1
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
2
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhou T, Chen X, López-Pujol J, Bai G, Herrando-Moraira S, Nualart N, Zhang X, Zhao Y, Zhao G. Genetically- and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia. PLANT DIVERSITY 2024; 46:585-599. [PMID: 39290880 PMCID: PMC11403150 DOI: 10.1016/j.pld.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 09/19/2024]
Abstract
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is Dipteronia, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized Dipteronia species (D ipteronia sinensis and D . dyeriana). Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two Dipteronia species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in D. sinensis, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaodan Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | | | - Neus Nualart
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
| | - Xiao Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Xu WQ, Ren CQ, Zhang XY, Comes HP, Liu XH, Li YG, Kettle CJ, Jalonen R, Gaisberger H, Ma YZ, Qiu YX. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1372-1387. [PMID: 38343032 DOI: 10.1111/tpj.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/31/2024]
Abstract
Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.
Collapse
Affiliation(s)
- Wu-Qin Xu
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chao-Qian Ren
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xin-Yi Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans-Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Yin-Gang Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | | | - Riina Jalonen
- Bioversity International, Regional Office for Asia, Penang, Malaysia
| | | | - Ya-Zhen Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Ying-Xiong Qiu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
5
|
Wu Y, Yang K, Wen X, Sun Y. Genetic Differentiation and Relationship among Castanopsis chinensis, C. qiongbeiensis, and C. glabrifolia (Fagaceae) as Revealed by Nuclear SSR Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1486. [PMID: 38891296 PMCID: PMC11175008 DOI: 10.3390/plants13111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Castanopsis chinensis (Spreng.) Hance is widespread in the subtropical forests of China. Castanopsis qiongbeiensis G.A. Fu and Castanopsis glabrifolia J. Q. Li & Li Chen are limited to the coastal beaches of Wenchang county in the northeast of Hainan Island, and have similar morphological characteristics to C. chinensis. It is supposed that C. qiongbeiensis and C. glabrifolia are closely related to C. chinensis. In the present study, the genetic differentiation, gene flow, and genetic relationship of C. chinensis, C. qiongbeiensis, and C. glabrifolia were investigated by using 15 nuclear microsatellite markers; a total of 308 individuals from 17 populations were sampled in the three species. The allelic variation of nuclear microsatellites revealed moderate but significant genetic differentiation (FCT = 0.076) among C. chinensis, C. qiongbeiensis, and C. glabrifolia, and genetic differentiation between C. chinensis and C. glabrifolia was larger than that between C. chinensis and C. qiongbeiensis. Demographic simulations revealed unidirectional gene flow from C. chinensis to C. glabrifolia and C. qiongbeiensis, which highlight dispersal from mainland to island. The isolation effect of Qiongzhou Strait increased the genetic differentiation of species on both sides of the strait; however, the differentiation was diminished by gene flow that occurred during the historical period when Hainan Island was connected to mainland China. Our results supported the argument that C. glabrifolia should be considered an independent species and argued that C. qiongbeiensis should be regarded as an incipient species and independent conservation unit.
Collapse
Affiliation(s)
- Yang Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| | - Kai Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| | - Xiangying Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| |
Collapse
|
6
|
Jin J, Zhao W, Chen S, Gu C, Chen Z, Liu Z, Liao W, Fan Q. Which contributes more to the relict flora distribution pattern in East Asia, geographical processes or climate change? New evidence from the phylogeography of Rehderodendron kwangtungense. BMC PLANT BIOLOGY 2024; 24:459. [PMID: 38797839 PMCID: PMC11129394 DOI: 10.1186/s12870-024-05181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Relict species are important for enhancing the understanding of modern biogeographic distribution patterns. Although both geological and climatic changes since the Cenozoic have affected the relict flora in East Asia, the contributions of geographical processes remain unclear. In this study, we employed restriction-site associated DNA sequencing (RAD-seq) and shallow genome sequencing data, in conjunction with ecological niche modeling (ENM), to investigate the spatial genetic patterns and population differentiation history of the relict species Rehderodendron kwangtungense Chun. RESULTS A total of 138 individuals from 16 populations were collected, largely covering the natural distribution of R. kwangtungense. The genetic diversity within the R. kwangtungense populations was extremely low (HO = 0.048 ± 0.019; HE = 0.033 ± 0.011). Mantel tests revealed isolation-by-distance pattern (R2 = 0.38, P < 0.001), and AMOVA analysis showed that the genetic variation of R. kwangtungense occurs mainly between populations (86.88%, K = 7). Between 23 and 21 Ma, R. kwangtungense underwent a period of rapid differentiation that coincided with the rise of the Himalayas and the establishment of the East Asian monsoon. According to ENM and population demographic history, the suitable area and effective population size of R. kwangtungense decreased sharply during the glacial period and expanded after the last glacial maximum (LGM). CONCLUSION Our study shows that the distribution pattern of southern China mountain relict flora may have developed during the panplain stage between the middle Oligocene and the early Miocene. Then, the flora later fragmented under the force of orogenesis, including intermittent uplift during the Cenozoic Himalayan orogeny and the formation of abundant rainfall associated with the East Asian monsoon. The findings emphasized the predominant role of geographical processes in shaping relict plant distribution patterns.
