1
|
Ålund M, McFarlane SE, Husby A, Knape J, Pärt T, Sirkiä P, Weissing FJ, Wheatcroft D, Zhu Y, Qvarnström A. Inheritance of Material Wealth in a Natural Population. Ecol Lett 2024; 27:e14505. [PMID: 39738984 DOI: 10.1111/ele.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 01/02/2025]
Abstract
Evolutionary adaptation occurs when individuals vary in access to fitness-relevant resources and these differences in 'material wealth' are heritable. It is typically assumed that the inheritance of material wealth reflects heritable variation in the phenotypic abilities needed to acquire material wealth. We scrutinise this assumption by investigating additional mechanisms underlying the inheritance of material wealth in collared flycatchers. A genome-wide association analysis reveals a high genomic heritability (h2 = 0.405 ± 0.08) of access to caterpillar larvae, a fitness-relevant resource, in the birds' breeding territories. However, we find little evidence for heritable variation in phenotypic abilities needed to acquire this material wealth. Instead, combined evidence from simulations, experimental and long-term monitoring data indicate that inheritance of material wealth is largely explained by philopatry causing a within-population genetic structure across a heterogeneous landscape. Therefore, allelic variants associated with high material wealth may spread in the population without having causal connections to traits promoting local adaptation.
Collapse
Affiliation(s)
- Murielle Ålund
- Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - S Eryn McFarlane
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Arild Husby
- Division of Evolutionary Biology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Jonas Knape
- Department of Ecology, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Tomas Pärt
- Department of Ecology, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Päivi Sirkiä
- Finnish Environment Institute, Helsinki, Finland
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Yishu Zhu
- Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Anna Qvarnström
- Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
León F, Pizarro E, Noll D, Pertierra LR, Parker P, Espinaze MPA, Luna-Jorquera G, Simeone A, Frere E, Dantas GPM, Cristofari R, Cornejo OE, Bowie RCK, Vianna JA. Comparative Genomics Supports Ecologically Induced Selection as a Putative Driver of Banded Penguin Diversification. Mol Biol Evol 2024; 41:msae166. [PMID: 39150953 PMCID: PMC11371425 DOI: 10.1093/molbev/msae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024] Open
Abstract
The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particularly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyzing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adaptive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially during the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci associated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior appears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patricia Parker
- Department of Biology, University of Missouri St. Louis and Saint Louis Zoo, St. Louis, MO 63121-4400, USA
| | - Marcela P A Espinaze
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Guillermo Luna-Jorquera
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
| | - Alejandro Simeone
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Departamento de Ecología y Biodiversidad, Santiago, Chile
| | - Esteban Frere
- Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral, Puerto Deseado, Argentina
| | - Gisele P M Dantas
- PPG Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG 30535-901, Brazil
| | - Robin Cristofari
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
3
|
Jones W, Reifová R, Reif J, Synek P, Šíma M, Munclinger P. Sympatry in a nightingale contact zone has no effect on host-specific blood parasite prevalence and lineage diversity. Int J Parasitol 2024; 54:357-366. [PMID: 38460721 DOI: 10.1016/j.ijpara.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Parasites are a key driving force behind many ecological and evolutionary processes. Prevalence and diversity of parasites, as well as their effects on hosts, are not uniform across host species. As such, the potential parasite spillover between species can significantly influence outcomes of interspecific interactions. We screened two species of Luscinia nightingales for haemosporidian blood parasites (Plasmodium, Leucocytozoon and Haemoproteus) along an approximately 3000 km transect in Europe, incorporating areas of host distant allopatry, close allopatry and sympatry. We found significant differences in infection rates between the two host species, with common nightingales having much lower parasite prevalence than thrush nightingales (36.7% versus 83.8%). This disparity was mostly driven by Haemoproteus prevalence, which was significantly higher in thrush nightingales while common nightingales had a small, but significantly higher, Plasmodium prevalence. Furthermore, we found no effect of proximity to the contact zone on infection rate in either host species. Despite having lower infection prevalence, common nightingales were infected with a significantly higher diversity of parasite lineages than thrush nightingales, and lineage assemblages differed considerably between the two species, even in sympatry. This pattern was mostly driven by the large diversity of comparatively rare lineages, while the most abundant lineages were shared between the two host species. This suggests that, despite the close evolutionary relationships between the two nightingales, there are significant differences in parasite prevalence and diversity, regardless of the distance from the contact zone. This suggests that spillover of haemosporidian blood parasites is unlikely to contribute towards interspecific interactions in this system.
