1
|
Ricci LE, Cox M, Manlove KR. Movement decisions driving metapopulation connectivity respond to social resources in a long-lived ungulate, bighorn sheep ( Ovis canadensis). Philos Trans R Soc Lond B Biol Sci 2024; 379:20220533. [PMID: 39230452 PMCID: PMC11449200 DOI: 10.1098/rstb.2022.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
The spatial availability of social resources is speculated to structure animal movement decisions, but the effects of social resources on animal movements are difficult to identify because social resources are rarely measured. Here, we assessed whether varying availability of a key social resource-access to receptive mates-produces predictable changes in movement decisions among bighorn sheep in Nevada, the United States. We compared the probability that males made long-distance 'foray' movements, a critical driver of connectivity, across three ecoregions with varying temporal duration of a socially mediated factor, breeding season. We used a hidden Markov model to identify foray events and then quantified the effects of social covariates on the probability of foray using a discrete choice model. We found that males engaged in forays at higher rates when the breeding season was short, suggesting that males were most responsive to the social resource when its existence was short lived. During the breeding season, males altered their response to social covariates, relative to the non-breeding season, though patterns varied, and age was associated with increased foray probability. Our results suggest that animals respond to the temporal availability of social resources when making the long-distance movements that drive connectivity. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Lauren E Ricci
- Department of Wildland Resources and Ecology Center, Utah State University , Logan, UT, USA
| | - Mike Cox
- Nevada Department of Wildlife , Reno, NV, USA
| | - Kezia R Manlove
- Department of Wildland Resources and Ecology Center, Utah State University , Logan, UT, USA
| |
Collapse
|
2
|
Zimmerman SJ, Aldridge CL, Schroeder MA, Fike JA, Cornman RS, Oyler-McCance SJ. The potential influence of genome-wide adaptive divergence on conservation translocation outcome in an isolated greater sage-grouse population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14254. [PMID: 38563102 DOI: 10.1111/cobi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Conservation translocations are an important conservation tool commonly employed to augment declining or reestablish extirpated populations. One goal of augmentation is to increase genetic diversity and reduce the risk of inbreeding depression (i.e., genetic rescue). However, introducing individuals from significantly diverged populations risks disrupting coadapted traits and reducing local fitness (i.e., outbreeding depression). Genetic data are increasingly more accessible for wildlife species and can provide unique insight regarding the presence and retention of introduced genetic variation from augmentation as an indicator of effectiveness and adaptive similarity as an indicator of source and recipient population suitability. We used 2 genetic data sets to evaluate augmentation of isolated populations of greater sage-grouse (Centrocercus urophasianus) in the northwestern region of the species range (Washington, USA) and to retrospectively evaluate adaptive divergence among source and recipient populations. We developed 2 statistical models for microsatellite data to evaluate augmentation outcomes. We used one model to predict genetic diversity after augmentation and compared these predictions with observations of genetic change. We used the second model to quantify the amount of observed reproduction attributed to transplants (proof of population integration). We also characterized genome-wide adaptive divergence among source and recipient populations. Observed genetic diversity (HO = 0.65) was higher in the recipient population than predicted had no augmentation occurred (HO = 0.58) but less than what was predicted by our model (HO = 0.75). The amount of shared genetic variation between the 2 geographically isolated resident populations increased, which is evidence of periodic gene flow previously assumed to be rare. Among candidate adaptive genes associated with elevated fixation index (FST) (143 genes) or local environmental variables (97 and 157 genes for each genotype-environment association method, respectively), we found clusters of genes with related functions that may influence the ability of transplants to use local resources and navigate unfamiliar environments and their reproductive potential, all possible reasons for low genetic retention from augmentation.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | | | - Jennifer A Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Robert Scott Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Sara J Oyler-McCance
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
4
|
Whiting JC, Bleich VC, Bowyer RT, Epps CW. Restoration of bighorn sheep: History, successes, and remaining conservation issues. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1083350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Mammals are imperiled worldwide, primarily from habitat loss or modification, and exhibit downward trends in their populations and distributions. Likewise, large-bodied herbivores have undergone a collapse in numbers and are at the highest extinction risk of all mammals. Bighorn sheep (Ovis canadensis) are among those large-bodied herbivores that possess a slow-paced life history, suffer from debilitating diseases, and have experienced range contractions across their historical distribution since the late 1800s. Translocations and reintroductions of these mountain ungulates are key aspects of restoration and often are used to re-establish populations in historical habitat or to supplement declining herds. Millions of US dollars and much effort by state and federal natural resource agencies, as well as public and private organizations, have been expended to restore bighorn sheep. Despite those efforts, translocated populations of bighorn sheep have not always been successful. We assessed restoration of bighorn sheep to provide insights in the context of conservation of populations of bighorn sheep, because this management tool is a frequently used to re-establish populations. We focused briefly on past efforts to restore bighorn sheep populations and followed with updates on the value of habitat enhancements, genetic issues, the importance of ecotypic or phenotypic adaptations when restoring populations, predation, and disease transmission. We also raised issues and posed questions that have potential to affect future decisions regarding the restoration of bighorn sheep. This information will help conservationists improve the success of conserving these iconic large mammals.
