to implement, and its clinical potential has since been established by evidence of the impact of BOLD response on clinical decision-making and of the relationship between concordance of BOLD responses with extent of resection and surgical outcome. This review presents the recent developments in EEG-fMRI methodology and EEG-fMRI studies in different types of epileptic disorders as follows: EEG-fMRI acquisition, gradient and pulse artifact removal, statistical analysis, clinical applications, pre-surgical evaluation, altered physiological state in generalized genetic epilepsy, and pediatric EEG-fMRI studies.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC, Canada.,The Jikei University School of Medicine, Department of Pediatrics, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | | | - Jean Gotman
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC, Canada
| |
Collapse
|
14
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
15
|
Warren AE, Dalic LJ, Bulluss KJ, Roten A, Thevathasan W, Archer JS. The optimal target and connectivity for
DBS
in
Lennox‐Gastaut
syndrome. Ann Neurol 2022; 92:61-74. [PMID: 35429045 PMCID: PMC9544037 DOI: 10.1002/ana.26368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Objective Deep brain stimulation (DBS) can reduce seizures in Lennox–Gastaut syndrome (LGS). However, little is known about the optimal target and whether efficacy depends on connectivity of the stimulation site. Using outcome data from the ESTEL trial, we aimed to determine the optimal target and connectivity for DBS in LGS. Methods A total of 20 patients underwent bilateral DBS of the thalamic centromedian nucleus (CM). Outcome was percentage seizure reduction from baseline after 3 months of DBS, defined using three measures (monthly seizure diaries, 24‐hour scalp electroencephalography [EEG], and a novel diary‐EEG composite). Probabilistic stimulation mapping identified thalamic locations associated with higher/lower efficacy. Two substitute diffusion MRI datasets (a normative dataset from healthy subjects and a “disease‐matched” dataset from a separate group of LGS patients) were used to calculate structural connectivity between DBS sites and a map of areas known to express epileptic activity in LGS, derived from our previous EEG‐fMRI research. Results Results were similar across the three outcome measures. Stimulation was most efficacious in the anterior and inferolateral “parvocellular” CM border, extending into the ventral lateral nucleus (posterior subdivision). There was a positive association between diary‐EEG composite seizure reduction and connectivity to areas of a priori EEG‐fMRI activation, including premotor and prefrontal cortex, putamen, and pontine brainstem. In contrast, outcomes were not associated with baseline clinical variables. Interpretation Efficacious CM‐DBS for LGS is linked to stimulation of the parvocellular CM and the adjacent ventral lateral nucleus, and is associated with connectivity to, and thus likely modulation of, the “secondary epileptic network” underlying the shared electroclinical manifestations of LGS. ANN NEUROL 2022;92:61–74
Collapse
Affiliation(s)
- Aaron E.L Warren
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
| | - Linda J. Dalic
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Kristian J. Bulluss
- Bionics Institute East Melbourne Victoria Australia
- Department of Neurosurgery Austin Health Heidelberg Victoria Australia
- Department of Surgery University of Melbourne Parkville Victoria Australia
| | - Annie Roten
- Department of Neurology Austin Health Heidelberg Victoria Australia
| | - Wesley Thevathasan
- Department of Neurology Austin Health Heidelberg Victoria Australia
- Bionics Institute East Melbourne Victoria Australia
| | - John S. Archer
- Department of Medicine (Austin Health) University of Melbourne Heidelberg Victoria Australia
- Murdoch Children’s Research Institute Parkville Victoria Australia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Victoria Australia
- Department of Neurology Austin Health Heidelberg Victoria Australia
| |
Collapse
|
16
|
Asadi-Pooya AA, Bazrafshan M, Farazdaghi M. Long-term medical and social outcomes of patients with Lennox-Gastaut syndrome. Epilepsy Res 2021; 178:106813. [PMID: 34798494 DOI: 10.1016/j.eplepsyres.2021.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of the current study was to investigate the long-term outcome in a large cohort of patients with Lennox-Gastaut syndrome (LGS). METHODS This was a longitudinal study (a retrospective database review with a telephone follow-up interview). All patients 18 years of age and older, with a diagnosis of LGS were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2020. The inclusion criteria were: multiple seizure types, characteristic electroencephalographic patterns [either bursts of slow spike-waves or generalized paroxysmal fast activity], with or without intellectual disability. Being lost on follow-up was the only exclusion criterion. RESULTS 78 patients fulfilled the inclusion criteria. All the patients were followed for one to 12 years (9.3 ± 2.8 years). In the last follow-up (call), 14 patients (17.9%) were seizure-free for at least 12 months. Tonic seizure at diagnosis was associated with a poor seizure outcome (not seizure-free) (p = 0.045). Four patients (5.1%) reported having high school degree (diploma), four patients (5.1%) were married, and one person (1.3%) reported driving a motor vehicle; none of the patients were employed. CONCLUSION A minority of patients with LGS (almost one in six patients) may enjoy a seizure-free state in their adulthood. However, very few of them could enjoy a healthy social life. While intellectual dysfunction may not be evident at the onset of the disease, cognitive impairment usually becomes apparent over time, and almost all patients would suffer from poor social outcomes in their adulthood.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mehdi Bazrafshan
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Farazdaghi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Wang Y, Taylor E, Zikopoulos B, Seta F, Huang N, Hamilton JA, Kantak KM, Morgan KG. Aging-induced microbleeds of the mouse thalamus compared to sensorimotor and memory defects. Neurobiol Aging 2021; 100:39-47. [PMID: 33477010 PMCID: PMC8162167 DOI: 10.1016/j.neurobiolaging.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.
