1
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Martínez-Aranzales JR, Córdoba-Agudelo M, Pérez-Jaramillo JE. Fecal microbiome and functional prediction profiles of horses with and without crib-biting behavior: A comparative study. J Equine Vet Sci 2024; 142:105198. [PMID: 39306146 DOI: 10.1016/j.jevs.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Crib-biting is a stereotyped oral behavior with poorly understood etiology and pathophysiology. The relationship between the gut microbiome and brain function has been described in behavioral disorders such as schizophrenia, depression and anxiety in humans. In horses, studies of behavioral problems and the microbiome are very limited. This study aimed to characterize the fecal microbiome and the predicted functional profile of horses with and without aerophagia. Fecal samples were collected from 12 Colombian Creole Horses of both sexes, divided into two groups: group 1, composed of six horses with crib-biting (3 females and 3 males), average body weight of 330 ± 10 kg, age of 7.0 ± 1.2 years and body condition score (BCS) of 5/9 ± 1 and group 2, consisting of six horses without crib-biting (3 females and 3 males), average body weight of 335 ± 5 kg, age 6.5 ± 1 years and BCS of 6/9 ± 1. From each horse in both groups fecal total DNA was obtained and 16S ribosomal RNA gene amplicons were sequenced to characterize the bacterial community structure. Community structure and differential abundance analyses revealed significant differences between the two conditions (p < 0.05). Specifically, the fecal microbiota at the family level in crib-biting horses, showing a decrease in Bacteroidales and an increase in Bacillota and Clostridia, differed from that of healthy horses without crib-biting, consistent with findings from previous studies. Furthermore, metagenome prediction suggests metabolic profile changes in bacterial communities between both conditions in horses. Further studies are required to validate the role of the microbiota-gut-brain axis in the etiology of crib-biting and other abnormal and stereotyped behaviors.
Collapse
Affiliation(s)
- José R Martínez-Aranzales
- Equine Medicine and Surgery Research Line (LIMCE), CENTAURO Research Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad de Antioquia, Medellin 050010, Colombia.
| | | | - Juan E Pérez-Jaramillo
- Institute of Biology, University of Antioquia, Medellin, Colombia; Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Bell J, Radial SL, Cuming RS, Trope G, Hughes KJ. Effects of fecal microbiota transplantation on clinical outcomes and fecal microbiota of foals with diarrhea. J Vet Intern Med 2024; 38:2718-2728. [PMID: 39266472 PMCID: PMC11423448 DOI: 10.1111/jvim.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Diarrhea in foals can be associated with disruption of the intestinal microbiota (dysbiosis). Effective management of intestinal dysbiosis in foals has not been demonstrated. HYPOTHESIS/OBJECTIVES Fecal microbiota transplantation (FMT) in foals with diarrhea influences the intestinal microbiota and improves clinical and clinicopathological outcomes. ANIMALS Twenty-five foals <6 months of age with diarrhea and systemic inflammatory response syndrome at 3 veterinary hospitals. METHODS A prospective randomized placebo-controlled cohort study. Foals in the FMT group (n = 19) or control group (n = 9) received FMT or electrolyte solution once daily for 3 days. Fecal samples were obtained on Day 0 (D0), D1, D2, D3, and D7. Within group and between group data analyses were performed for clinical, clinicopathological, and microbiota variables. RESULTS Treatment had no effect on survival (FMT 79%; control 100%, P = .3) or resolution of diarrhea (FMT 68%; control 55%, P = .4). On D3, the white blood cell count of the FMT group was lower than the control group (D3 FMT group median 6.4 g/L [5-8.3 g/L]; D3 control group median 14.3 g/L [6.7-18.9 g/L] P = .04). Heart rate reduced over time in the FMT group (D0 median 80 bpm [60-150 bpm]; D2 median 70 bpm [52-110 bpm] [P = .005]; and D3 median 64, [54-102 bpm] [P < .001]). Phylum Verrucomicrobiota, genus Akkermansia, and family Prevotellaceae were enriched in the FMT group on D1 (linear discriminate analysis > 4). CONCLUSIONS AND CLINICAL IMPORTANCE In foals with diarrhea, FMT appears safe and can be associated with some clinical and microbiota changes suggestive of beneficial effect.
