1
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
2
|
Pedersen M, Pardoe H, Mito R, Sethi M, Vaughan DN, Carney PW, Jackson GD. Brain network changes after the first seizure: an insight into medication response? Brain Commun 2024; 6:fcae328. [PMID: 39440302 PMCID: PMC11495098 DOI: 10.1093/braincomms/fcae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
After a first epileptic seizure, anti-seizure medications (ASMs) can change the likelihood of having a further event. This prospective study aimed to quantify brain network changes associated with taking ASM monotherapy. We applied graph theoretical network analysis to longitudinal resting-state functional MRI (fMRI) data from 28 participants who had recently experienced their first seizure. Participants were imaged before and during long-term ASM therapy, with a mean inter-scan interval of 6.9 months. After commencing ASM, we observed an increase in the clustering coefficient and a decrease in network path length. Brain changes after ASM treatment were most prominent in the superior frontoparietal and inferior fronto-temporal regions. Participants with recurrent seizures display the most pronounced network changes after ASM treatment. This study shows changes in brain network function after ASM administration, particularly in participants with recurrent seizures. Larger studies that ideally include control cohorts are required to understand further the connection between ASM-related brain network changes and longer-term seizure status.
Collapse
Affiliation(s)
- Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT), Auckland 0627, New Zealand
| | - Heath Pardoe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - Remika Mito
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne 3010, Australia
| | - Moksh Sethi
- Neurology Department, Eastern Health, Melbourne 3128, Australia
- Neurology Department, Northern Health, Melbourne 3076, Australia
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
- Department of Neurology, Austin Health, Melbourne 3084, Australia
| | - Patrick W Carney
- Neurology Department, Eastern Health, Melbourne 3128, Australia
- Eastern Health Clinical School, Monash University, Melbourne 3128, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
- Department of Neurology, Austin Health, Melbourne 3084, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne 3084, Australia
| |
Collapse
|
3
|
Hérault C, André-Obadia N, Naccache L, Luauté J. Potential therapeutic effect of Lamotrigine in disorders of consciousness after severe traumatic brain injury: A series of 4 cases. Ann Phys Rehabil Med 2024; 67:101868. [PMID: 39173327 DOI: 10.1016/j.rehab.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Caroline Hérault
- Service de Rééducation Post-Réanimation, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69500 Bron, France.
| | - Nathalie André-Obadia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, INSERM UMRS 1028, CNRS UMR 5292, Neuropain, 69000, Lyon, France; Neurophysiology & Epilepsy Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Lionel Naccache
- Sorbonne université, institut du cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France; Sorbonne université, UPMC Univ Paris 06, faculté de médecine Pitié-Salpêtrière, Paris, France; DMU neurosciences, department of clinical neurophysiology, Paris, France; AP-HP, hôpital groupe hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Jacques Luauté
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, INSERM UMRS 1028, CNRS UMR 5292, Trajectoires, 69000, Lyon, France; Service de rééducation post-réanimation, pôle de rééducation, Hospices Civils de Lyon, Lyon, 69000, France.
| |
Collapse
|
4
|
Boßelmann CM, Kegele J, Zerweck L, Klose U, Ethofer S, Roder C, Grimm AM, Hauser TK. Breath-Hold-Triggered BOLD fMRI in Drug-Resistant Nonlesional Focal Epilepsy-A Pilot Study. Clin Neuroradiol 2024; 34:315-324. [PMID: 38082172 PMCID: PMC11130005 DOI: 10.1007/s00062-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/01/2023] [Indexed: 05/29/2024]
Abstract
PURPOSE Individuals with drug-resistant epilepsy may benefit from epilepsy surgery. In nonlesional cases, where no epileptogenic lesion can be detected on structural magnetic resonance imaging, multimodal neuroimaging studies are required. Breath-hold-triggered BOLD fMRI (bh-fMRI) was developed to measure cerebrovascular reactivity in stroke or angiopathy and highlights regional network dysfunction by visualizing focal impaired flow increase after vasodilatory stimulus. This regional dysfunction may correlate with the epileptogenic zone. In this prospective single-center single-blind pilot study, we aimed to establish the feasibility and safety of bh-fMRI in individuals with drug-resistant non-lesional focal epilepsy undergoing presurgical evaluation. METHODS In this prospective study, 10 consecutive individuals undergoing presurgical evaluation for drug-resistant focal epilepsy were recruited after case review at a multidisciplinary patient management conference. Electroclinical findings and results of other neuroimaging were used to establish the epileptogenic zone hypothesis. To calculate significant differences in cerebrovascular reactivity in comparison to the normal population, bh-fMRIs of 16 healthy volunteers were analyzed. The relative flow change of each volume of interest (VOI) of the atlas was then calculated compared to the flow change of the whole brain resulting in an atlas of normal cerebral reactivity. Consequently, the mean flow change of every VOI of each patient was tested against the healthy volunteers group. Areas with significant impairment of cerebrovascular reactivity had decreased flow change and were compared to the epileptogenic zone localization hypothesis in a single-blind design. RESULTS Acquisition of bh-fMRI was feasible in 9/10 cases, with one patient excluded due to noncompliance with breathing maneuvers. No adverse events were observed, and breath-hold for intermittent hypercapnia was well tolerated. On blinded review, we observed full or partial concordance of the local network dysfunction seen on bh-fMRI with the electroclinical hypothesis in 6/9 cases, including cases with extratemporal lobe epilepsy and those with nonlocalizing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). CONCLUSION This represents the first report of bh-fMRI in individuals with epilepsy undergoing presurgical evaluation. We found bh-fMRI to be feasible and safe, with a promising agreement to electroclinical findings. Thus, bh-fMRI may represent a potential modality in the presurgical evaluation of epilepsy. Further studies are needed to establish clinical utility.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Silke Ethofer
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Constantin Roder
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Alexander M Grimm
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.
