1
|
Li Y, Zhu J, Feng Y, Li Z, Ren Z, Liu N, Liu C, Hao J, Han Y. LsARF3 mediates thermally induced bolting through promoting the expression of LsCO in lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:958833. [PMID: 36160965 PMCID: PMC9498183 DOI: 10.3389/fpls.2022.958833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Lettuce (Lactuca sativa L.) is a leafy vegetable whose edible organs usually are leaf or stems, and thus high-temperature induced bolting followed by flower initiation is an undesirable trait in lettuce production. However, the molecular mechanism that controls lettuce bolting and flowering upon thermal treatments is largely unknown. Here, we identified a Lettuce auxin response factor 3 (LsARF3), the expression of which was enhanced by heat and auxin treatments. Interestingly, LsARF3 is preferentially expressed in stem apex, suggesting it might be associated with lettuce bolting. Transgenic lettuce overexpressing LsARF3 displayed early bolting and flowering, whereas knockout of LsARF3 dramatically delayed bolting and flowering in lettuce under normal or high temperature conditions. Furthermore, Exogenous application of IAA failed to rescue the late-bolting and -flowering phenotype of lsarf3 mutants. Several floral integrator genes including LsCO, LsFT, and LsLFY were co-expressed with LsARF3 in the overexpression and knockout lettuce plants. Yeast one-hybrid (Y1H) experiments suggested that LsARF3 could physically interact with the LsCO promoter, which was further confirmed by a dual luciferase assay in tobacco leaves. The results indicated that LsARF3 might directly modulate the expression of LsCO in lettuce. Therefore, these results demonstrate that LsARF3 could promote lettuce bolting in response to the high temperature by directly or indirectly activating the expression of floral genes such as LsCO, which provides new insights into lettuce bolting in the context of ARFs signaling and heat response.
Collapse
Affiliation(s)
- Yunfeng Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiaqi Zhu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yixuan Feng
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhenfeng Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zheng Ren
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ning Liu
- National Engineering Research Center for Vegetables, Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chaojie Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinghong Hao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yingyan Han
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Han R, Lavelle D, Truco MJ, Michelmore R. Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3473-3487. [PMID: 34245320 PMCID: PMC8440299 DOI: 10.1007/s00122-021-03908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS, respectively, in Arabidopsis.
Collapse
Affiliation(s)
- Rongkui Han
- The Plant Biology Graduate Group, University of California, Davis, 95616, USA
- The Genome Center, University of California, Davis, 95616, USA
| | - Dean Lavelle
- The Genome Center, University of California, Davis, 95616, USA
| | | | - Richard Michelmore
- The Genome Center, University of California, Davis, 95616, USA.
- Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
3
|
Han R, Truco MJ, Lavelle DO, Michelmore RW. A Composite Analysis of Flowering Time Regulation in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:632708. [PMID: 33763095 PMCID: PMC7982828 DOI: 10.3389/fpls.2021.632708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Plants undergo profound physiological changes when transitioning from vegetative to reproductive growth. These changes affect crop production, as in the case of leafy vegetables. Lettuce is one of the most valuable leafy vegetable crops in the world. Past genetic studies have identified multiple quantitative trait loci (QTLs) that affect the timing of the floral transition in lettuce. Extensive functional molecular studies in the model organism Arabidopsis provide the opportunity to transfer knowledge to lettuce to explore the mechanisms through which genetic variations translate into changes in flowering time. In this review, we integrated results from past genetic and molecular studies for flowering time in lettuce with orthology and functional inference from Arabidopsis. This summarizes the basis for all known genetic variation underlying the phenotypic diversity of flowering time in lettuce and how the genetics of flowering time in lettuce projects onto the established pathways controlling flowering time in plants. This comprehensive overview reveals patterns across experiments as well as areas in need of further study. Our review also represents a resource for developing cultivars with delayed flowering time.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maria José Truco
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Dean O. Lavelle
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Richard W. Michelmore
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Richard W. Michelmore,
| |
Collapse
|
4
|
Presotto A, Hernández F, Mercer KL. Phenotypic selection under two contrasting environments in wild sunflower and its crop-wild hybrid. Evol Appl 2019; 12:1703-1717. [PMID: 31462924 PMCID: PMC6708420 DOI: 10.1111/eva.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 01/20/2023] Open
Abstract
Hybridization is a common phenomenon in plants and can lead to the introgression of alleles from one population into another, generate new hybrid lineages, or cause species extinction. The environmental conditions and the genetic background of the participating populations may influence these outcomes since they can affect the fitness of hybrids, thereby increasing or decreasing the chances of introgression. Thus, it is important to understand the context-dependent prospects for introgression of alleles into diverse populations and under multiple ecological environments. Crop-wild hybridization presents an opportunity to explore these dynamics in agroecosystems. To this end, we used diverse wild and hybrid sunflowers from across the northern United States as a basis for evaluating variation in morphological traits and assessing context-dependent selection. These crop-wild hybrids and their wild counterparts were grown under agricultural conditions in the field with and without wheat competition. Interactions between origin and cross type affected expression of early functional traits, while interactions between competition and cross type acted on reproductive traits. A smattering of early and reproductive traits was affected by interactions between cross type and competition that varied by origin (i.e., 3-way interactions). Seven functional traits, especially number of branches and tertiary head diameter, underwent net and direct directional selection, while six out of these seven traits appear to also be experiencing nonlinear selection dynamics. In general, wild-like traits were favored under both sets of conditions, while, under wheat competition, some crop-like traits related to fast growth and primary head diameter became important. These data reaffirm the hypothesis that stressful conditions establish a scenario more suitable for crop introgression and clarify that nonlinear selection dynamics may play a role in this process.