Collapse
|
5
|
Dugovich BS, Beechler BR, Dolan BP, Crowhurst RS, Gonzales BJ, Powers JG, Hughson DL, Vu RK, Epps CW, Jolles AE. Population connectivity patterns of genetic diversity, immune responses and exposure to infectious pneumonia in a metapopulation of desert bighorn sheep. J Anim Ecol 2023. [PMID: 36637333 DOI: 10.1111/1365-2656.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Brian P Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Rachel S Crowhurst
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Ben J Gonzales
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, Fort Collins, Colorado, USA
| | - Debra L Hughson
- National Park Service, Mojave National Preserve, Barstow, California, USA
| | - Regina K Vu
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
6
|
Phukuntsi MA, Dalton DL, Mwale M, Selier J, Cebekhulu T, Sethusa MT. Genetic patterns in three South African specialist antelope species: Threats, conservation management and their implications. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Metlholo Andries Phukuntsi
- South African National Biodiversity Institute Pretoria South Africa
- Department of Environment, Water and Earth Sciences Tshwane University of Technology Pretoria South Africa
| | - Desire Lee Dalton
- South African National Biodiversity Institute Pretoria South Africa
- School of Health and Life Sciences Teesside University Middlesbrough UK
| | - Monica Mwale
- South African National Biodiversity Institute Pretoria South Africa
| | - Jeanetta Selier
- South African National Biodiversity Institute Pretoria South Africa
- School of Life Sciences University of KwaZulu‐Natal Durban South Africa
| | - Thando Cebekhulu
- South African National Biodiversity Institute Pretoria South Africa
| | | |
Collapse
|
7
|
Onley IR, White LC, Moseby KE, Copley P, Cowen S. Disproportionate admixture improves reintroduction outcomes despite the use of low‐diversity source populations: population viability analysis for a translocation of the greater stick‐nest rat. Anim Conserv 2022. [DOI: 10.1111/acv.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. R. Onley
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences University of Adelaide Adelaide SA Australia
| | - L. C. White
- Department of Primatology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - K. E. Moseby
- Centre for Ecosystem Sciences, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - P. Copley
- South Australian Department for Environment and Water Adelaide SA Australia
| | - S. Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions Kensington WA Australia
- School of Biological Sciences University of Western Australia Crawley WA Australia
| |
Collapse
|
8
|
Flesch E, Graves T, Thomson J, Proffitt K, Garrott R. Average kinship within bighorn sheep populations is associated with connectivity, augmentation, and bottlenecks. Ecosphere 2022. [DOI: 10.1002/ecs2.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elizabeth Flesch
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| | - Tabitha Graves
- Glacier Field Station U.S. Geological Survey West Glacier Montana USA
| | - Jennifer Thomson
- Animal and Range Sciences Department Montana State University Bozeman Montana USA
| | | | - Robert Garrott
- Fish and Wildlife Ecology and Management Program, Ecology Department Montana State University Bozeman Montana USA
| |
Collapse
|
9
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
10
|
Genetic Diversity and Divergence among Bighorn Sheep from Reintroduced Herds in Washington and Idaho. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Chafin TK, Zbinden ZD, Douglas MR, Martin BT, Middaugh CR, Gray MC, Ballard JR, Douglas ME. Spatial population genetics in heavily managed species: Separating patterns of historical translocation from contemporary gene flow in white-tailed deer. Evol Appl 2021; 14:1673-1689. [PMID: 34178112 PMCID: PMC8210790 DOI: 10.1111/eva.13233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/10/2021] [Indexed: 01/16/2023] Open
Abstract
Approximately 100 years ago, unregulated harvest nearly eliminated white-tailed deer (Odocoileus virginianus) from eastern North America, which subsequently served to catalyze wildlife management as a national priority. An extensive stock-replenishment effort soon followed, with deer broadly translocated among states as a means of re-establishment. However, an unintended consequence was that natural patterns of gene flow became obscured and pretranslocation signatures of population structure were replaced. We applied cutting-edge molecular and biogeographic tools to disentangle genetic signatures of historical management from those reflecting spatially heterogeneous dispersal by evaluating 35,099 single nucleotide polymorphisms (SNPs) derived via reduced-representation genomic sequencing from 1143 deer sampled statewide in Arkansas. We then employed Simpson's diversity index to summarize ancestry assignments and visualize spatial genetic transitions. Using sub-sampled transects across these transitions, we tested clinal patterns across loci against theoretical expectations of their response under scenarios of re-colonization and restricted dispersal. Two salient results emerged: (A) Genetic signatures from historic translocations are demonstrably apparent; and (B) Geographic filters (major rivers; urban centers; highways) now act as inflection points for the distribution of this contemporary ancestry. These results yielded a statewide assessment of contemporary population structure in deer as driven by historic translocations as well as ongoing processes. In addition, the analytical framework employed herein to effectively decipher extant/historic drivers of deer distribution in Arkansas is also applicable for other biodiversity elements with similarly complex demographic histories.