Collapse
Affiliation(s)
- Jillian Bell
- Charles Sturt University School of Agricultural, Environmental and Veterinary SciencesWagga WaggaNew South WalesAustralia
| | - Sharanne L. Radial
- Charles Sturt University School of Agricultural, Environmental and Veterinary SciencesWagga WaggaNew South WalesAustralia
| | | | - Gareth Trope
- South Eastern Equine HospitalNarre Warren NorthVictoriaAustralia
| | - Kristopher J. Hughes
- Charles Sturt University School of Agricultural, Environmental and Veterinary SciencesWagga WaggaNew South WalesAustralia
| |
Collapse
|
4
|
Leng J, Moller-Levet C, Mansergh RI, O'Flaherty R, Cooke R, Sells P, Pinkham C, Pynn O, Smith C, Wise Z, Ellis R, Couto Alves A, La Ragione R, Proudman C. Early-life gut bacterial community structure predicts disease risk and athletic performance in horses bred for racing. Sci Rep 2024; 14:17124. [PMID: 39112552 PMCID: PMC11306797 DOI: 10.1038/s41598-024-64657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024] Open
Abstract
Gut bacterial communities have a profound influence on the health of humans and animals. Early-life gut microbial community structure influences the development of immunological competence and susceptibility to disease. For the Thoroughbred racehorse, the significance of early-life microbial colonisation events on subsequent health and athletic performance is unknown. Here we present data from a three-year cohort study of horses bred for racing designed to explore interactions between early-life gut bacterial community structure, health events in later life and athletic performance on the racetrack. Our data show that gut bacterial community structure in the first months of life predicts the risk of specific diseases and athletic performance up to three years old. Foals with lower faecal bacterial diversity at one month old had a significantly increased risk of respiratory disease in later life which was also associated with higher relative abundance of faecal Pseudomonadaceae. Surprisingly, athletic performance up to three years old, measured by three different metrics, was positively associated with higher faecal bacterial diversity at one month old and with the relative abundance of specific bacterial families. We also present data on the impact of antibiotic exposure of foals during the first month of life. This resulted in significantly lower faecal bacterial diversity at 28 days old, a significantly increased risk of respiratory disease in later life and a significant reduction in average prize money earnings, a proxy for athletic performance. Our study reveals associations between early-life bacterial community profiles and health events in later life and it provides evidence of the detrimental impact of antimicrobial treatment in the first month of life on health and performance outcomes in later life. For the first time, this study demonstrates a relationship between early-life gut bacterial communities and subsequent athletic performance that has implications for athletes of all species including humans.
Collapse
Affiliation(s)
- J Leng
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - C Moller-Levet
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - R I Mansergh
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - R O'Flaherty
- Avonvale Vets, 6 Broxell Close, Warwick, CV34 5QF, UK
| | - R Cooke
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - P Sells
- Chasemore Farm, Orbital Veterinary Services, Bookham Road, Downside, Cobham, KT11 3JT, UK
| | - C Pinkham
- Pinkham Equine Veterinary Services, Home Farm Offices, Netherhapton, Salisbury, SP2 8PJ, UK
| | - O Pynn
- Rossdales Equine Practice, Beaufort Cottage Stables, High Street, Newmarket, CB8 8JS, UK
| | - C Smith
- Newmarket Equine Hospital, Cambridge Road, Newmarket, CB8 OFG, UK
| | - Z Wise
- Newmarket Equine Hospital, Cambridge Road, Newmarket, CB8 OFG, UK
| | - R Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency, Weybridge, Addlestone, KT15 3NB, UK
| | - A Couto Alves
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - R La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK
- School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford, GU2 7XH, UK
| | - C Proudman
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford, GU2 7AL, UK.
| |
Collapse
|
5
|
Kawaida MY, Maas KR, Moore TE, Reiter AS, Tillquist NM, Reed SA. Effects of astaxanthin on gut microbiota of polo ponies during deconditioning and reconditioning periods. Physiol Rep 2024; 12:e16051. [PMID: 38811348 PMCID: PMC11136553 DOI: 10.14814/phy2.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To determine the effects of astaxanthin (ASTX) supplementation on the equine gut microbiota during a deconditioning-reconditioning cycle, 12 polo ponies were assigned to a control (CON; n = 6) or supplemented (ASTX; 75 mg ASTX daily orally; n = 6) group. All horses underwent a 16-week deconditioning period, with no forced exercise, followed by a 16-week reconditioning program where physical activity gradually increased. Fecal samples were obtained at the beginning of the study (Baseline), after deconditioning (PostDecon), after reconditioning (PostRecon), and 16 weeks after the cessation of ASTX supplementation (Washout). Following DNA extraction from fecal samples, v4 of 16S was amplified and sequenced to determine operational taxonomic unit tables and α-diversity and β-diversity indices. The total number of observed species was greater at Baseline than PostDecon, PostRecon, and Washout (p ≤ 0.02). A main effect of ASTX (p = 0.01) and timepoint (p = 0.01) was observed on β-diversity, yet the variability of timepoint was greater (13%) than ASTX (6%), indicating a greater effect of timepoint than ASTX. Deconditioning and reconditioning periods affected the abundance of the Bacteroidetes and Fibrobacteres phyla. Physical activity and ASTX supplementation affect the equine gut microbiome, yet conditioning status may have a greater impact.