| |
Collapse
|
5
|
Boot EM, Omes QPM, Maaijwee N, Schaapsmeerders P, Arntz RM, Rutten-Jacobs LCA, Kessels RPC, de Leeuw FE, Tuladhar AM. Functional brain connectivity in young adults with post-stroke epilepsy. Brain Commun 2023; 5:fcad277. [PMID: 37953839 PMCID: PMC10639092 DOI: 10.1093/braincomms/fcad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Approximately 1 in 10 young stroke patients (18-50 years) will develop post-stroke epilepsy, which is associated with cognitive impairment. While previous studies have shown altered brain connectivity in patients with epilepsy, little is however known about the changes in functional brain connectivity in young stroke patients with post-stroke epilepsy and their relationship with cognitive impairment. Therefore, we aimed to investigate whether young ischaemic stroke patients have altered functional networks and whether this alteration is related to cognitive impairment. We included 164 participants with a first-ever cerebral infarction at young age (18-50 years), along with 77 age- and sex-matched controls, from the Follow-Up of Transient Ischemic Attack and Stroke patients and Unelucidated Risk Factor Evaluation study. All participants underwent neuropsychological testing and resting-state functional MRI to generate functional connectivity networks. At follow-up (10.5 years after the index event), 23 participants developed post-stroke epilepsy. Graph theoretical analysis revealed functional network reorganization in participants with post-stroke epilepsy, in whom a weaker (i.e. network strength), less-integrated (i.e. global efficiency) and less-segregated (i.e. clustering coefficient and local efficiency) functional network was observed compared with the participants without post-stroke epilepsy group and the controls (P < 0.05). Regional analysis showed a trend towards decreased clustering coefficient, local efficiency and nodal efficiency in contralesional brain regions, including the caudal anterior cingulate cortex, posterior cingulate cortex, precuneus, superior frontal gyrus and insula in participants with post-stroke epilepsy compared with those without post-stroke epilepsy. Furthermore, participants with post-stroke epilepsy more often had impairment in the processing speed domain than the group without post-stroke epilepsy, in whom the network properties of the precuneus were positively associated with processing speed performance. Our findings suggest that post-stroke epilepsy is associated with functional reorganization of the brain network after stroke that is characterized by a weaker, less-integrated and less-segregated brain network in young ischaemic stroke patients compared with patients without post-stroke epilepsy. The contralesional brain regions, which are mostly considered as hub regions, might be particularly involved in the altered functional network and may contribute to cognitive impairment in post-stroke epilepsy patients. Overall, our findings provide additional evidence for a potential role of disrupted functional network as underlying pathophysiological mechanism for cognitive impairment in patients with post-stroke epilepsy.
Collapse
Affiliation(s)
- Esther M Boot
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Quinty P M Omes
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Noortje Maaijwee
- Department of Neurology and Neurorehabilitation, Luzerner Kantonsspital Neurocentre, Luzern 16, Switzerland
| | | | - Renate M Arntz
- Department of Neurology, Medisch Spectrum Twente, Enschede 7500 KA, The Netherlands
| | | | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Department of Psychology, Radboud University, Nijmegen 6525 GD, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Centre, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray 5803 AC, The Netherlands
| | - Frank-Erik de Leeuw
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Anil M Tuladhar
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| |
Collapse
|
6
|
Kiersnowski OC, Winston GP, Caciagli L, Biondetti E, Elbadri M, Buck S, Duncan JS, Thornton JS, Shmueli K, Vos SB. Quantitative susceptibility mapping identifies hippocampal and other subcortical grey matter tissue composition changes in temporal lobe epilepsy. Hum Brain Mapp 2023; 44:5047-5064. [PMID: 37493334 PMCID: PMC10502681 DOI: 10.1002/hbm.26432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate (R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility andR 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. SignificantR 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility andR 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and withR 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and withR 2 * in the caudate. Susceptibility andR 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility andR 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.
Collapse
Affiliation(s)
- Oliver C. Kiersnowski
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of Medicine, Division of NeurologyQueen's UniversityKingstonCanada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emma Biondetti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Department of Neuroscience, Imaging and Clinical SciencesInstitute for Advanced Biomedical Technologies, “D'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Maha Elbadri
- Department of NeurologyQueen Elizabeth HospitalBirminghamUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - John S. Thornton
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Neuroradiological Academic UnitUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Centre for Microscopy, Characterisation, and AnalysisThe University of Western AustraliaNedlandsAustralia
- Centre for Medical Image Computing, Computer Science departmentUniversity College LondonLondonUK
| |
Collapse
|
7
|
Peng Y, Wang K, Liu C, Tan L, Zhang M, He J, Dai Y, Wang G, Liu X, Xiao B, Xie F, Long L. Cerebellar functional disruption and compensation in mesial temporal lobe epilepsy. Front Neurol 2023; 14:1062149. [PMID: 36816567 PMCID: PMC9932542 DOI: 10.3389/fneur.2023.1062149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Background Cerebellar functional alterations are common in patients with mesial temporal lobe epilepsy (MTLE), which contribute to cognitive decline. This study aimed to deepen our knowledge of cerebellar functional alterations in patients with MTLE. Methods In this study, participants were recruited from an ongoing prospective cohort of 13 patients with left TLE (LTLE), 17 patients with right TLE (RTLE), and 30 healthy controls (HCs). Functional magnetic resonance imaging data were collected during a Chinese verbal fluency task. Group independent component (IC) analysis (group ICA) was applied to segment the cerebellum into six functionally separated networks. Functional connectivity was compared among cerebellar networks, cerebellar activation maps, and the centrality parameters of cerebellar regions. For cerebellar functional profiles with significant differences, we calculated their correlation with clinical features and neuropsychological scores. Result Compared to HCs and patients with LTLE, patients with RTLE had higher cerebellar functional connectivity between the default mode network (DMN) and the oculomotor network and lower cerebellar functional connectivity from the frontoparietal network (FPN) to the dorsal attention network (DAN) (p < 0.05, false discovery rate- (FDR-) corrected). Cerebellar degree centrality (DC) of the right lobule III was significantly higher in patients with LTLE compared to HC and patients with RTLE (p < 0.05, FDR-corrected). Higher cerebellar functional connectivity between the DMN and the oculomotor network, as well as lower cerebellar degree centrality of the right lobule III, was correlated with worse information test performance. Conclusion Cerebellar functional profiles were altered in MTLE and correlated with long-term memory in patients.