Collapse
Affiliation(s)
- William Jones
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Petr Synek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia; Biodviser Ltd. Enterprise House 2 Pass Street Oldham, Manchester OL9 6HZ, United Kingdom
| | - Michal Šíma
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia; Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czechia
| | - Pavel Munclinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Speciation in a metapopulation model upon environmental changes. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Moore MP, Hersch K, Sricharoen C, Lee S, Reice C, Rice P, Kronick S, Medley KA, Fowler-Finn KD. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc Natl Acad Sci U S A 2021; 118:e2101458118. [PMID: 34260398 PMCID: PMC8285952 DOI: 10.1073/pnas.2101458118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic conditions, it is unclear whether organisms also optimize traits that coordinate mating between the sexes. Here, we show that dragonflies consistently adapt to warmer climates across space and time by evolving less male melanin ornamentation-a mating-related trait that also absorbs solar radiation and heats individuals above ambient temperatures. Continent-wide macroevolutionary analyses reveal that species inhabiting warmer climates evolve less male ornamentation. Community-science observations across 10 species indicate that populations adapt to warmer parts of species' ranges through microevolution of smaller male ornaments. Observations from 2005 to 2019 detail that contemporary selective pressures oppose male ornaments in warmer years; and our climate-warming projections predict further decreases by 2070. Conversely, our analyses show that female ornamentation responds idiosyncratically to temperature across space and time, indicating the sexes evolve in different ways to meet the demands of the local climate. Overall, these macro- and microevolutionary findings demonstrate that organisms predictably optimize their mating-related traits for the climate just as they do their survival-related traits.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University, St. Louis, MO 63130;
| | - Kaitlyn Hersch
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Sarah Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Caitlin Reice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Paul Rice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Sophie Kronick
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130
| | - Kim A Medley
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Tyson Research Center, Washington University, Eureka, MO 63025
| | - Kasey D Fowler-Finn
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| |
Collapse
|
6
|
Li Q, Lin X, Li J, Liu B, Huang X. Differentiation in the eastern Asian Periphyllus koelreuteriae (Hemiptera: Aphididae) species complex driven by climate and host plant. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Divergent adaptation to different ecological conditions is regarded as important for speciation. For phytophagous insects, there is limited empirical evidence on species differentiation driven by climate and host plant. The recent application of molecular data and integrative taxonomic practice may improve our understanding of population divergence and speciation. Periphyllus koelreuteriae aphids feed exclusively on Koelreuteria (Sapindaceae) in temperate and subtropical regions of eastern Asia, and show morphological and phenological variations in different regions. In this study, phylogenetic and haplotype network analyses based on four genes revealed that P. koelreuteriae populations comprised three distinct genetic clades corresponding to climate and host plants, with the populations from subtropical highland regions and on Koelreuteria bipinnata host plants representing the most basal clade. These genetic lineages also showed distinct characteristics in terms of morphology and life cycle. The results indicate that P. koelreuteriae is a species complex with previously unrevealed lineages, whose differentiation may have been driven by climatic difference and host plant.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Sirkiä PM, Qvarnström A. Adaptive coloration in pied flycatchers ( Ficedula hypoleuca)-The devil is in the detail. Ecol Evol 2021; 11:1501-1525. [PMID: 33613985 PMCID: PMC7882974 DOI: 10.1002/ece3.7048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Understanding the origin and persistence of phenotypic variation within and among populations is a major goal in evolutionary biology. However, the eagerness to find unadulterated explanatory models in combination with difficulties in publishing replicated studies may lead to severe underestimations of the complexity of selection patterns acting in nature. One striking example is variation in plumage coloration in birds, where the default adaptive explanation often is that brightly colored individuals signal superior quality across environmental conditions and therefore always should be favored by directional mate choice. Here, we review studies on the proximate determination and adaptive function of coloration traits in male pied flycatchers (Ficedula hypoleuca). From numerous studies, we can conclude that the dark male color phenotype is adapted to a typical northern climate and functions as a dominance signal in male-male competition over nesting sites, and that the browner phenotypes are favored by relaxed intraspecific competition with more dominant male collared flycatchers (Ficedula albicollis) in areas where the two species co-occur. However, the role of avoidance of hybridization in driving character displacement in plumage between these two species may not be as important as initially thought. The direction of female choice on male coloration in pied flycatchers is not simply as opposite in direction in sympatry and allopatry as traditionally expected, but varies also in relation to additional contexts such as climate variation. While some of the heterogeneity in the observed relationships between coloration and fitness probably indicate type 1 errors, we strongly argue that environmental heterogeneity and context-dependent selection play important roles in explaining plumage color variation in this species, which probably also is the case in many other species studied in less detail.