Collapse
Affiliation(s)
- Jiehao Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanyi Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Gu
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, 518121, China
| | - Zhihui Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Xiang KL, Wu SD, Lian L, He WC, Peng D, Peng HW, Zhang XN, Li HL, Xue JY, Shan HY, Xu GX, Liu Y, Wu ZQ, Wang W. Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. SCIENCE CHINA. LIFE SCIENCES 2024; 67:803-816. [PMID: 38087029 DOI: 10.1007/s11427-023-2448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 04/06/2024]
Abstract
Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.
Collapse
Affiliation(s)
- Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- China National Botanical Garden, Beijing, 100093, China
| | - Sheng-Dan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Zhi-Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Ren Y, Zhang L, Yang X, Lin H, Sang Y, Feng L, Liu J, Kang M. Cryptic divergences and repeated hybridizations within the endangered "living fossil" dove tree ( Davidia involucrata) revealed by whole genome resequencing. PLANT DIVERSITY 2024; 46:169-180. [PMID: 38807904 PMCID: PMC11128880 DOI: 10.1016/j.pld.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 05/30/2024]
Abstract
The identification and understanding of cryptic intraspecific evolutionary units (lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species. However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a "living fossil" dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range. Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories.
Collapse
Affiliation(s)
- Yumeng Ren
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lushui Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hao Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yupeng Sang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Landi Feng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianquan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Minghui Kang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Yang YX, Wang M, Wu XY, Zhou YN, Qiu J, Cai X, Li ZH. The chromosome-level genome assembly of an endangered herb Bergenia scopulosa provides insights into local adaptation and genomic vulnerability under climate change. Gigascience 2024; 13:giae091. [PMID: 39607982 PMCID: PMC11604060 DOI: 10.1093/gigascience/giae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Global climate change poses severe threats to biodiversity and ecosystem stability. Rapid climate oscillations potentially lead to species geographic range shifts, population declines, and even extinctions. The rare and endangered species, being critical components of regional biodiversity, hold the key to understanding local adaptation and evolutionary processes shaping species distributions. Therefore, assessing the evolutionary mechanisms of local adaptation and population vulnerability under climate change is crucial for developing conservation strategies of endangered species. RESULTS In this study, we assembled a high-quality, chromosome-level genome of the rare and endangered herb Bergenia scopulosa in the Qinling Mountains in East Asia and resequenced 37 individual genomes spanning its entire geographic distributional ranges. By integrating population genetics, landscape genomics, and climate datasets, a substantial number of adaptive single-nucleotide polymorphism loci associated with climate variables were identified. The genotype-environment association analysis showed that some cold-tolerant genes have played pivotal roles in cold environmental adaptation of B. scopulosa. These findings are further corroborated through evolutionary analysis of gene family and quantitative PCR validation. Population genomic analysis revealed 2 distinct genetic lineages in B. scopulosa. The western lineage showed higher genomic vulnerability and more rare cold-tolerance alleles, suggesting its heightened sensitivity to impending climate shifts, and should be given priority conservation in the management practices. CONCLUSIONS These findings provide novel insights into local adaptation and genomic vulnerability of B. scopulosa under climate change in the Qinling Mountains in East Asia. Additionally, the study also offers valuable guidance for formulating conservation strategies for the rare and endangered plants.