Collapse
Affiliation(s)
- Yiqian Peng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwei Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianghe Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China,Fangfang Xie ✉
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Clinical Research Center for Epileptic Disease of Hunan Province, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lili Long ✉
| |
Collapse
|
8
|
Xiao F, Caciagli L, Wandschneider B, Fleury M, Binding L, Giampiccolo D, Hill A, Galovic M, Foong J, Zhou D, Sander JW, Duncan JS, Koepp MJ. Verbal fluency functional magnetic resonance imaging detects anti-seizure effects and affective side effects of perampanel in people with focal epilepsy. Epilepsia 2023; 64:e9-e15. [PMID: 36524702 PMCID: PMC10107311 DOI: 10.1111/epi.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Perampanel, a noncompetitive antagonist of the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor, is effective for controlling focal to bilateral tonic-clonic seizures but is also known to increase feelings of anger. Using statistical parametric mapping-derived measures of activation and task-modulated functional connectivity (psychophysiologic interaction), we investigated 14 people with focal epilepsy who had verbal fluency functional magnetic resonance imaging (fMRI) twice, before and after the add-on treatment of perampanel. For comparison, we included 28 people with epilepsy, propensity-matched for clinical characteristics, who had two scans but no change in anti-seizure medication (ASM) regimen in-between. After commencing perampanel, individuals had higher task-related activations in left orbitofrontal cortex (OFC), fewer task-related activations in the subcortical regions including the left thalamus and left caudate, and lower task-related thalamocaudate and caudate-subtantial nigra connectivity. Decreased task-related connectivity is observed between the left OFC and precuneus and left medial frontal lobe. Our results highlight the brain regions associated with the beneficiary therapeutic effects on focal to bilateral tonic-clonic seizures (thalamus and caudate) but also the undesired affective side effects of perampanel with increased anger and aggression (OFC).
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Lorenzo Caciagli
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Britta Wandschneider
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, The Royal London Hospital, London, UK
| | - Marine Fleury
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lawrence Binding
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Davide Giampiccolo
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Hill
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Marian Galovic
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Jaqueline Foong
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Matthias J Koepp
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
9
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2022; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Correspondence to: Lorenzo Caciagli, MD, PhD Department of Bioengineering University of Pennsylvania, 240 Skirkanich Hall 210 South 33rd Street, Philadelphia, PA 19104, USA E-mail: ;
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Centre for Medical Image Computing, University College London, London, UK,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Medicine, Division of Neurology, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Correspondence may also be addressed to: Dani S. Bassett, PhD E-mail:
| | | | | |
Collapse
|
10
|
Xiao F, Caciagli L, Wandschneider B, Joshi B, Vos SB, Hill A, Galovic M, Long L, Sone D, Trimmel K, Sander JW, Zhou D, Thompson PJ, Baxendale S, Duncan JS, Koepp MJ. Effect of Anti-seizure Medications on Functional Anatomy of Language: A Perspective From Language Functional Magnetic Resonance Imaging. Front Neurosci 2022; 15:787272. [PMID: 35280343 PMCID: PMC8908426 DOI: 10.3389/fnins.2021.787272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background In epilepsy, cognitive difficulties are common, partly a consequence of anti-seizure medications (ASM), and cognitive side-effects are often considered to be more disabling than seizures and significantly affect quality of life. Functional MRI during verbal fluency tasks demonstrated impaired frontal activation patterns and failed default mode network deactivation in people taking ASM with unfavourable cognitive profiles. The cognitive effect of ASMs given at different dosages in monotherapy, or in different combinations, remains to be determined. Methods Here, we compared the effects of different drug loads on verbal fluency functional MRI (fMRI) in people (i) taking dual therapy of ASMs either considered to be associated with moderate (levetiracetam, lamotrigine, lacosamide, carbamazepine/oxcarbazepine, eslicarbazepine, valproic acid; n = 119, 56 females) or severe (topiramate, zonisamide) side-effects; n = 119, 56 females), (ii) taking moderate ASMs in either mono-, dual- or triple-therapy (60 subjects in each group), or (iii) taking different dosages of ASMs with moderate side-effect profiles (n = 180). “Drug load” was defined as a composite value of numbers and dosages of medications, normalised to account for the highest and lowest dose of each specific prescribed medication. Results In people taking “moderate” ASMs (n = 119), we observed higher verbal-fluency related to left inferior frontal gyrus and right inferior parietal fMRI activations than in people taking “severe” ASMs (n = 119). Irrespective of the specific ASM, people on monotherapy (n = 60), showed greater frontal activations than people taking two (n = 60), or three ASMs (n = 60). People on two ASMs showed less default mode (precuneus) deactivation than those on monotherapy. In people treated with “moderate” ASMs (n = 180), increased drug load correlated with reduced activation of language-related regions and the right piriform cortex. Conclusion Our study delineates the effects of polytherapy and high doses of ASMs when given in monotherapy on the functional anatomy of language. Irrespective of the cognitive profile of individual ASMs, each additional ASM results in additional alterations of cognitive activation patterns. Selection of ASMs with moderate cognitive side effects, and low doses of ASMs when given in polytherapy, could reduce the cognitive effect.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, The Royal London Hospital, London, United Kingdom
| | - Bhavini Joshi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- UCL Centre for Medical Image Computing, London, United Kingdom
- Department of Neuroradiology, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrea Hill
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zürich, Zurich, Switzerland
| | - Lili Long
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Daichi Sone
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Josemir W. Sander
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Pamela J. Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
- *Correspondence: Matthias J. Koepp,
| |
Collapse
|
11
|
Wang K, Xie F, Liu C, Tan L, He J, Hu P, Zhang M, Wang G, Chen F, Xiao B, Liao W, Long L. Abnormal functional connectivity profiles predict drug responsiveness in patients with temporal lobe epilepsy. Epilepsia 2021; 63:463-473. [PMID: 34874064 DOI: 10.1111/epi.17142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This work was undertaken to study the functional connectivity differences between non-seizure-free and seizure-free patients with temporal lobe epilepsy (TLE) and to identify imaging predictors for drug responsiveness in TLE. METHODS In this prospective study, 52 patients with TLE who presented undetermined antiseizure medication responsiveness and 55 demographically matched healthy controls were sequentially recruited from Xiangya Hospital. Functional magnetic resonance imaging data were acquired during a Chinese version of the verbal fluency task. The patients were followed up until the outcome could be classified. The subject groups were compared in terms of activation profile, task-residual functional connectivity (trFC), and generalized psychophysiological interaction (gPPI) analyses. Moreover, we extracted imaging characteristics for logistic regression and receiver operating characteristic evaluation. RESULTS With a mean follow-up of 1.1 years, we identified 27 non-seizure-free patients and 19 seizure-free patients in the final analyses. The Chinese character verbal fluency task successfully activated the language network and cognitive control network (CCN) and deactivated the default mode network (DMN). In the non-seizure-freedom group, the trFC between the hippocampus and bilateral brain networks was attenuated (p < .05, familywise error corrected). For the gPPI analysis, group differences were mainly located in the precuneus, middle frontal gyrus, and inferior parietal lobule (p < .001, uncorrected; k ≥ 10). The regression model presented high accuracy when predicting non-seizure-free patients (area under the curve = .879, 95% confidence interval = .761-.998). SIGNIFICANCE In patients with TLE who would not achieve seizure freedom with current antiseizure medications, the functional connectivity between the hippocampus and central nodes of the DMN, CCN, and language network was disrupted, leading to language decline. Independent of hippocampal sclerosis, abnormalities, especially the effective connectivity from the hippocampus to the DMN, were predictive biomarkers of drug responsiveness in patients with TLE.