Collapse
Affiliation(s)
- Päivi M. Sirkiä
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| | - Anna Qvarnström
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
8
|
Melander SL, Mueller RL. Comprehensive Analysis of Salamander Hybridization Suggests a Consistent Relationship between Genetic Distance and Reproductive Isolation across Tetrapods. COPEIA 2020. [DOI: 10.1643/ch-19-319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Scott Lucas Melander
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| | - Rachel Lockridge Mueller
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| |
Collapse
|
9
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Ålund M, Persson Schmiterlöw S, McFarlane SE, Qvarnström A. Optimal sperm length for high siring success depends on forehead patch size in collared flycatchers. Behav Ecol 2018. [DOI: 10.1093/beheco/ary115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Siri Persson Schmiterlöw
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| |
Collapse
|
11
|
Giesen A, Schäfer MA, Blanckenhorn WU. Geographic patterns of postzygotic isolation between two closely related widespread dung fly species (Sepsis cynipseaandSepsis neocynipsea; Diptera: Sepsidae). J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Athene Giesen
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
12
|
Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2018; 2:1258-1267. [DOI: 10.1038/s41559-018-0606-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
13
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers. Ecol Evol 2018; 8:4575-4586. [PMID: 29760898 PMCID: PMC5938467 DOI: 10.1002/ece3.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Present address: Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Murielle Ålund
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland.,Section of Ecology Department of Biology University of Turku Turku Finland
| | - Anna Qvarnström
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
14
|
Mořkovský L, Janoušek V, Reif J, Rídl J, Pačes J, Choleva L, Janko K, Nachman MW, Reifová R. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol Ecol 2018; 27:949-958. [PMID: 29319911 DOI: 10.1111/mec.14479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 12/24/2022]
Abstract
Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (FST ) and of high divergence (Dxy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females.
Collapse
Affiliation(s)
- Libor Mořkovský
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Jakub Rídl
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jan Pačes
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | - Michael W Nachman
- Museum of Comparative Zoology and Integrative Biology, University of California, Berkeley, CA, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
15
|
Sirkiä PM, McFarlane SE, Jones W, Wheatcroft D, Ålund M, Rybinski J, Qvarnström A. Climate‐driven build‐up of temporal isolation within a recently formed avian hybrid zone. Evolution 2018; 72:363-374. [DOI: 10.1111/evo.13404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Päivi M. Sirkiä
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
- Finnish Museum of Natural History, Zoology UnitUniversity of Helsinki Helsinki Finland
| | - S. Eryn McFarlane
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - William Jones
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - David Wheatcroft
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Murielle Ålund
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Jakub Rybinski
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Anna Qvarnström
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| |
Collapse
|
16
|
Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. THE NEW PHYTOLOGIST 2017; 215:97-112. [PMID: 28378882 DOI: 10.1111/nph.14545] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Xylem vulnerability to embolism is emerging as a major factor in drought-induced tree mortality events across the globe. However, we lack understanding of how and to what extent climate has shaped vascular properties or functions. We investigated the evolution of xylem hydraulic function and diversification patterns in Australia's most successful gymnosperm clade, Callitris, the world's most drought-resistant conifers. For all 23 species in this group, we measured embolism resistance (P50 ), xylem specific hydraulic conductivity (Ks ), wood density, and tracheary element size from natural populations. We investigated whether hydraulic traits variation linked with climate and the diversification of this clade using a time-calibrated phylogeny. Embolism resistance varied widely across the Callitris clade (P50 : -3.8 to -18.8 MPa), and was significantly related to water scarcity, as was tracheid diameter. We found no evidence of a safety-efficiency tradeoff; Ks and wood density were not related to rainfall. Callitris diversification coincides with the onset of aridity in Australia since the early Oligocene. Our results highlight the evolutionary lability of xylem traits with climate, and the leading role of aridity in the diversification of conifers. The uncoupling of safety from other xylem functions allowed Callitris to evolve extreme embolism resistance and diversify into xeric environments.
