1
|
Bylemans J, Marques da Cunha L, Wilkins LGE, Nusbaumer D, Uppal A, Wedekind C. Growth of brown trout in the wild predicted by embryo stress reaction in the laboratory. Ecology 2024; 105:e4303. [PMID: 38754864 DOI: 10.1002/ecy.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024]
Abstract
Laboratory studies on embryos of salmonids, such as the brown trout (Salmo trutta), have been extensively used to study environmental stress and how responses vary within and between natural populations. These studies are based on the implicit assumption that early life-history traits are relevant for stress tolerance in the wild. Here we test this assumption by combining two data sets from studies on the same 60 families. These families had been experimentally produced from wild breeders to determine, in separate samples, (1) stress tolerances of singly kept embryos in the laboratory and (2) growth of juveniles during 6 months in the wild. We found that growth in the wild was well predicted by the larval size of their full sibs in the laboratory, especially if these siblings had been experimentally exposed to a pathogen. Exposure to the pathogen had not caused elevated mortality among the embryos but induced early hatching. The strength of this stress-induced change of life history was a significant predictor of juvenile growth in the wild: the stronger the response in the laboratory, the slower the growth in the wild. We conclude that embryo performance in controlled environments can be a useful predictor of juvenile performance in the wild.
Collapse
Affiliation(s)
- Jonas Bylemans
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University of Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Garaud L, Nusbaumer D, Marques da Cunha L, de Guttry C, Ançay L, Atherton A, Lasne E, Wedekind C. Parental kinship coefficient but not paternal coloration predicts early offspring growth in lake char. Heredity (Edinb) 2024; 132:247-256. [PMID: 38480957 PMCID: PMC11074127 DOI: 10.1038/s41437-024-00678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
The 'good genes' hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.
Collapse
Affiliation(s)
- Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Environmental Bioinformatic Group, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Audrey Atherton
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emilien Lasne
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Station d'Hydrobiologie Lacustre, Thonon Cedex, France
- UMR DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Bylemans J, Marques da Cunha L, Sarmiento Cabello S, Nusbaumer D, Uppal A, Wedekind C. Sex-specific effects of inbreeding in juvenile brown trout. Mol Ecol 2024; 33:e17298. [PMID: 38361438 DOI: 10.1111/mec.17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Inbreeding depression, that is, the reduction of health and vigour in individuals with high inbreeding coefficients, is expected to increase with environmental, social, or physiological stress. It has therefore been predicted that sexual selection and the associated stress usually lead to higher inbreeding depression in males than in females. However, sex-specific differences in life history may reverse that pattern during certain developmental stages. In some salmonids, for example, female juveniles start developing their gonads earlier than males who instead grow faster. We tested whether the sexes are differently affected by inbreeding during that time. To study the effects of inbreeding coefficients that may be typical for natural populations of brown trout (Salmo trutta), and also to control for potentially confounding maternal or paternal effects, we sampled males and females from the wild, used their gametes in a block-wise full-factorial breeding design to produce 60 full-sib families, released the offspring as yolk-sac larvae into the wild, sampled them 6 months later, identified their genetic sex, and used microsatellites to assign them to their parents. We used whole-genome resequencing to calculate the kinship coefficients for each breeding pair and hence the expected average inbreeding coefficient per family. Juvenile growth could be predicted from these expected inbreeding coefficients and the genetic sex: Females reached lower body sizes with increasing inbreeding coefficient, while no such link could be found in males. This sex-specific inbreeding depression led to the overall pattern that females were on average smaller than males by the end of their first summer.