Collapse
Affiliation(s)
- Alejandro Presotto
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de AgronomíaUniversidad Nacional del Sur (UNS)‐ CONICETBahía BlancaBuenos AiresArgentina
| | - Fernando Hernández
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de AgronomíaUniversidad Nacional del Sur (UNS)‐ CONICETBahía BlancaBuenos AiresArgentina
| | - Kristin L. Mercer
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOH
| |
Collapse
|
5
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
6
|
Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Golokhvast KS, Lee JD, Yang SH, Chung G. Environmental impacts of genetically modified plants: A review. ENVIRONMENTAL RESEARCH 2017; 156:818-833. [PMID: 28347490 DOI: 10.1016/j.envres.2017.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Crete, Greece; Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece
| | | | - Kai Savolainen
- Finnish Institute of Occupational Health, POB 40 Helsinki, Finland
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation; Pacific Institute of Geography, FEB RAS, Vladivostok 690041, Russian Federation
| | - Jeong Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea.
| |
Collapse
|
7
|
Kerbiriou PJ, Maliepaard CA, Stomph TJ, Koper M, Froissart D, Roobeek I, Lammerts Van Bueren ET, Struik PC. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:343. [PMID: 27064203 PMCID: PMC4812043 DOI: 10.3389/fpls.2016.00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.
Collapse
Affiliation(s)
- Pauline J. Kerbiriou
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | - Chris A. Maliepaard
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Tjeerd Jan Stomph
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | | | | | | | | | - Paul C. Struik
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
8
|
Campbell LG, Lee D, Shukla K, Waite TA, Bartsch D. An ecological approach to measuring the evolutionary consequences of gene flow from crops to wild or weedy relatives. APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1500114. [PMID: 27011898 PMCID: PMC4795919 DOI: 10.3732/apps.1500114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/28/2016] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Agricultural practices routinely create opportunities for crops to hybridize with wild relatives, leading to crop gene introgression into wild genomes. Conservationists typically worry this introgression could lead to genetic homogenization of wild populations, over and above the central concern of transgene escape. Alternatively, viewing introgression as analogous to species invasion, we suggest that increased genetic diversity may likewise be an undesirable outcome. METHODS Here, we compare the sensitivity of conventional population genetic metrics with species diversity indices as indicators of the impact of gene flow on genetic diversity. We illustrate this novel approach using multilocus genotype data (12 allozyme loci) from 10 wild (Beta vulgaris subsp. maritima) and eight putative crop-wild hybrid beet populations (B. vulgaris subsp. vulgaris × B. vulgaris subsp. maritima) scattered throughout Europe. RESULTS Conventional population genetic metrics mostly failed to detect shifts in genetic composition of putative hybrid populations. By contrast, species diversity indices unambiguously revealed increased genetic diversity in putative hybrid populations. DISCUSSION We encourage other workers to explore the utility of our more sensitive approach for risk assessment prior to the release of transgenic crops, with a view toward widespread adoption of our method in studies aimed at detecting allelic invasion.
Collapse
Affiliation(s)
- Lesley G. Campbell
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - David Lee
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Kruti Shukla
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Thomas A. Waite
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43210 USA
| | - Detlef Bartsch
- Abteilung Gentechnik, Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Mauerstr. 39–42, 10117 Berlin, Germany
| |
Collapse
|
9
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hooftman DAP, Bullock JM, Morley K, Lamb C, Hodgson DJ, Bell P, Thomas J, Hails RS. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. ANNALS OF BOTANY 2015; 115:147-157. [PMID: 25452253 PMCID: PMC4284111 DOI: 10.1093/aob/mcu213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. METHODS Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. KEY RESULTS The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. CONCLUSIONS Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.