Collapse
Affiliation(s)
- Yandan Wang
- Department of Health Sciences, Sargent College, Boston, MA, USA
| | - Erik Taylor
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | - Francesca Seta
- Department of Medicine, Boston University School of Medicine, Evans Biomed Research Centre, Boston, MA, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen M Kantak
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
18
|
Brain functional connectivity patterns in focal cortical dysplasia related epilepsy. Seizure 2021; 87:1-6. [PMID: 33636448 DOI: 10.1016/j.seizure.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) appears to be strongly associated with intractable epilepsy. Although patients with FCD are candidates for epilepsy surgery, gray matter structural abnormalities can extend beyond the primary lesion, which makes surgery less effective. The objective of this study was to evaluate functional connectivity patterns in epilepsy associated with FCD to explore the underlying pathological mechanism of this disorder. METHODS A total of 34 patients (14 men) with FCD and epilepsy [mean age ± standard deviation (SD), 24.5 ± 9.8 years; range, 8-47 years] and 34 age-matched healthy controls (14 men, 24.6 ± 9.7 years) underwent functional magnetic resonance imaging. Independent component analysis (ICA), seed-based functional connectivity, and graph theory were applied to analyze functional connectivity patterns in the brain. RESULTS Patients showed more connections among dorsal attention network, anterior default mode network, and sensorimotor brain networks than healthy controls based on ICA. Analysis of connectivity between regions of interest (ROIs) showed greater functional connectivity in patients between frontal and temporal regions, but lower connectivity between the cerebellum and frontal regions. The normalized characteristic path length was significantly higher in group of patients, but the two groups showed no significant differences in global or regional efficiency, clustering coefficient or characteristic path length. CONCLUSIONS Analysis of ICA-derived and ROI-based functional connectivity suggests that disrupted interactions and dysconnectivity in large-scale neural networks and frontotemporal-cerebellar regions may contribute to underlying pathological mechanisms in FCD-related epilepsy.
Collapse
|
19
|
Gonen OM, Kwan P, O'Brien TJ, Lui E, Desmond PM. Resting-state functional MRI of the default mode network in epilepsy. Epilepsy Behav 2020; 111:107308. [PMID: 32698105 DOI: 10.1016/j.yebeh.2020.107308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 02/09/2023]
Abstract
The default mode network (DMN) is a major neuronal network that deactivates during goal-directed tasks. Recent advances in neuroimaging have shed light on its structure and function. Alterations in the DMN are increasingly recognized in a range of neurological and psychiatric conditions including epilepsy. This review first describes the current understanding of the DMN in health, normal aging, and disease as it is acquired via resting-state functional magnetic resonance imaging (MRI), before focusing on how it is affected in various types of focal and generalized epilepsy. These findings support the potential use of DMN parameters as future biomarkers in epilepsy research, diagnosis, and management.