Collapse
Affiliation(s)
- Jonas Bylemans
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University of Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Sonia Sarmiento Cabello
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Palejowski H, Bylemans J, Ammann V, Marques da Cunha L, Nusbaumer D, Castro I, Uppal A, Mobley KB, Knörr S, Wedekind C. Sex-Specific Life History Affected by Stocking in Juvenile Brown Trout. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonids are a socioeconomically and ecologically important group of fish that are often managed by stocking. Little is known about potential sex-specific effects of stocking, but recent studies found that the sexes differ in their stress tolerances already at late embryonic stage, i.e., before hatchery-born larvae are released into the wild and long before morphological gonad formation. It has also been speculated that sex-specific life histories can affect juvenile growth and mortality, and that a resulting sex-biassed demography can reduce population growth. Here we test whether juvenile brown trout (Salmo trutta) show sex-specific life histories and whether such sex effects differ in hatchery- and wild-born fish. We modified a genetic sexing protocol to reduce false assignment rates and used it to study the timing of sex differentiation in a laboratory setting, and in a large-scale field experiment to study growth and mortality of hatchery- and wild-born fish in different environments. We found no sex-specific mortality in any of the environments we studied. However, females started sex differentiation earlier than males, and while growth rates were similar in the laboratory, they differed significantly in the field depending on location and origin of fish. Overall, hatchery-born males grew larger than hatchery-born females while wild-born fish showed the reverse pattern. Whether males or females grew larger was location-specific. We conclude that juvenile brown trout show sex-specific growth that is affected by stocking and by other environmental factors that remain to be identified.
Collapse
|
5
|
Byrne PG, Keogh JS, O'Brien DM, Gaitan-Espitia JD, Silla AJ. Evidence that genetic compatibility underpins female mate choice in a monandrous amphibian. Evolution 2021; 75:529-541. [PMID: 33389749 DOI: 10.1111/evo.14160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Mate choice for genetic benefits remains controversial, largely because few studies have estimated the relative contributions of additive and non-additive sources of genetic variation to offspring fitness. Moreover, there remains a deficit of these estimates for species where female-mate preferences have been quantified in the wild, especially species characterized by monandry or monogamy. Here, we use artificial fertilization techniques combined with a cross-classified breeding design to simultaneously test for "good genes" and "compatible genes" benefits of mate choice in the monandrous red backed toadlet (Pseudophryne coriacea). In addition, we used a genomic approach to estimate effects of parental-genetic relatedness (assessed using 27, 768 single nucleotide polymorphisms) on offspring fitness. Our results revealed no significant additive genetic effects (sire effects), but highly significant non-additive genetic effects (sire × dam interaction effects), on fertilization success, survival during embryonic development, and hatching success. We also found significant associations between parental genetic similarity and offspring survival (whereby survival was higher when parents were more related), and significant positive relationships between fertilization success and embryo survival through to hatching. These results indicate that offspring viability is significantly influenced by the genetic compatibility of parental genotypes, that more related parents are more genetically compatible, and that gametes with greater compatibility at fertilization produce more viable offspring. More broadly, our findings provide new quantitative genetic evidence that genetic incompatibility underpins female mate preferences. Continued quantitative genetic assessment of the relative importance of good genes versus compatible genes is needed to ascertain the general importance of genetic benefits as a driver of female mate choice.
Collapse
Affiliation(s)
- Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - J Scott Keogh
- Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel M O'Brien
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
6
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Testing for population differences in evolutionary responses to pesticide pollution in brown trout ( Salmo trutta). Evol Appl 2021; 14:462-475. [PMID: 33664788 PMCID: PMC7896705 DOI: 10.1111/eva.13132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Pesticides are often toxic to nontarget organisms, especially to those living in rivers that drain agricultural land. The brown trout (Salmo trutta) is a keystone species in many such rivers, and natural populations have hence been chronically exposed to pesticides over multiple generations. The introduction of pesticides decades ago could have induced evolutionary responses within these populations. Such a response would be predicted to reduce the toxicity over time but also deplete any additive genetic variance for the tolerance to the pesticides. If so, populations are now expected to differ in their susceptibility and in the variance for the tolerance depending on the pesticides they have been exposed to. We sampled breeders from seven natural populations that differ in their habitats and that show significant genetic differentiation. We stripped them for their gametes and produced 118 families by in vitro fertilization. We then raised 20 embryos per family singly in experimentally controlled conditions and exposed them to one of two ecologically relevant concentrations of either the herbicide S-metolachlor or the insecticide diazinon. Both pesticides affected embryo and larval development at all concentrations. We found no statistically significant additive genetic variance for tolerance to these stressors within or between populations. Tolerance to the pesticides could also not be linked to variation in carotenoid content of the eggs. However, pesticide tolerance was linked to egg size, with smaller eggs being more tolerant to the pesticides than larger eggs. We conclude that an evolutionary response to these pesticides is currently unlikely and that (a) continuous selection in the past has either depleted genetic variance in all the populations we studied or (b) that exposure to the pesticides never induced an evolutionary response. The observed toxicity selects against large eggs that are typically spawned by larger and older females.