Collapse
Affiliation(s)
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jean-Christophe Domec
- Bordeaux Sciences AGRO, UMR 1391 ISPA INRA, 1 Cours du Général de Gaulle, Gradignan Cedex, 33175, France
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, UCLA, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
- IRD, UMR AMAP, BPA5, Noumea, 98800, New Caledonia
| | - Nathalie Nagalingum
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | | |
Collapse
|
17
|
Vigoder FM, Parker DJ, Cook N, Tournière O, Sneddon T, Ritchie MG. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi. PLoS One 2016; 11:e0165724. [PMID: 27832122 PMCID: PMC5104470 DOI: 10.1371/journal.pone.0165724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed.
Collapse
Affiliation(s)
- Felipe M. Vigoder
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Darren J. Parker
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Nicola Cook
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Océane Tournière
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt, Bergen, Norway
| | - Tanya Sneddon
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
18
|
McFarlane SE, Sirkiä PM, Ålund M, Qvarnström A. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers. PLoS One 2016; 11:e0161547. [PMID: 27583553 PMCID: PMC5008804 DOI: 10.1371/journal.pone.0161547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions.
Collapse
Affiliation(s)
- S. Eryn McFarlane
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Päivi M. Sirkiä
- Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Helsinki, Finland
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Murielle Ålund
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
19
|
Rönnegård L, McFarlane SE, Husby A, Kawakami T, Ellegren H, Qvarnström A. Increasing the power of genome wide association studies in natural populations using repeated measures - evaluation and implementation. Methods Ecol Evol 2016; 7:792-799. [PMID: 27478587 PMCID: PMC4950150 DOI: 10.1111/2041-210x.12535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/12/2015] [Indexed: 12/03/2022]
Abstract
Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long‐term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single‐nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long‐term study of collared flycatchers in Sweden. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. The method is available in the r package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long‐term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.
Collapse
Affiliation(s)
- Lars Rönnegård
- Department of Clinical Sciences Swedish University of Agricultural Sciences SE-75007 Uppsala Sweden
| | - S Eryn McFarlane
- Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Arild Husby
- Department of Biosciences Metapopulation Research Centre University of Helsinki PO Box 65FI-00014 Helsinki Finland; Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology N-7491 Trondheim Norway
| | - Takeshi Kawakami
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Anna Qvarnström
- Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-75236 Uppsala Sweden
| |
Collapse
|
20
|
Wellenreuther M, Otto S. Women in evolution - highlighting the changing face of evolutionary biology. Evol Appl 2016; 9:3-16. [PMID: 27087836 PMCID: PMC4780375 DOI: 10.1111/eva.12343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022] Open
Abstract
The face of science has changed. Women now feature alongside men at the forefront of many fields, and this is particularly true in evolutionary biology. This special issue celebrates the outstanding achievements and contributions of women in evolutionary biology, by highlighting a sample of their research and accomplishments. In addition to original research contributions, this collection of articles contains personal reflections to provide perspective and advice on succeeding as a woman in science. By showcasing the diversity and research excellence of women and drawing on their experiences, we wish to enhance the visibility of female scientists and provide inspiration as well as role models. These are exciting times for evolutionary biology, and the field is richer and stronger for the diversity of voices contributing to the field.
Collapse
Affiliation(s)
- Maren Wellenreuther
- Department of BiologyUniversity of LundLundSweden
- Institute for Plant and Food ResearchLundNew Zealand
| | - Sarah Otto
- Department of Zoology & Biodiversity Research CentreUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|