Collapse
Affiliation(s)
- Ofer M Gonen
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia.
| | - Patrick Kwan
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Elaine Lui
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| | - Patricia M Desmond
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| |
Collapse
|
20
|
Combined Isoflurane-Remifentanil Anaesthesia Permits Resting-State fMRI in Children with Severe Epilepsy and Intellectual Disability. Brain Topogr 2020; 33:618-635. [PMID: 32623611 DOI: 10.1007/s10548-020-00782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Head motion is a significant barrier to functional MRI (fMRI) in patients who are unable to tolerate awake scanning, including young children or those with cognitive and behavioural impairments. General anaesthesia minimises motion and ensures patient comfort, however the optimal anaesthesia regimen for fMRI in the paediatric setting is unknown. In this study, we tested the feasibility of anaesthetised fMRI in 11 patients (mean age = 9.8 years) with Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy associated with intellectual disability. fMRI was acquired during clinically-indicated MRI sessions using a synergistic anaesthesia regimen we typically administer for epilepsy neurosurgery: combined low-dose isoflurane (≤ 0.8% end-tidal concentration) with remifentanil (≤ 0.1 mcg/kg/min). Using group-level independent component analysis, we assessed the presence of resting-state networks by spatially comparing results in the anaesthetised patients to resting-state network templates from the 'Generation R' study of 536 similarly-aged non-anaesthetised healthy children (Muetzel et al. in Hum Brain Mapp 37(12):4286-4300, 2016). Numerous resting-state networks commonly studied in non-anaesthetised healthy children were readily identifiable in the anaesthetised patients, including the default-mode, sensorimotor, and frontoparietal networks. Independent component time-courses associated with these networks showed spectral characteristics suggestive of a neuronal origin of fMRI signal fluctuations, including high dynamic range and temporal frequency power predominantly below 0.1 Hz. These results demonstrate the technical feasibility of anaesthetised fMRI in children, suggesting that combined isoflurane-remifentanil anaesthesia may be an effective strategy to extend the emerging clinical applications of resting-state fMRI (for example, neurosurgical planning) to the variety of patient groups who may otherwise be impractical to scan.
Collapse
|
21
|
Chaitanya G, Toth E, Pizarro D, Irannejad A, Riley K, Pati S. Precision mapping of the epileptogenic network with low- and high-frequency stimulation of anterior nucleus of thalamus. Clin Neurophysiol 2020; 131:2158-2167. [PMID: 32682244 DOI: 10.1016/j.clinph.2020.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The goal of thalamic deep brain stimulation in epilepsy is to engage and modulate the epileptogenic network. We demonstrate how the anterior nucleus of thalamus (ANT) stimulation engages the epileptogenic network using electrophysiological measures (gamma response and post-stimulation excitability). METHODS Five patients with suspected temporal lobe epilepsy syndrome, undergoing stereo-electroencephalography (SEEG), were enrolled in the IRB approved study to undergo recording and stimulation of the ANT. We analyzed the extent of gamma-band response (activation or suppression) and post-stimulation change in excitability in various cortical regions during low (10 Hz) and high (50 Hz) frequency stimulations. RESULTS 10 Hz stimulation increased cortical gamma, whereas 50 Hz stimulation suppressed the gamma responses. The maximum response to stimuli was in the hippocampus. High epileptogenicity regions were more susceptible to stimulation. Both 10-and 50 Hz stimulations decreased post-stimulation cortical excitability. The greater the gamma-band activation with 10 Hz stimulation, the greater was the decrease in post-stimulation excitability. CONCLUSIONS We define an EEG marker that delineates stimulation-specific nodal engagement. We proved that nodes that were engaged with the thalamus during stimulation were more likely to show a short term decrease in post-stimulation excitability. SIGNIFICANCE Patient-specific engagement patterns during stimulation can be mapped with SEEG that can be used to optimize stimulation parameters.