Collapse
Affiliation(s)
- Yi-Xin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuan-Ye Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ya-Ni Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jie Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
10
|
Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, Lin DQ, Song YG, Kozlowski G. Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. ANNALS OF BOTANY 2023; 132:241-254. [PMID: 37409981 PMCID: PMC10583204 DOI: 10.1093/aob/mcad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS Understanding adaptive genetic variation and whether it can keep pace with predicted future climate change is critical in assessing the genetic vulnerability of species and developing conservation management strategies. The lack of information on adaptive genetic variation in relict species carrying abundant genetic resources hinders the assessment of genetic vulnerability. Using a landscape genomics approach, this study aimed to determine how adaptive genetic variation shapes population divergence and to predict the adaptive potential of Pterocarya macroptera (a vulnerable relict species in China) under future climate scenarios. METHODS We applied restriction site-associated DNA sequencing (RAD-seq) to obtain 8244 single-nucleotide polymorphisms (SNPs) from 160 individuals across 28 populations. We examined the pattern of genetic diversity and divergence, and then identified outliers by genetic differentiation (FST) and genotype-environment association (GEA) methods. We further dissected the effect of geographical/environmental gradients on genetic variation. Finally, we predicted genetic vulnerability and adaptive risk under future climate scenarios. KEY RESULTS We identified three genetic lineages within P. macroptera: the Qinling-Daba-Tianmu Mountains (QDT), Western Sichuan (WS) and Northwest Yunnan (NWY) lineages, which showed significant signals of isolation by distance (IBD) and isolation by environment (IBE). IBD and IBE explained 3.7-5.7 and 8.6-12.8 % of the genetic structure, respectively. The identified GEA SNP-related genes were involved in chemical defence and gene regulation and may exhibit higher genetic variation to adapt to the environment. Gradient forest analysis revealed that the genetic variation was mainly shaped by temperature-related variables, indicating its adaptation to local thermal environments. A limited adaptive potential was suggested by the high levels of genetic vulnerability in marginal populations. CONCLUSIONS Environmental gradient mainly shaped the population differentiation of P. macroptera. Marginal populations may be at high risk of extinction, and thus proactive management measures, such as assisted gene flow, are required to ensure the survival of these populations.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, 271018, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Duo-Qing Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
- Natural History Museum Fribourg, Fribourg, CH-1700, Switzerland
| |
Collapse
|
11
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
12
|
Zhang L, Chen J, Zhao R, Zhong J, Lin L, Li H, Ji X, Qu Y. Genomic insights into local adaptation in the Asiatic toad Bufo gargarizans, and its genomic offset to climate warming. Evol Appl 2023; 16:1071-1083. [PMID: 37216027 PMCID: PMC10197391 DOI: 10.1111/eva.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Genomic signatures of local adaptation have been identified in many species but remain sparsely studied in amphibians. Here, we explored genome-wide divergence within the Asiatic toad, Bufo gargarizans, to study local adaptation and genomic offset (i.e., the mismatch between current and future genotype-environment relationships) under climate warming scenarios. We obtained high-quality SNP data for 94 Asiatic toads from 21 populations in China to study spatial patterns of genomic variation, local adaptation, and genomic offset to warming in this wide-ranging species. Population structure and genetic diversity analysis based on high-quality SNPs revealed three clusters of B. gargarizans in the western, central-eastern, and northeastern portions of the species' range in China. Populations generally dispersed along two migration routes, one from the west to the central-east and one from the central-east to the northeast. Both genetic diversity and pairwise F ST were climatically correlated, and pairwise F ST was also correlated with geographic distance. Spatial genomic patterns in B. gargarizans were determined by the local environment and geographic distance. Global warming will increase the extirpation risk of B. gargarizans.
Collapse
Affiliation(s)
- Lu‐Wen Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jun‐Qiong Chen
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ru‐Meng Zhao
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jun Zhong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental SciencesWenzhou UniversityWenzhouChina
| | - Long‐Hui Lin
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Hong Li
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental SciencesWenzhou UniversityWenzhouChina
| | - Yan‐Fu Qu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
13
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
14
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Population Genetic Structure and Biodiversity Conservation of a Relict and Medicinal Subshrub Capparis spinosa in Arid Central Asia. DIVERSITY 2022. [DOI: 10.3390/d14020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a Tertiary Tethyan relict, Capparis spinosa is a typical wind-preventing and sand-fixing deciduous subshrub in arid central Asia. Due to its medicinal and energy value, this species is at risk of potential threat from human overexploitation, habitat destruction and resource depletion. In this study, our purpose was to evaluate the conservation strategies of C. spinosa according to its genetic structure characteristics and genetic diversity pattern among 37 natural distributional populations. Based on genomic SNP data generated from dd-RAD sequencing, genetic diversity analysis, principal component analysis, maximum likelihood phylogenetic trees and ADMIXTURE clustering, the significant population structure and differentiation were explored. The results showed the following: (1) Six distinct lineages were identified corresponding to geographic locations, and various levels of genetic diversity existed among the lineages for the natural habitat heterogeneity or human interferences; (2) The lineage divergences were influenced by isolation by distances, vicariance and restricted gene flow under complex topographic and climatic conditions. Finally, for the preservation of the genetic integrity of C. spinosa, we suggest that conservation units should be established corresponding to different geographic groups, and that attention should be paid to isolated and peripheral populations that are experiencing biodiversity loss. Simultaneously, monitoring and reducing anthropogenic disturbances in addition to rationally and sustainably utilizing wild resources would be beneficial to guarantee population resilience and evolutionary potential of this xerophyte in response to future environmental changes.