Collapse
Affiliation(s)
- Tyler K. Chafin
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Zachery D. Zbinden
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Marlis R. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Bradley T. Martin
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | | | - M. Cory Gray
- Research DivisionArkansas Game and Fish CommissionLittle RockARUSA
| | | | - Michael E. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
12
|
Zecherle LJ, Nichols HJ, Bar‐David S, Brown RP, Hipperson H, Horsburgh GJ, Templeton AR. Subspecies hybridization as a potential conservation tool in species reintroductions. Evol Appl 2021; 14:1216-1224. [PMID: 34025762 PMCID: PMC8127701 DOI: 10.1111/eva.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/11/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022] Open
Abstract
Reintroductions are a powerful tool for the recovery of endangered species. However, their long-term success is strongly influenced by the genetic diversity of the reintroduced population. The chances of population persistence can be improved by enhancing the population's adaptive ability through the mixing of individuals from different sources. However, where source populations are too diverse the reintroduced population could also suffer from outbreeding depression or unsuccessful admixture due to behavioural or genetic barriers. For the reintroduction of Asiatic wild ass Equus hemionus ssp. in Israel, a breeding core was created from individuals of two different subspecies (E. h. onager & E. h. kulan). Today the population comprises approximately 300 individuals and displays no signs of outbreeding depression. The aim of this study was a population genomic evaluation of this conservation reintroduction protocol. We used maximum likelihood methods and genetic clustering analyses to investigate subspecies admixture and test for spatial autocorrelation based on subspecies ancestry. Further, we analysed heterozygosity and effective population sizes in the breeding core prior to release and the current wild population. We discovered high levels of subspecies admixture in the breeding core and wild population, consistent with a significant heterozygote excess in the breeding core. Furthermore, we found no signs of spatial autocorrelation associated with subspecies ancestry in the wild population. Inbreeding and variance effective population size estimates were low. Our results indicate no genetic or behavioural barriers to admixture between the subspecies and suggest that their hybridization has led to greater genetic diversity in the reintroduced population. The study provides rare empirical evidence of the successful application of subspecies hybridization in a reintroduction. It supports use of intraspecific hybridization as a tool to increase genetic diversity in conservation translocations.
Collapse
Affiliation(s)
- Lilith J. Zecherle
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
- Mitrani Department of Desert EcologyJacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | | | - Shirli Bar‐David
- Mitrani Department of Desert EcologyJacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Richard P. Brown
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Helen Hipperson
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Gavin J. Horsburgh
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
13
|
Novak BJ, Phelan R, Weber M. U.S. conservation translocations: Over a century of intended consequences. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Flesch EP, Graves TA, Thomson JM, Proffitt KM, White PJ, Stephenson TR, Garrott RA. Evaluating wildlife translocations using genomics: A bighorn sheep case study. Ecol Evol 2020; 10:13687-13704. [PMID: 33391673 PMCID: PMC7771163 DOI: 10.1002/ece3.6942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Wildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep (Ovis canadensis) translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0-10 translocations. Using the Illumina High Density Ovine array, we generated datasets of 6,155 to 33,289 single nucleotide polymorphisms and completed clustering, population tree, and kinship analyses. Our analyses determined that natural gene flow did not occur between most populations, including two pairs of native herds that had past connectivity. We synthesized genomic evidence across analyses to evaluate 24 different translocation events and detected eight successful reintroductions (i.e., lack of signal for recolonization from nearby populations) and five successful augmentations (i.e., reproductive success of translocated individuals) based on genetic similarity with the source populations. A single native population founded six of the reintroduced herds, suggesting that environmental conditions did not need to match for populations to persist following reintroduction. Augmentations consisting of 18-57 animals including males and females succeeded, whereas augmentations of two males did not result in a detectable genetic signature. Our results provide insight on genomic distinctiveness of native and reintroduced herds, information on the relative success of reintroduction and augmentation efforts and their associated attributes, and guidance to enhance genetic contribution of augmentations and reintroductions to aid in bighorn sheep restoration.