Collapse
Affiliation(s)
- Ganne Chaitanya
- Department of Neurology, University of Alabama at Birmingham, AL, USA; Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, AL, USA
| | - Emilia Toth
- Department of Neurology, University of Alabama at Birmingham, AL, USA; Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, AL, USA
| | - Diana Pizarro
- Department of Neurology, University of Alabama at Birmingham, AL, USA; Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, AL, USA
| | - Auriana Irannejad
- Department of Neurology, University of Alabama at Birmingham, AL, USA; Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, AL, USA
| | - Kristen Riley
- Department of Neurosurgery, University of Alabama at Birmingham, AL, USA
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, AL, USA; Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
22
|
Warren AEL, Dalic LJ, Thevathasan W, Roten A, Bulluss KJ, Archer J. Targeting the centromedian thalamic nucleus for deep brain stimulation. J Neurol Neurosurg Psychiatry 2020; 91:339-349. [PMID: 31980515 DOI: 10.1136/jnnp-2019-322030] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the centromedian thalamic nucleus (CM) is an emerging treatment for multiple brain diseases, including the drug-resistant epilepsy Lennox-Gastaut syndrome (LGS). We aimed to improve neurosurgical targeting of the CM by: (1) developing a structural MRI approach for CM visualisation, (2) identifying the CM's neurophysiological characteristics using microelectrode recordings (MERs) and (3) mapping connectivity from CM-DBS sites using functional MRI (fMRI). METHODS 19 patients with LGS (mean age=28 years) underwent presurgical 3T MRI using magnetisation-prepared 2 rapid acquisition gradient-echoes (MP2RAGE) and fMRI sequences; 16 patients proceeded to bilateral CM-DBS implantation and intraoperative thalamic MERs. CM visualisation was achieved by highlighting intrathalamic borders on MP2RAGE using Sobel edge detection. Mixed-effects analysis compared two MER features (spike firing rate and background noise) between ventrolateral, CM and parafasicular nuclei. Resting-state fMRI connectivity was assessed using implanted CM-DBS electrode positions as regions of interest. RESULTS The CM appeared as a hyperintense region bordering the comparatively hypointense pulvinar, mediodorsal and parafasicular nuclei. At the group level, reduced spike firing and background noise distinguished CM from the ventrolateral nucleus; however, these trends were not found in 20%-25% of individual MER trajectories. Areas of fMRI connectivity included basal ganglia, brainstem, cerebellum, sensorimotor/premotor and limbic cortex. CONCLUSIONS In the largest clinical trial of DBS undertaken in patients with LGS to date, we show that accurate targeting of the CM is achievable using 3T MP2RAGE MRI. Intraoperative MERs may provide additional localising features in some cases; however, their utility is limited by interpatient variability. Therapeutic effects of CM-DBS may be mediated via connectivity with brain networks that support diverse arousal, cognitive and sensorimotor processes.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia .,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Linda J Dalic
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Wesley Thevathasan
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.,Bionics Institute, East Melbourne, Victoria, Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Annie Roten
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Kristian J Bulluss
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Neurosurgery, Austin Health, Heidelberg, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - John Archer
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
23
|
Zhang Z, Zhou X, Liu J, Qin L, Ye W, Zheng J. Aberrant executive control networks and default mode network in patients with right-sided temporal lobe epilepsy: a functional and effective connectivity study. Int J Neurosci 2019; 130:683-693. [PMID: 31851554 DOI: 10.1080/00207454.2019.1702545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: We aimed to explore functional connectivity (FC) and effective connectivity (EC) of the executive control networks (ECNs) and the default mode network (DMN) in patients with right-sided TLE (rTLE) by applying independent component analysis (ICA) and Granger causal analysis (GCA).Methods: Twenty-seven patients with rTLE and 20 healthy controls (HCs) matched for age, gender underwent resting-state functional magnetic resonance imaging and Attention Network Test (ANT).Results: The FC analysis showed compared to HCs, patients with rTLE demonstrated reduced FC strength in the right inferior parietal gyrus (IPG) and the right middle temporal gyrus (MTG). The left superior temporal gyrus (STG) displayed reduced FC values whereas the left thalamus revealed increased FC values in rTLE. ROI-wise GCA revealed that patients with rTLE displayed increased EC from the left thalamus to the left STG, and as well as enhanced EC from the right IPG to the right MTG compared to HCs. Voxel-wise GCA showed positive EC from the left thalamus to the left insula while the right middle occipital gyrus (MOG) exhibited increased EC to the right MTG in patients. The ANT results demonstrated executive dysfunction in patients compared to HCs. The increased FC in the left thalamus showed a negative association with ECF in patients.Conclusion: We speculated that recurrent seizures take effect on disruption among the brain networks, and self-modulation occurs simultaneously to compensate for cognitive decline. Our findings revealed new insights on the neuropathophysiological mechanisms of rTLE.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Kowalczyk MA, Omidvarnia A, Abbott DF, Tailby C, Vaughan DN, Jackson GD. Clinical benefit of presurgical EEG‐fMRI in difficult‐to‐localize focal epilepsy: A single‐institution retrospective review. Epilepsia 2019; 61:49-60. [DOI: 10.1111/epi.16399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Amir Omidvarnia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - David F. Abbott