Collapse
Affiliation(s)
- Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Langzi Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jialinzi He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Trimmel K, Vos SB, Caciagli L, Xiao F, van Graan LA, Winston GP, Koepp MJ, Thompson PJ, Duncan JS. Decoupling of functional and structural language networks in temporal lobe epilepsy. Epilepsia 2021; 62:2941-2954. [PMID: 34642939 PMCID: PMC8776336 DOI: 10.1111/epi.17098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022]
Abstract
Objective To identify functional and structural alterations in language networks of people with temporal lobe epilepsy (TLE), who frequently present with naming and word‐finding difficulties. Methods Fifty‐five patients with unilateral TLE (29 left) and 16 controls were studied with auditory and picture naming functional magnetic resonance imaging (fMRI) tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole‐brain functional connectivity analyses (psychophysiological interaction). White matter language pathways were investigated using diffusion tensor imaging and neurite orientation dispersion and density imaging metrics extracted along fiber bundles starting from fMRI‐guided seeds. Regression analyses were performed to investigate the correlation of functional connectivity with diffusion MRI metrics. Results In the whole group of patients and controls, weaker functional connectivity from the left posterobasal temporal lobe (1) to the bilateral anterior temporal lobe, precentral gyrus, and lingual gyrus during auditory naming and (2) to the bilateral occipital cortex and right fusiform gyrus during picture naming was associated with decreased neurite orientation dispersion and higher free water fraction of white matter tracts. Compared to controls, TLE patients exhibited fewer structural connections and an impaired coupling of functional and structural metrics. Significance TLE is associated with an impairment and decoupling of functional and structural language networks. White matter damage, as evidenced by diffusion abnormalities, may contribute to impaired functional connectivity and language dysfunction in TLE.
Collapse
Affiliation(s)
- Karin Trimmel
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK.,Centre for Medical Image Computing, University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Caciagli
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK
| | - Fenglai Xiao
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK.,Department of Neurology, West China of Sichuan University, Chengdu, China
| | | | - Gavin P Winston
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK.,Division of Neurology, Department of Medicine, Queen's University, Kingston, Canada
| | - Matthias J Koepp
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK
| | - Pamela J Thompson
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK
| | - John S Duncan
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
13
|
Tan G, Li X, Wang H, Chen D, Zhu L, Xiao H, Gong Q, Liu L. Brain function and network features in patients with chronic epilepsy before and after antiseizure medication withdrawal. Epilepsy Res 2021; 176:106740. [PMID: 34419771 DOI: 10.1016/j.eplepsyres.2021.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES A considerable proportion of epilepsy patients who achieved long-term seizure freedom with standardized treatment of antiseizure medication will attempt to withdraw medications. Epilepsy is currently considered as a network disease, however, the characteristics of brain function and neural network before and after medication withdrawal remain to be discovered. METHODS Resting-state functional magnetic resonance imaging was obtained for 32 healthy controls, 32 seizure-free patients initiating medication tapering (PG1 group), and 16 seizure-free patients that had completely discontinued medications (PG2 group). Amplitude of low-frequency fluctuation and regional homogeneity were calculated to measure local functional activity. Global and nodal metrics of small-world network were calculated based on Graph theory. One-way analysis of variance was applied to analyze intergroup difference, withpost hoc analysis being conducted for each pair of groups. RESULTS Sex, age at scanning and other clinical variables showed no significant difference between groups. As compared to control, the amplitude of low-frequency fluctuation, regional homogeneity or nodal metrics of neural network in some brain areas were abnormal in the PG1 or PG2 group; when compared between patient groups, significant between-group differences were also found in the amplitude of low-frequency fluctuation, regional homogeneity or nodal metrics. But, the global metrics of neural network showed no differences among groups. CONCLUSIONS The global metrics of patients with long-term seizure freedom were normal either before or after antiseizure medication withdrawal, while the local functional activity and nodal metrics in some brain areas were abnormal and differed between before and after antiseizure medication withdrawal.