Collapse
Affiliation(s)
- Danny A P Hooftman
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Kathryn Morley
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Caroline Lamb
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - David J Hodgson
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Philippa Bell
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Jane Thomas
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Rosemary S Hails
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| |
Collapse
|
11
|
Hovick SM, Whitney KD. Hybridisation is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis. Ecol Lett 2014; 17:1464-77. [PMID: 25234578 PMCID: PMC4231983 DOI: 10.1111/ele.12355] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/11/2014] [Accepted: 08/14/2014] [Indexed: 02/04/2023]
Abstract
The hypothesis that interspecific hybridisation promotes invasiveness has received much recent
attention, but tests of the hypothesis can suffer from important limitations. Here, we provide the
first systematic review of studies experimentally testing the hybridisation-invasion (H-I)
hypothesis in plants, animals and fungi. We identified 72 hybrid systems for which hybridisation has
been putatively associated with invasiveness, weediness or range expansion. Within this group, 15
systems (comprising 34 studies) experimentally tested performance of hybrids vs. their parental
species and met our other criteria. Both phylogenetic and non-phylogenetic meta-analyses
demonstrated that wild hybrids were significantly more fecund and larger than their parental taxa,
but did not differ in survival. Resynthesised hybrids (which typically represent earlier generations
than do wild hybrids) did not consistently differ from parental species in fecundity, survival or
size. Using meta-regression, we found that fecundity increased (but survival decreased) with
generation in resynthesised hybrids, suggesting that natural selection can play an important role in
shaping hybrid performance – and thus invasiveness – over time. We conclude that the
available evidence supports the H-I hypothesis, with the caveat that our results are clearly driven
by tests in plants, which are more numerous than tests in animals and fungi.
Collapse
Affiliation(s)
- Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
12
|
Owart BR, Corbi J, Burke JM, Dechaine JM. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress. PLoS One 2014; 9:e102717. [PMID: 25048600 PMCID: PMC4105569 DOI: 10.1371/journal.pone.0102717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/21/2014] [Indexed: 12/02/2022] Open
Abstract
Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.
Collapse
Affiliation(s)
- Birkin R. Owart
- Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
| | - Jonathan Corbi
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer M. Dechaine
- Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hartman Y, Hooftman DAP, Uwimana B, Schranz ME, van de Wiel CCM, Smulders MJM, Visser RGF, Michelmore RW, van Tienderen PH. Abiotic stress QTL in lettuce crop-wild hybrids: comparing greenhouse and field experiments. Ecol Evol 2014; 4:2395-409. [PMID: 25360276 PMCID: PMC4203288 DOI: 10.1002/ece3.1060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 11/11/2022] Open
Abstract
The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives.
Collapse
Affiliation(s)
- Yorike Hartman
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| | - Danny A P Hooftman
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands ; NERC, Centre for Ecology and Hydrology Wallingford, UK
| | - Brigitte Uwimana
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - M Eric Schranz
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| | - Clemens C M van de Wiel
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Marinus J M Smulders
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre Wageningen, The Netherlands
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California Davis, California
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ellstrand NC, Meirmans P, Rong J, Bartsch D, Ghosh A, de Jong TJ, Haccou P, Lu BR, Snow AA, Neal Stewart C, Strasburg JL, van Tienderen PH, Vrieling K, Hooftman D. Introgression of Crop Alleles into Wild or Weedy Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135840] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norman C. Ellstrand
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Patrick Meirmans
- Instituut voor Biodiversiteit en Ecosysteem Dynamica, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, 330031 Honggutan Nanchang, People's Republic of China;
| | - Detlef Bartsch
- Federal Office of Consumer Protection and Food Safety, 10117 Berlin, Germany;
| | - Atiyo Ghosh
- Integrative Systems Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan;
| | - Tom J. de Jong
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; ,
| | - Patsy Haccou
- Leiden University College The Hague, Leiden University, 2514 EG The Hague, The Netherlands;
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai 200433, People's Republic of China; ,
| | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210;
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996;
| | | | - Peter H. van Tienderen
- Instituut voor Biodiversiteit en Ecosysteem Dynamica, Universiteit van Amsterdam, 1090 GE Amsterdam, The Netherlands;
| | - Klaas Vrieling
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; ,
| | - Danny Hooftman
- Center for Ecology and Hydrology, National Environmental Research Council, Wallingford, Oxfordshire OX10 8BB, United Kingdom;
| |
Collapse
|