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Chris Tailby
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
| | - David N. Vaughan
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- Department of Neurology Austin Health Heidelberg Australia
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
- Department of Neurology Austin Health Heidelberg Australia
| |
Collapse
|
25
|
Shamshiri EA, Sheybani L, Vulliemoz S. The Role of EEG-fMRI in Studying Cognitive Network Alterations in Epilepsy. Front Neurol 2019; 10:1033. [PMID: 31608007 PMCID: PMC6771300 DOI: 10.3389/fneur.2019.01033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023] Open
Abstract
Brain functions do not arise from isolated brain regions, but from interactions in widespread networks necessary for both normal and pathological conditions. These Intrinsic Connectivity Networks (ICNs) support cognitive processes such as language, memory, or executive functions, but can be disrupted by epileptic activity. Simultaneous EEG-fMRI can help explore the hemodynamic changes associated with focal or generalized epileptic discharges, thus providing information about both transient and non-transient impairment of cognitive networks related to spatio-temporal overlap with epileptic activity. In the following review, we discuss the importance of interictal discharges and their impact on cognition in different epilepsy syndromes. We explore the cognitive impact of interictal activity in both animal models and human connectivity networks in order to confirm that this effect could have a possible clinical impact for prescribing medication and characterizing post-surgical outcome. Future work is needed to further investigate electrophysiological changes, such as amplitude/latency of single evoked responses or spontaneous epileptic activity in either scalp or intracranial EEG and determine its relative change in hemodynamic response with subsequent network modifications.
Collapse
Affiliation(s)
- Elhum A Shamshiri
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland.,Neurology Clinic, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Young JC, Paolini AG, Pedersen M, Jackson GD. Genetic absence epilepsy: Effective connectivity from piriform cortex to mediodorsal thalamus. Epilepsy Behav 2019; 97:219-228. [PMID: 31254842 DOI: 10.1016/j.yebeh.2019.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the study was to quantify effective connectivity from the piriform cortex to mediodorsal thalamus, in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS Local field potentials (LFPs) were recorded using microelectrode arrays implanted in the mediodorsal thalamus and piriform cortex, in three urethane anesthetized GAERS and three control rats. Screw electrodes were placed in the primary motor cortex to identify epileptiform discharges. We used transfer entropy to measure effective connectivity from piriform cortex to mediodorsal thalamus prior to and during generalized epileptiform discharges. RESULTS We observed increased theta band effective connectivity from piriform cortex to mediodorsal thalamus, prior to and during epileptiform discharges in GAERS compared with controls. Increased effective connectivity was also observed in beta and gamma bands from the piriform cortex to mediodorsal thalamus, but only during epileptiform discharges. CONCLUSIONS This preliminary study suggests that increased effective theta connectivity from the piriform cortex to the mediodorsal thalamus may be a feature of the 'epileptic network' associated with genetic absence epilepsy. Our findings indicate an underlying predisposition of this direct pathway to propagate epileptiform discharges in genetic absence epilepsy.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Mangor Pedersen
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| |
Collapse
|
27
|
Warren AE, Harvey AS, Vogrin SJ, Bailey C, Davidson A, Jackson GD, Abbott DF, Archer JS. The epileptic network of Lennox-Gastaut syndrome. Neurology 2019; 93:e215-e226. [DOI: 10.1212/wnl.0000000000007775] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
ObjectiveTo identify brain regions underlying interictal generalized paroxysmal fast activity (GPFA), and their causal interactions, in children and adults with Lennox-Gastaut syndrome (LGS).MethodsConcurrent scalp EEG-fMRI was performed in 2 separately analyzed patient groups with LGS: 10 children (mean age 8.9 years) scanned under isoflurane-remifentanil anesthesia and 15 older patients (mean age 31.7 years) scanned without anesthesia. Whole-brain event-related analysis determined GPFA-related activation in each group. Results were used as priors in a dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing initiation and propagation of GPFA between cortex, thalamus, and brainstem.ResultsA total of 1,045 GPFA events were analyzed (cumulative duration 1,433 seconds). In both pediatric and older groups, activation occurred in distributed association cortical areas, as well as the thalamus and brainstem (p < 0.05, corrected for family-wise error). Activation was similar across individual patients with structural, genetic, and unknown etiologies of epilepsy, particularly in frontoparietal cortex. In both groups, DCM revealed that GPFA was most likely driven by prefrontal cortex, with propagation occurring first to the brainstem and then from brainstem to thalamus.ConclusionsWe show reproducible evidence of a cortically driven process within the epileptic network of LGS. This network is present early (in children) and late (in older patients) in the course of the syndrome and across diverse etiologies of epilepsy, suggesting that LGS reflects shared “secondary network” involvement. A cortical-to-subcortical hierarchy is postulated whereby GPFA rapidly propagates from prefrontal cortex to the brainstem via extrapyramidal corticoreticular pathways, whereas the thalamus is engaged secondarily.