Collapse
Affiliation(s)
- Ge Tan
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Xiuli Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Haijiao Wang
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Deng Chen
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Lina Zhu
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| | - Ling Liu
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Brain functional and structural characteristics of patients with seizure recurrence following drug withdrawal. Neuroradiology 2021; 63:2087-2097. [PMID: 34195875 DOI: 10.1007/s00234-021-02755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE We aimed to analyze the characteristics of brain function and microstructure linked to epilepsy relapse after drug withdrawal in patients with focal epilepsy. METHODS Resting-state functional magnetic resonance imaging and high-resolution T1-weighted images were acquired within 1 month prior to drug withdrawal from 15 patients who did not have epilepsy relapse (PER - group) and 16 patients who subsequently had epilepsy relapse (PER + group). Additionally, 23 healthy participants undergoing the same scanning protocol were included as controls. Fractional amplitude of low-frequency fluctuation (fALFF) and gray matter density (GMD) were compared among groups. Subgroup and correlation analyses were also performed. RESULTS There were no significant differences in fALFF between patient groups, but the PER + group showed lower GMD in the bilateral calcarine, left precuneus, and right superior temporal gyrus than the PER - group (Gaussian random field correction, voxel-level P < 0.001 and cluster-level P < 0.05). Both increased seizure number and polytherapy were associated with lower GMD; also, patients using other antiseizure medications showed lower GMD than those using only levetiracetam (Gaussian random field correction, voxel-level P < 0.001, and cluster-level P < 0.05). The active period and disease duration showed both positive and negative correlations with GMD, while the seizure-free period mainly showed positive correlations with GMD (uncorrected, P < 0.001). CONCLUSION Gray matter microstructure, but not local functional activity, showed distinct characteristics between patients with and without epilepsy relapse and may serve as a potential biomarker for predicting seizure recurrence upon drug withdrawal.
Collapse
|
15
|
Stoecklein VM, Stoecklein S, Galiè F, Ren J, Schmutzer M, Unterrainer M, Albert NL, Kreth FW, Thon N, Liebig T, Ertl-Wagner B, Tonn JC, Liu H. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol 2021; 22:1388-1398. [PMID: 32107555 DOI: 10.1093/neuonc/noaa044] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic infiltration of the brain by tumor cells is a hallmark of glioma pathogenesis which may cause disturbances in functional connectivity. We hypothesized that aggressive high-grade tumors cause more damage to functional connectivity than low-grade tumors. METHODS We designed an imaging tool based on resting-state functional (f)MRI to individually quantify abnormality of functional connectivity and tested it in a prospective cohort of patients with newly diagnosed glioma. RESULTS Thirty-four patients were analyzed (World Health Organization [WHO] grade II, n = 13; grade III, n = 6; grade IV, n = 15; mean age, 48.7 y). Connectivity abnormality could be observed not only in the lesioned brain area but also in the contralateral hemisphere with a close correlation between connectivity abnormality and aggressiveness of the tumor as indicated by WHO grade. Isocitrate dehydrogenase 1 (IDH1) mutation status was also associated with abnormal connectivity, with more alterations in IDH1 wildtype tumors independent of tumor size. Finally, deficits in neuropsychological performance were correlated with connectivity abnormality. CONCLUSION Here, we suggested an individually applicable resting-state fMRI marker in glioma patients. Analysis of the functional connectome using this marker revealed that abnormalities of functional connectivity could be detected not only adjacent to the visible lesion but also in distant brain tissue, even in the contralesional hemisphere. These changes were associated with tumor biology and cognitive function. The ability of our novel method to capture tumor effects in nonlesional brain suggests a potential clinical value for both individualizing and monitoring glioma therapy.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Sophia Stoecklein
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany
| | - Franziska Galiè
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Schmutzer
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig Maximilians University, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians University, Munich, Germany
| | - Friedrich-W Kreth
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Niklas Thon
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, Ludwig Maximilians University, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany.,Department of Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joerg-C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
16
|
Graded doses of grape seed methanol extract attenuated hepato-toxicity following chronic carbamazepine treatment in male Wistar rats. Toxicol Rep 2020; 7:1592-1596. [PMID: 33304829 PMCID: PMC7711278 DOI: 10.1016/j.toxrep.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic carbamazepine treatment decreased the body weight and relative liver weight of male Wistar rats. Carbamazepine induced the activities of liver enzymes in male Wistar rats. Carbamazepine increased the product of lipid peroxidation (malondialdehyde) of the liver. Carbamazepine induced various hepatic histomorphological alterations in male Wistar rats. Most of these derangements were attenuated by grape seed methanolic extract.
Aim This study investigated the effects of co-administration of carbamazepine (CBZ) with grape (Vitis vinifera) seed methanolic extract (GSME) on liver toxicity. Method Thirty-five male rats (145−155 g) were randomized into 5 groups (n = 7) and administered with propylene glycol (PG 0.1 mL/day), CBZ (25 mg/kg), CBZ (25 mg/kg) + GSME (200 mg/kg), CBZ (25 mg/kg) + GSME (100 mg/kg), or CBZ (25 mg/kg) + GSME (50 mg/kg) orally for 28 days. Twenty-four hours after the last dose, changes in the body weights were determined. The rats were euthanized by cervical dislocation. The liver was weighed and later homogenized; while the supernatant was analyzed biochemically. The liver tissues were preserved in 10 % neutral-buffered formalin for the histomorphological investigation. Result There was significant (p = 0.0001) decrease in the body weight following carbamazepine treatment. The relative liver weight also decreased significantly (p = 0.0004) across the treatment group compared with control. The activities of the liver enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and glutathione activities), including the concentrations of malondialdehyde, increased significantly (p ≤ 0.0004) following carbamazepine treatment. Various morphological alterations were observed, especially in the photomicrograph of the CBZ treated rats. However, these derangements were attenuated significantly in the CBZ - GSME co-treated group. Conclusion This study concludes that GSME treatment may serve as a potential therapeutic agent in carbamazepine-induced hepatotoxicity/ dysfunction.