Collapse
Affiliation(s)
- Elizabeth P. Flesch
- Fish and Wildlife Ecology and Management ProgramEcology DepartmentMontana State UniversityBozemanMTUSA
| | - Tabitha A. Graves
- Northern Rocky Mountain Science CenterU.S. Geological SurveyWest GlacierMTUSA
| | | | | | - P. J. White
- Yellowstone Center for ResourcesNational Park ServiceMammothWYUSA
| | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery ProgramCalifornia Department of Fish and WildlifeBishopCAUSA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management ProgramEcology DepartmentMontana State UniversityBozemanMTUSA
| |
Collapse
|
15
|
de Jong JF, van Hooft P, Megens HJ, Crooijmans RPMA, de Groot GA, Pemberton JM, Huisman J, Bartoš L, Iacolina L, van Wieren SE, Ydenberg RC, Prins HHT. Fragmentation and Translocation Distort the Genetic Landscape of Ungulates: Red Deer in the Netherlands. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.535715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Creech TG, Epps CW, Wehausen JD, Crowhurst RS, Jaeger JR, Longshore K, Holton B, Sloan WB, Monello RJ. Genetic and Environmental Indicators of Climate Change Vulnerability for Desert Bighorn Sheep. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Love Stowell SM, Gagne RB, McWhirter D, Edwards W, Ernest HB. Bighorn Sheep Genetic Structure in Wyoming Reflects Geography and Management. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sierra M. Love Stowell
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Roderick B. Gagne
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Doug McWhirter
- Wyoming Game and Fish DepartmentJackson Regional Office 420 N Cache St Jackson WY 830001 USA
| | - William Edwards
- Wyoming Game and Fish DepartmentWildlife Health Laboratory 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Holly B. Ernest
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| |
Collapse
|
18
|
Bowen L, Longshore K, Wolff P, Klinger R, Cox M, Bullock S, Waters S, Miles AK. Gene Transcript Profiling in Desert Bighorn Sheep. WILDLIFE SOC B 2020. [DOI: 10.1002/wsb.1078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - Kathleen Longshore
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - Peregrine Wolff
- Nevada Department of Wildlife 6980 Sierra Center Parkway, Suite 120 Reno NV 89511 USA
| | - Robert Klinger
- U.S. Geological Survey, Western Ecological Research CenterOakhurst CA 93644 USA
| | - Michael Cox
- Nevada Department of Wildlife 6980 Sierra Center Pkwy. Suite 120 Reno NV 89511 USA
| | - Sarah Bullock
- Desert National Wildlife Refuge 16001 Corn Creek Road Las Vegas NV 89124 USA
| | - Shannon Waters
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| | - A. Keith Miles
- U.S. Geological Survey, Western Ecological Research CenterSacramento CA 95826 USA
| |
Collapse
|
19
|
Oklander LI, Caputo M, Solari A, Corach D. Genetic assignment of illegally trafficked neotropical primates and implications for reintroduction programs. Sci Rep 2020; 10:3676. [PMID: 32111905 PMCID: PMC7048725 DOI: 10.1038/s41598-020-60569-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
The black and gold howler monkey (Alouatta caraya) is a neotropical primate threatened by habitat loss and capture for illegal trade in Argentina. Using multilocus microsatellite genotypes from 178 A. caraya individuals sampled from 15 localities in Argentina, we built a genotype reference database (GRDB). Bayesian assignment methods applied to the GRDB allowed us to correctly re-assign 73% of individuals to their true location of origin and 93.3% to their cluster of origin. We used the GRDB to assign 22 confiscated individuals (17 of which were reintroduced), and 3 corpses to both localities and clusters of origin. We assigned with a probability >70% the locality of origin of 14 individuals and the cluster of origin of 21. We found that most of the confiscated individuals were assigned to one cluster (F-Ch-C) and two localities included in the GRDB, suggesting that trafficked A. caraya primarily originated in this area. Our results reveal that only 4 of 17 reintroduced individuals were released in sites corresponding to their cluster of origin. Our findings illustrate the applicability of genotype databases for inferring hotspots of illegal capture and for guiding future reintroduction efforts, both of which are essential elements of species protection and recovery programs.
Collapse
Affiliation(s)
- Luciana Inés Oklander
- Grupo de Investigación en Genética Aplicada (GIGA), Instituto de Biología Subtropical (IBS), Nodo Posadas, Jujuy 1745, N3300NFK Posadas, Universidad Nacional de Misiones (UNaM) - CONICET, Misiones, Argentina.
| | - Mariela Caputo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología Inmunología Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| | - Agustín Solari
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM) - CONICET, Nodo Iguazú, Bertoni 68, 3370, Puerto Iguazú, Misiones, Argentina
| | - Daniel Corach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología Inmunología Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Junín 956, C1113AAD, Buenos Aires, Argentina.,CONICET - Consejo Nacional de Investigaciones Científicas y Tecnológicas, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|