Collapse
|
16
|
Feng L, Du FK. Landscape Genomics in Tree Conservation Under a Changing Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:822217. [PMID: 35283901 PMCID: PMC8908315 DOI: 10.3389/fpls.2022.822217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
Understanding the genetic basis of how species respond to changing environments is essential to the conservation of species. However, the molecular mechanisms of adaptation remain largely unknown for long-lived tree species which always have large population sizes, long generation time, and extensive gene flow. Recent advances in landscape genomics can reveal the signals of adaptive selection linking genetic variations and landscape characteristics and therefore have created novel insights into tree conservation strategies. In this review article, we first summarized the methods of landscape genomics used in tree conservation and elucidated the advantages and disadvantages of these methods. We then highlighted the newly developed method "Risk of Non-adaptedness," which can predict the genetic offset or genomic vulnerability of species via allele frequency change under multiple scenarios of climate change. Finally, we provided prospects concerning how our introduced approaches of landscape genomics can assist policymaking and improve the existing conservation strategies for tree species under the ongoing global changes.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fang K. Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Fang K. Du,
| |
Collapse
|
17
|
Wang L, Zhang R, Geng M, Qin Y, Liu H, Li L, Li M. De novo transcriptome assembly and EST-SSR markers development for Zelkova schneideriana Hand.-Mazz. (Ulmaceae). 3 Biotech 2021; 11:420. [PMID: 34603920 DOI: 10.1007/s13205-021-02968-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Zelkova schneideriana Hand.-Mazz. of the Ulmaceae family is a Tertiary relict and economically deciduous tree species endemic to Central and Southern China. In this study, we performed a transcriptome sequencing of Z. schneideriana using high-throughput sequencing approach to detect polymorphic expressed sequence tag-simple sequence repeats (EST-SSR) markers. A total of 3,235 microsatellite loci were detected from 53,517 unigenes. A set of 30 microsatellite markers were randomly selected to validate in 41 individuals from three populations, of which 10 were polymorphic. The number of alleles per locus ranged from 3 to 11. The observed heterozygosity and expected heterozygosity ranged from 0.366 to 0.829 and 0.439 to 0.848, respectively. These polymorphic SSR primers showed good transferability across different Zelkova species, and are valuable for future studies on genetic diversity, conservation, phylogeography, and species delimitation in Z. schneideriana, as well as other Zelkova species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02968-5.
Collapse
Affiliation(s)
- Lingdan Wang
- Central South University of Forestry and Technology, Changsha, 410004 China
| | - Riqing Zhang
- Central South University of Forestry and Technology, Changsha, 410004 China
| | - Maolin Geng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| | - Yufeng Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002 China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002 China
| | - Lingli Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
| | - Mimi Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014 China
| |
Collapse
|
18
|
Sakaguchi S, Asaoka Y, Takahashi D, Isagi Y, Imai R, Nagano AJ, Qiu YX, Li P, Lu R, Setoguchi H. Inferring historical survivals of climate relicts: the effects of climate changes, geography, and population-specific factors on herbaceous hydrangeas. Heredity (Edinb) 2021; 126:615-629. [PMID: 33510468 PMCID: PMC8115046 DOI: 10.1038/s41437-020-00396-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Climate relicts hold considerable importance because they have resulted from numerous historical changes. However, there are major interspecific variations among the ways by which they survived climate changes. Therefore, investigating the factors and timing that affected population demographics can expand our understanding of how climate relicts responded to historical environmental changes. Here, we examined herbaceous hydrangeas of genus Deinanthe in East Asia, which show limited distributions and a remarkable disjunction between Japan and central China. Chloroplast genome and restriction site-associated DNA sequencing revealed that speciation event occurred in the late Miocene (ca. 7-9 Mya) in response to global climate change. Two lineages apparently remained not branched until the middle Quaternary, and afterwards started to diverge to regional population groups. The narrow endemic species in central China showed lower genetic diversity (He = 0.082), as its population size rapidly decreased during the Holocene due to isolation in montane refugia. Insular populations in the three Japanese islands (He = 0.137-0.160) showed a genetic structure that was inconsistent with sea barriers, indicating that it was shaped in the glacial period when its range retreated to coastal refugia on the exposed sea floor. Demographic modelling by stairway-plot analysis reconstructed variable responses of Japanese populations: some experienced glacial bottlenecks in refugial isolation, while post-glacial range expansion seemingly exerted founder effects on other populations. Overall, this study demonstrated the involvement of not just one, but multiple factors, such as the interplay between climate changes, geography, and other population-specific factors, that determine the demographics of climate relicts.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Yui Asaoka
- Faculty of Integrated Human Studies, Kyoto University, Kyoto, 606-8501, Japan
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Daiki Takahashi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuji Isagi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryosuke Imai
- Iriomote Station, Tropical Biosphere Research Centre, University of the Ryukyus, Okinawa, 907-1541, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
| | - Ying-Xiong Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruisen Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|