Collapse
|
17
|
Caciagli L, Allen LA, He X, Trimmel K, Vos SB, Centeno M, Galovic M, Sidhu MK, Thompson PJ, Bassett DS, Winston GP, Duncan JS, Koepp MJ, Sperling MR. Thalamus and focal to bilateral seizures: A multiscale cognitive imaging study. Neurology 2020; 95:e2427-e2441. [PMID: 32847951 PMCID: PMC7682917 DOI: 10.1212/wnl.0000000000010645] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the functional correlates of recurrent secondarily generalized seizures in temporal lobe epilepsy (TLE) using task-based fMRI as a framework to test for epilepsy-specific network rearrangements. Because the thalamus modulates propagation of temporal lobe onset seizures and promotes cortical synchronization during cognition, we hypothesized that occurrence of secondarily generalized seizures, i.e., focal to bilateral tonic-clonic seizures (FBTCS), would relate to thalamic dysfunction, altered connectivity, and whole-brain network centrality. METHODS FBTCS occur in a third of patients with TLE and are a major determinant of disease severity. In this cross-sectional study, we analyzed 113 patients with drug-resistant TLE (55 left/58 right), who performed a verbal fluency fMRI task that elicited robust thalamic activation. Thirty-three patients (29%) had experienced at least one FBTCS in the year preceding the investigation. We compared patients with TLE-FBTCS to those without FBTCS via a multiscale approach, entailing analysis of statistical parametric mapping (SPM) 12-derived measures of activation, task-modulated thalamic functional connectivity (psychophysiologic interaction), and graph-theoretical metrics of centrality. RESULTS Individuals with TLE-FBTCS had less task-related activation of bilateral thalamus, with left-sided emphasis, and left hippocampus than those without FBTCS. In TLE-FBTCS, we also found greater task-related thalamotemporal and thalamomotor connectivity, and higher thalamic degree and betweenness centrality. Receiver operating characteristic curves, based on a combined thalamic functional marker, accurately discriminated individuals with and without FBTCS. CONCLUSIONS In TLE-FBTCS, impaired task-related thalamic recruitment coexists with enhanced thalamotemporal connectivity and whole-brain thalamic network embedding. Altered thalamic functional profiles are proposed as imaging biomarkers of active secondary generalization.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA.
| | - Luke A Allen
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Xiaosong He
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Karin Trimmel
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Sjoerd B Vos
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Maria Centeno
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Marian Galovic
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Meneka K Sidhu
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Pamela J Thompson
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Danielle S Bassett
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Gavin P Winston
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - John S Duncan
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Matthias J Koepp
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| | - Michael R Sperling
- From the Department of Clinical and Experimental Epilepsy (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.) and Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (L.C., L.A.A., K.T., S.B.V., M.C., M.G., M.K.S., P.J.T., G.P.W., J.S.D., M.J.K.), Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK; Departments of Bioengineering (L.C., X.H., D.S.B.), Physics and Astronomy (D.S.B.), Electrical and Systems Engineering (D.S.B.), Neurology (D.S.B.), and Psychiatry (D.S.B.), University of Pennsylvania, Philadelphia; Department of Neurology (K.T.), Medical University of Vienna, Austria; Centre for Medical Image Computing (S.B.V.), University College London, UK; Department of Neurology (M.G.), University Hospital Zurich, Switzerland; Santa Fe Institute (D.S.B.), NM; Department of Medicine, Division of Neurology (G.P.W.), Queen's University, Kingston, Canada; and Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
18
|
Caciagli L, Wandschneider B, Centeno M, Vollmar C, Vos SB, Trimmel K, Long L, Xiao F, Lowe AJ, Sidhu MK, Thompson PJ, Winston GP, Duncan JS, Koepp MJ. Motor hyperactivation during cognitive tasks: An endophenotype of juvenile myoclonic epilepsy. Epilepsia 2020; 61:1438-1452. [PMID: 32584424 PMCID: PMC7681252 DOI: 10.1111/epi.16575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is the most common genetic generalized epilepsy syndrome. Myoclonus may relate to motor system hyperexcitability and can be provoked by cognitive activities. To aid genetic mapping in complex neuropsychiatric disorders, recent research has utilized imaging intermediate phenotypes (endophenotypes). Here, we aimed to (a) characterize activation profiles of the motor system during different cognitive tasks in patients with JME and their unaffected siblings, and (b) validate those as endophenotypes of JME. METHODS This prospective cross-sectional investigation included 32 patients with JME, 12 unaffected siblings, and 26 controls, comparable for age, sex, handedness, language laterality, neuropsychological performance, and anxiety and depression scores. We investigated patterns of motor system activation during episodic memory encoding and verb generation functional magnetic resonance imaging (fMRI) tasks. RESULTS During both tasks, patients and unaffected siblings showed increased activation of motor system areas compared to controls. Effects were more prominent during memory encoding, which entailed hand motion via joystick responses. Subgroup analyses identified stronger activation of the motor cortex in JME patients with ongoing seizures compared to seizure-free patients. Receiver-operating characteristic curves, based on measures of motor activation, accurately discriminated both patients with JME and their siblings from healthy controls (area under the curve: 0.75 and 0.77, for JME and a combined patient-sibling group against controls, respectively; P < .005). SIGNIFICANCE Motor system hyperactivation represents a cognitive, domain-independent endophenotype of JME. We propose measures of motor system activation as quantitative traits for future genetic imaging studies in this syndrome.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Britta Wandschneider
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Maria Centeno
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Epilepsy UnitHospital Clínic de BarcelonaBarcelonaSpain
| | - Christian Vollmar
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyLondonUK
| | - Karin Trimmel
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Lili Long
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyXiangya Hospital of Central South UniversityChangshaChina
| | - Fenglai Xiao
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina
| | - Alexander J. Lowe
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
- Department of NeurologyQueen's UniversityKingstonONCanada
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyChalfont St PeterBuckinghamshireUK
| |
Collapse
|
19
|
Hermann B, Loring DW. Disruptive view of medication effects on cognition in epilepsy. Neurology 2020; 94:419-420. [DOI: 10.1212/wnl.0000000000009052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Alterations in intra- and internetwork functional connectivity associated with levetiracetam treatment in temporal lobe epilepsy. Neurol Sci 2020; 41:2165-2174. [PMID: 32152874 DOI: 10.1007/s10072-020-04322-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Levetiracetam (LEV) is an antiepileptic drug with a novel pharmacological mechanism. Advances in functional magnetic resonance imaging (fMRI) enable researchers to explore the cognitive effects of antiepileptic drugs on the living brain. This study aimed to explore how the functional connectivity patterns of the cognitive networks changed in association with LEV treatment. METHODS Patients with temporal lobe epilepsy (TLE), including both users and nonusers of LEV, were included in this study along with healthy controls. Core cognitive networks were extracted using an independent component analysis approach. Functional connectivity patterns within and between networks were investigated. The relationships between functional connectivity patterns and clinical characteristics were also examined. RESULTS The patterns of intranetwork connectivity in the default mode network (DMN), left executive control network (lECN), and dorsal attention network (DAN) differed among the three groups. The internetwork interactions did not show intergroup differences once corrected for multiple comparisons. No correlation between functional connectivity and clinical characteristics was found in patients with TLE. CONCLUSIONS Changes in intranetwork connectivity are a key effect of LEV administration. SIGNIFICANCE Alterations in intranetwork connectivity patterns may underlie the cognitive effects of LEV administration; this finding improves our understanding of the neural mechanisms of LEV therapy.