Collapse
|
28
|
Zhang C, Zhang H, Xu K, Yang H, Liu C, Yu T, Chen N, Li K. Impaired prefrontal cortex-thalamus pathway in intractable temporal lobe epilepsy with aberrant executive control function: MRI evidence. Clin Neurophysiol 2019; 130:484-490. [DOI: 10.1016/j.clinph.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 01/03/2023]
|
29
|
Jo HJ, Kenny-Jung DL, Balzekas I, Benarroch EE, Jones DT, Brinkmann BH, Matt Stead S, Van Gompel JJ, Welker KM, Worrell GA. Nuclei-specific thalamic connectivity predicts seizure frequency in drug-resistant medial temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2019; 21:101671. [PMID: 30642762 PMCID: PMC6412104 DOI: 10.1016/j.nicl.2019.101671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
Background and objectives We assessed correlations between the resting state functional connectivity (RSFC) of different thalamic nuclei and seizure frequency in patients with drug-resistant medial temporal lobe epilepsy (mTLE). Methods Seventeen patients with mTLE and 17 sex-/age-/handedness-matched controls participated. A seed-based correlation method for the resting-state FMRI data was implemented to get RSFC maps of 70 thalamic nuclei seed masks. Group statistics for individual RSFC for subjects and seed masks were performed to obtain within-group characteristics and between-group differences with age covariates. A linear regression was applied to test whether seizure frequency correlated with thalamic nuclear RSFC with the whole brain in mTLE patients. Results RSFC of thalamic nuclei showed spatially distinguishable connectivity patterns that reflected principal inputs and outputs that were derived from priori anatomical knowledge. We found group differences between normal control and mTLE groups in RSFC for nuclei seeds located in various subdivisions of thalamus. The RSFCs in some of those nuclei were strongly correlated with seizure frequency. Conclusions Mediodorsal thalamic nuclei may play important roles in seizure activity or in the regulation of neuronal activity in the limbic system. The RSFC of motor- and sensory-relay nuclei may help elucidate sensory-motor deficits associated with chronic seizure activity. RSFC of the pulvinar nuclei of the thalamus could also be a key reflection of symptom-related functional deficits in mTLE. We assessed the functional connectivity for 70 thalamic nuclei of temporal lobe epilepsy subjects. Each nucleus showed distinguishable connectivity along its known pathological preference. Especially, the mediodorsal thalamic nuclei may play important roles in seizure frequency.
Collapse
Affiliation(s)
- Hang Joon Jo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin H Brinkmann
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN 55905, USA
| | - S Matt Stead
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
30
|
From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol 2018; 14:735-745. [DOI: 10.1038/s41582-018-0099-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Hyperintense sensorimotor T1 spin echo MRI is associated with brainstem abnormality in chronic fatigue syndrome. NEUROIMAGE-CLINICAL 2018; 20:102-109. [PMID: 30497131 PMCID: PMC6309570 DOI: 10.1016/j.nicl.2018.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 01/08/2023]
Abstract
We recruited 43 Chronic Fatigue Syndrome (CFS) subjects who met Fukuda criteria and 27 healthy controls and performed 3T MRI T1 and T2 weighted spin-echo (T1wSE and T2wSE) scans. T1wSE signal follows T1 relaxation rate (1/T1 relaxation time) and responds to myelin and iron (ferritin) concentrations. We performed MRI signal level group comparisons with SPM12. Spatial normalization after segmentation was performed using T2wSE scans and applied to the coregistered T1wSE scans. After global signal-level normalization of individual scans, the T1wSE group comparison detected decreased signal-levels in CFS in a brainstem region (cluster-based inference controlled for family wise error rate, PFWE= 0.002), and increased signal-levels in large bilateral clusters in sensorimotor cortex white matter (cluster PFWE < 0.0001). Moreover, the brainstem T1wSE values were negatively correlated with the sensorimotor values for both CFS (R2 = 0.31, P = 0.00007) and healthy controls (R2 = 0.34, P = 0.0009), and the regressions were co-linear. This relationship, previously unreported in either healthy controls or CFS, in view of known thalamic projection-fibre plasticity, suggests brainstem conduction deficits in CFS may stimulate the upregulation of myelin in the sensorimotor cortex to maintain brainstem - sensorimotor connectivity. VBM did not find group differences in regional grey matter or white matter volumes. We argued that increased T1wSE observed in sensorimotor WM in CFS indicates increased myelination which is a regulatory response to deficits in the brainstem although the causality cannot be tested in this study. Altered brainstem myelin may have broad consequences for cerebral function and should be a focus of future research.