Collapse
Affiliation(s)
- David Nusbaumer
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
|
8
|
Marques da Cunha L, Maitre D, Wedekind C. Low adaptive potential for tolerance to ethynylestradiol, but also low toxicity, in a grayling population (Thymallus thymallus). BMC Evol Biol 2019; 19:227. [PMID: 31842751 PMCID: PMC6916445 DOI: 10.1186/s12862-019-1558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The presence of a novel pollutant can induce rapid evolution if there is additive genetic variance for the tolerance to the stressor. Continuous selection over some generations can then reduce the toxicity of the pollutant but also deplete the additive genetic variance for the tolerance and thereby slow down adaptation. One common pollutant that has been ecologically relevant for some time is 17alpha-ethynylestradiol (EE2), a synthetic compound of oral contraceptives since their market launch in the 1960s. EE2 is typically found in higher concentrations in rivers than in lakes. Recent experimental work revealed significant genetic variance for the tolerance to EE2 in two lake-spawning salmonid species but no such variance in river-spawning brown trout. We used another river-spawning salmonid, the European grayling Thymallus thymallus, to study the toxicity of an ecologically relevant concentration of EE2. We also used a full-factorial in vitro breeding design and singly rearing of 1555 embryos and larvae of 40 sib groups to test whether there is additive genetic variance for the tolerance to this pollutant. RESULTS We found that exposure to EE2 reduced larval growth after hatching, but contrary to what has been found in the other salmonids, there were no significant effects of EE2 on embryo growth and survival. We found additive genetic variance for embryo viability, i.e. heritability for fitness. However, there was no significant additive variance for the tolerance to EE2. CONCLUSIONS Our findings support the hypothesis that continuous selection has reduced the toxicity of EE2 and depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
- Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Sperm cryopreservation reduces offspring growth. Proc Biol Sci 2019; 286:20191644. [PMID: 31551057 PMCID: PMC6784727 DOI: 10.1098/rspb.2019.1644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (Salmo trutta) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.
Collapse
Affiliation(s)
| | | | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Selmoni OM, Maitre D, Roux J, Wilkins LGE, Marques da Cunha L, Vermeirssen ELM, Knörr S, Robinson-Rechavi M, Wedekind C. Sex-specific changes in gene expression in response to estrogen pollution around the onset of sex differentiation in grayling (Salmonidae). BMC Genomics 2019; 20:583. [PMID: 31307399 PMCID: PMC6631537 DOI: 10.1186/s12864-019-5955-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
The synthetic 17α-ethinylestradiol (EE2) is a common estrogenic pollutant that has been suspected to affect the demography of river-dwelling salmonids. One possibility is that exposure to EE2 tips the balance during initial steps of sex differentiation, so that male genotypes show female-specific gene expression and gonad formation. Here we study EE2 effects on gene expression around the onset of sex differentiation in a population of European grayling (Thymallus thymallus) that suffers from sex ratio distortions. We exposed singly-raised embryos to one dose of 1 ng/L EE2, studied gene expression 10 days before hatching, at the day of hatching, and around the end of the yolk-sac stage, and related it to genetic sex (sdY genotype). We found that exposure to EE2 affects expression of a large number of genes, especially around hatching. These effects were strongly sex-dependent. We then raised fish for several months after hatching and found no evidence of sex reversal in the EE2-exposed fish. We conclude that ecologically relevant (i.e. low) levels of EE2 pollution do not cause sex reversal by simply tipping the balance at early stages of sex differentiation, but that they interfere with sex-specific gene expression.
Collapse
Affiliation(s)
- Oliver M Selmoni
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present Address: Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Department of Environmental Sciences, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Group Center of Organismic Studies, University of Heidelberg, Heidelberg, Germany
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|