Collapse
|
21
|
Yao S, Liebenthal E, Juvekar P, Bunevicius A, Vera M, Rigolo L, Golby AJ, Tie Y. Sex Effect on Presurgical Language Mapping in Patients With a Brain Tumor. Front Neurosci 2020; 14:4. [PMID: 32038154 PMCID: PMC6992642 DOI: 10.3389/fnins.2020.00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Differences between males and females in brain development and in the organization and hemispheric lateralization of brain functions have been described, including in language. Sex differences in language organization may have important implications for language mapping performed to assess, and minimize neurosurgical risk to, language function. This study examined the effect of sex on the activation and functional connectivity of the brain, measured with presurgical functional magnetic resonance imaging (fMRI) language mapping in patients with a brain tumor. We carried out a retrospective analysis of data from neurosurgical patients treated at our institution who met the criteria of pathological diagnosis (malignant brain tumor), tumor location (left hemisphere), and fMRI paradigms [sentence completion (SC); antonym generation (AG); and resting-state fMRI (rs-fMRI)]. Forty-seven patients (22 females, mean age = 56.0 years) were included in the study. Across the SC and AG tasks, females relative to males showed greater activation in limited areas, including the left inferior frontal gyrus classically associated with language. In contrast, males relative to females showed greater activation in extended areas beyond the classic language network, including the supplementary motor area (SMA) and precentral gyrus. The rs-fMRI functional connectivity of the left SMA in the females was stronger with inferior temporal pole (TP) areas, and in the males with several midline areas. The findings are overall consistent with theories of greater reliance on specialized language areas in females relative to males, and generalized brain areas in males relative to females, for language function. Importantly, the findings suggest that sex could affect fMRI language mapping. Thus, considering sex as a variable in presurgical language mapping merits further investigation.
Collapse
Affiliation(s)
- Shun Yao
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Wuhan School of Clinical Medicine, Southern Medical University, Wuhan, China
| | - Einat Liebenthal
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Technology in Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew Vera
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Rigolo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Xiao F, Koepp MJ, Zhou D. Pharmaco-fMRI: A Tool to Predict the Response to Antiepileptic Drugs in Epilepsy. Front Neurol 2019; 10:1203. [PMID: 31798524 PMCID: PMC6863979 DOI: 10.3389/fneur.2019.01203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023] Open
Abstract
Pharmacological treatment with antiepileptic medications (AEDs) in epilepsy is associated with a variety of neurocognitive side effects. However, the mechanisms underlying these side effects, and why certain brain anatomies are more affected still remain poorly understood. Advanced functional magnetic resonance imaging (fMRI) methods, such as pharmaco-fMRI, can investigate medication-related effects on brain activities using task and resting state fMRI and showing reproducible activation and deactivation patterns. This methodological approach has been used successfully to complement neuropsychological studies of AEDs. Here we review pharmaco-fMRI studies in people with epilepsy targeting the most-widely prescribed AEDs. Pharmco-fMRI has advanced our understanding of the impact of AEDs on specific brain networks and thus may provide potential biomarkers to move beyond the current “trial and error” approach when commencing anti-epileptic medication.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom.,MRI Unit, Epilepsy Society, Chalfont St Peter, United Kingdom
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Boss N, Abela E, Weisstanner C, Schindler K, Wiest R. Local thalamic atrophy associates with large-scale functional connectivity alterations of fronto-parietal cortices in genetic generalized epilepsies. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2019. [DOI: 10.1177/2514183x19850325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genetic generalized epilepsies (GGEs) are a group of seizure syndromes that start in childhood and adolescence. Although generally viewed as benign, large-scale epidemiological studies suggest that a significant proportion of GGE patients suffer from drug-resistant seizures, cognitive impairment and social problems. This motivates further research into their pathophysiology, which is still incompletely understood. GGE is characterized clinically and on the encephalogram by seizures that seem to involve both hemispheres simultaneously – hence the idea of a ‘generalized’ process. However, findings from experimental animal studies suggest that seizures in GGE arise due to complex functional alterations within a network that involves fronto-parietal cortex and midline thalamus. In line with these results, neuroimaging studies have found metabolic changes in midline frontal and posterior parietal cortices during GGE seizures and atrophy of both frontal lobe structures and thalamus in GGE patients. Pathology of fronto-thalamic networks seems therefore to be a core feature of GGE. It is unknown how alterations of structure and function between different sites of the network influence each other. Given that the thalamus exerts widespread influence on cortical function, we hypothesized that thalamic atrophy in GGE patients would lead to functional impairment in cortical networks. To test this hypothesis, we performed a case–control study on patients with GGE and healthy controls (HCs), using computational neuroanatomical and functional connectivity techniques. Confirming our hypothesis, we found atrophy in midline thalamic regions preferentially connected to midline (pre-) frontal cortex, and correlated functional disconnection between midline frontal and posterior parietal cortex. Of note, we found increased functional connectivity between the left-sided thalamus and the left medial prefrontal cortex, and a decrease in interhemispheric functional connectivity between bilateral parietal cortex in patients compared to HCs. Taken together, our results suggest that even highly localized subcortical structural changes might lead to large-scale network effects in GGE.
Collapse
Affiliation(s)
- Nicolas Boss
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital Bern, Switzerland
| | - Eugenio Abela
- Maurice Wohl Clinical Neuroscience Institute, Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King’s Kollege Hospital, London, UK
| | | | | | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital Bern, Switzerland
| |
Collapse
|
24
|
Wykes RC, Khoo HM, Caciagli L, Blumenfeld H, Golshani P, Kapur J, Stern JM, Bernasconi A, Dedeurwaerdere S, Bernasconi N. WONOEP appraisal: Network concept from an imaging perspective. Epilepsia 2019; 60:1293-1305. [PMID: 31179547 DOI: 10.1111/epi.16067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023]
Abstract
Neuroimaging techniques applied to a variety of organisms-from zebrafish, to rodents to humans-can offer valuable insights into neuronal network properties and their dysfunction in epilepsy. A wide range of imaging methods used to monitor neuronal circuits and networks during evoked seizures in animal models and advances in functional magnetic resonance imaging (fMRI) applied to patients with epilepsy were discussed during the XIV Workshop on Neurobiology of Epilepsy (XIV WONOEP) organized in 2017 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). We review the growing number of technological approaches developed, as well as the current state of knowledge gained from studies applying these advanced imaging approaches to epilepsy research.