Collapse
|
32
|
Disrupted amplitude of low-frequency fluctuations and causal connectivity in Parkinson's disease with apathy. Neurosci Lett 2018; 683:75-81. [PMID: 29953925 DOI: 10.1016/j.neulet.2018.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 12/24/2022]
Abstract
Apathy is a common non-motor symptom in Parkinson's disease (PD). We aimed to explore its associated neural substrates changes via amplitude of low-frequency fluctuations (ALFF) and granger causality analysis (GCA). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed in 20 PD patients with apathy (PD-A), 22 PD patients without apathy (PD-NA) and 19 healthy volunteers. GCA, a new method exploring direction from one brain region to another, was based on brain regions showing alterations of neural activity as seeds, which were examined utilizing ALFF approach. The relationships between ALFF or GCA and apathetic symptoms were also assessed. Relative to PD-NA group, PD-A group indicated decreased ALFF in left orbital middle frontal gyrus and bilateral superior frontal gyrus (SFG). Only ALFF values in right SFG were negatively correlated with Apathy Scale (AS) scores. Then GCA with the seed of right SFG showed a positive feedback from right thalamus to ipsilateral SFG, which was positively correlated with AS scores. In conclusion, dysfunction in SFG and a positive feedback from thalamus to ipsilateral SFG contributed to presence of PD-related apathy, providing a new perspective for future studies on apathy in PD.
Collapse
|
33
|
Zhang Z, Liu G, Yao Z, Zheng W, Xie Y, Hu T, Zhao Y, Yu Y, Zou Y, Shi J, Yang J, Wang T, Zhang J, Hu B. Changes in Dynamics Within and Between Resting-State Subnetworks in Juvenile Myoclonic Epilepsy Occur at Multiple Frequency Bands. Front Neurol 2018; 9:448. [PMID: 29963004 PMCID: PMC6010515 DOI: 10.3389/fneur.2018.00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/28/2018] [Indexed: 12/01/2022] Open
Abstract
Time-varying connectivity analyses have indicated idiopathic generalized epilepsy (IGE) could cause significant abnormalities in dynamic connective pattern within and between resting-state sub-networks (RSNs). However, previous studies mainly focused on the IGE-induced dynamic changes of functional connectivity (FC) in specific frequency band (0.01–0.08 Hz or 0.01–0.15 Hz), ignoring the changes across different frequency bands. Here, 24 patients with IGE characterized by juvenile myoclonic epilepsy (JME) and 24 matched healthy controls were studied using a data-driven frequency decomposition approach and a sliding window approach. The RSN dynamics, including intra-RSN dynamics and inter-RSN dynamics, was further calculated to investigate dynamic FC changes within and between RSNs in JME patients in each decomposed frequency band. Compared to healthy controls, JME patients not only showed frequency-dependent decrease in intra-RSN dynamics within multiple RSNs but also exhibited fluctuant alterations in inter-RSN dynamics among several RSNs over different frequency bands especially in the ventral/dorsal attention network and the subcortical network. Additionally, the disease severity had significantly negative correlations with both intra-RSN dynamics within the subcortical network and inter-RSN dynamics between the subcortical network and the default network at the lower frequency band (0.0095–0.0195 Hz). These results suggested that abnormal dynamic FC within and between RSNs in JME occurs at multiple frequency bands and the lower frequency band (0.0095–0.0195 Hz) was probably more sensitive to JME-caused dynamic FC abnormalities. The frequency subdivision and selection are potentially helpful for detecting particular changes of dynamic FC in JME.
Collapse
Affiliation(s)
- Zhe Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yuanwei Xie
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Tao Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yu Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yue Yu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Ying Zou
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jie Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Child Behavior Correction, Lanzhou University Second Hospital, Lanzhou, China
| | - Tiancheng Wang
- The Epilepsy Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|