Collapse
Affiliation(s)
- Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hal Blumenfeld
- Department of Neurology, Neuroscience and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Peyman Golshani
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jaideep Kapur
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - John M Stern
- Department of Neurology, Geffen School of Medicine, UCLA, Los Angeles, California
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurosciences and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Gaberova K, Pacheva I, Timova E, Petkova A, Velkova K, Ivanov I. An Individualized Approach to Neuroplasticity After Early Unilateral Brain Damage. Front Psychiatry 2019; 10:747. [PMID: 31798467 PMCID: PMC6878729 DOI: 10.3389/fpsyt.2019.00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Reorganization after early lesions in the developing brain has been an object of extensive scientific work, but even growing data from translational neuroscience studies in the last 20 years does not provide unified factors for prediction of type of reorganization and rehabilitation potential of patients with unilateral cerebral palsy (UCP) due to pre/perinatal insult. Aim: To analyze the type of motor, language, and sensory brain reorganization in patients with right-sided cerebral palsy due to pre/perinatal isolated left-sided brain lesions taking into consideration the type (cortico-subcortical or periventricular) and extent (gray and white matter damage) of the lesion, etiology, comorbidity, and other postnatal factors that could have played a role in the complex process of brain plasticity. Material and Methods: Eight patients with unilateral right cerebral palsy were included in the study. The individual data from fMRI of primary sensory, motor, and language representation were analyzed and compared with respective comprehensive etiological, clinical, and morphological data. Patients were examined clinically and psychologically, and investigated by structural and functional 3T GE scanner. A correlation between the type and extent of the lesion (involvement of cortical and subcortical structures), timing of lesion, type of reorganization (laterality index), and clinical and psychological outcome was done. Results: Significant interindividual diversity was found in the patient group predominantly in the patterns of motor reorganization. Patients with small periventricular lesions have ipsilesional representation of primary motor, sensory, and word generation function. Patients with lesions involving left cortico-subcortical regions show various models of reorganization in all three modalities (ipsilesional, contralesional, and bilateral) and different clinical outcome that seem to be impossible for prediction. However, patients with UCP who demonstrate ipsilesional motor cortical activation have better motor functional capacity. Conclusion: The type and size of the pre/perinatal lesion in left hemisphere could affect the natural potential of the young brain for reorganization and therefore the clinical outcome. Much larger sample and additional correlation with morphological data (volumetry, morphometry, tractography) is needed for determination of possible risk or protective factors that could play a role in the complex process of brain plasticity.
Collapse
Affiliation(s)
- Katerina Gaberova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Elena Timova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Anelia Petkova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Kichka Velkova
- Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Medical imaging, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Tully HM. Let’s talk about antiseizure medications and verbal fluency. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aau1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antiseizure drugs modulate functional connectivity in language networks.
Collapse
Affiliation(s)
- Hannah M. Tully
- Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Xiao F, Caciagli L, Wandschneider B, Sander JW, Sidhu M, Winston G, Burdett J, Trimmel K, Hill A, Vollmar C, Vos SB, Ourselin S, Thompson PJ, Zhou D, Duncan JS, Koepp MJ. Effects of carbamazepine and lamotrigine on functional magnetic resonance imaging cognitive networks. Epilepsia 2018; 59:1362-1371. [PMID: 29897625 PMCID: PMC6216427 DOI: 10.1111/epi.14448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effects of sodium channel-blocking antiepileptic drugs (AEDs) on functional magnetic resonance imaging (fMRI) language network activations in patients with focal epilepsy. METHODS In a retrospective study, we identified patients who were treated at the time of language fMRI scanning with either carbamazepine (CBZ; n = 42) or lamotrigine (LTG; n = 42), but not another sodium channel-blocking AED. We propensity-matched 42 patients taking levetiracetam (LEV) as "patient-controls" and included further 42 age- and gender-matched healthy controls. After controlling for age, age at onset of epilepsy, gender, and antiepileptic comedications, we compared verbal fluency fMRI activations between groups and out-of-scanner psychometric measures of verbal fluency. RESULTS Patients on CBZ performed less well on a verbal fluency tests than those taking LTG or LEV. Compared to either LEV-treated patients or controls, patients taking CBZ showed decreased activations in left inferior frontal gyrus and patients on LTG showed abnormal deactivations in frontal and parietal default mode areas. All patient groups showed fewer activations in the putamen bilaterally compared to controls. In a post hoc analysis, out-of-scanner fluency scores correlated positively with left putamen activation. SIGNIFICANCE Our study provides evidence of AED effects on the functional neuroanatomy of language, which might explain subtle language deficits in patients taking otherwise well-tolerated sodium channel-blocking agents. Patients on CBZ showed dysfunctional frontal activation and more pronounced impairment of performance than patients taking LTG, which was associated only with failure to deactivate task-negative networks. As previously shown for working memory, LEV treatment did not affect functional language networks.
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Britta Wandschneider
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
| | - Josemir W. Sander
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
| | - Meneka Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Gavin Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Jane Burdett
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Karin Trimmel
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Andrea Hill
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Christian Vollmar
- Department of NeurologyEpilepsy CenterUniversity of MunichMunichGermany
| | - Sjoerd B. Vos
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional and Surgical SciencesUniversity College LondonLondonUK
- Translational Imaging GroupUniversity College LondonLondonUK
| | - Sebastien Ourselin
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional and Surgical SciencesUniversity College LondonLondonUK
- Translational Imaging GroupUniversity College LondonLondonUK
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of NeurologyLondonUK
- Magnetic Resonance Imaging UnitEpilepsy SocietyGerrards CrossUK
| |
Collapse
|