Collapse
Affiliation(s)
- Mia Y. Kawaida
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Kendra R. Maas
- Microbial Analysis, Resources, and ServicesUniversity of ConnecticutStorrsConnecticutUSA
| | - Timothy E. Moore
- Statistical Consulting Services, Center for Open Research Resources and EquipmentUniversity of ConnecticutStorrsConnecticutUSA
| | - Amanda S. Reiter
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Sarah A. Reed
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
6
|
Bessegatto JA, Lisbôa JAN, Santos BP, Curti JM, Montemor C, Alfieri AA, Mach N, Costa MC. Fecal Microbial Communities of Nellore and Crossbred Beef Calves Raised at Pasture. Animals (Basel) 2024; 14:1447. [PMID: 38791664 PMCID: PMC11117347 DOI: 10.3390/ani14101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the effect of age and genetics on the fecal microbiota of beef calves. Ten purebred Nellore (Bos taurus indicus) and ten crossbreed 50% Nellore-50% European breed (Bos taurus taurus) calves co-habiting on the same pasture paddock had fecal samples collected on days five (5 d), 14 d, 28 d, 60 d, 90 d, 180 d, 245 d (weaning) and 260 d after birth. All calves were kept with their mothers, and six Nellore dams were also sampled at weaning. Microbiota analysis was carried out by amplification of the V4 region of the 16S rRNA gene following high-throughput sequencing with a MiSeq Illumina platform. Results revealed that bacterial richness increased with age and became more similar to adults near weaning. Differences in microbiota membership between breeds were found at 60 d and 90 d and for structure at 60 d, 90 d, 245 d, and 260 d (p < 0.05). In addition, crossbreed calves presented less variability in their microbiota. In conclusion, the genetic composition significantly impacted the distal gut microbiota of calves co-habiting in the same environment, and further studies investigating food intake can reveal possible associations between microbiota composition and performance.
Collapse
Affiliation(s)
- José Antônio Bessegatto
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Júlio Augusto Naylor Lisbôa
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Bruna Parapinski Santos
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Juliana Massitel Curti
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Carlos Montemor
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Amauri Alcindo Alfieri
- Department of Cinical Sciences, Faculdade de Medicina Veterinária, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, Brazil; (J.A.B.)
| | - Núria Mach
- Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France
| | - Marcio Carvalho Costa
- Department of Biomedical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
7
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
8
|
Cooke CG, Gibb Z, Grupen CG, Schemann K, Deshpande N, Harnett JE. The semen microbiome of miniature pony stallions. Reprod Fertil Dev 2024; 36:RD23117. [PMID: 38331564 DOI: 10.1071/rd23117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
CONTEXT Little is known about the microbial composition of stallion semen. AIMS To describe the microbiota detected in equine semen of healthy miniature pony stallions. METHODS Semen specimens were collected using a Missouri artificial vagina at a single time point. PacBio (Pacific Biosciences) genomic DNA sequencing of the 16S rRNA gene was performed on these specimens, following which next-generation microbiome bioinformatics platform QIIME2 was used to process fastq files and analyse the amplicon data. The data were categorised into genus, family, class, order and phylum. KEY RESULTS Firmicutes and Bacteroidetes phyla predominated (76%), followed by Proteobacteria (15%). Bacteroidales, Clostridiales and Cardiobacteriales predominated the microbial rank of order (86%). Class was mainly composed of Bacteroidia, Clostridia and Gammaproteobacteria (87%), while family was mainly composed of Porphyromonadaceae , Family_XI and Cardiobacteriaceae (62%). At the level of genus, 80% of the abundance was composed of seven genera, namely Porphyromonas, Suttonella, Peptoniphilus, Fastidiosipila, Ezakiella, Petrimonas and an unknown taxon. CONCLUSIONS The findings indicate that specific microbiota may be characteristic of healthy miniature pony stallions' semen with some inter-individual variations observed. IMPLICATIONS Larger equine studies involving fertile and infertile subjects could be informed by this study and could explore the relationship of the semen microbiome to male fertility.
Collapse
Affiliation(s)
- C Giselle Cooke
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Kathrin Schemann
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nandan Deshpande
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joanna E Harnett
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Kauter A, Brombach J, Lübke-Becker A, Kannapin D, Bang C, Franzenburg S, Stoeckle SD, Mellmann A, Scherff N, Köck R, Guenther S, Wieler LH, Gehlen H, Semmler T, Wolf SA, Walther B. Antibiotic prophylaxis and hospitalization of horses subjected to median laparotomy: gut microbiota trajectories and abundance increase of Escherichia. Front Microbiol 2023; 14:1228845. [PMID: 38075913 PMCID: PMC10701544 DOI: 10.3389/fmicb.2023.1228845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/06/2023] [Indexed: 10/16/2024] Open
Abstract
Introduction Horse clinics are hotspots for the accumulation and spread of clinically relevant and zoonotic multidrug-resistant bacteria, including extended-spectrum β-lactamase producing (ESBL) Enterobacterales. Although median laparotomy in cases of acute equine colic is a frequently performed surgical intervention, knowledge about the effects of peri-operative antibiotic prophylaxis (PAP) based on a combination of penicillin and gentamicin on the gut microbiota is limited. Methods We collected fecal samples of horses from a non-hospitalized control group (CG) and from horses receiving either a pre-surgical single-shot (SSG) or a peri-operative 5-day (5DG) course of PAP. To assess differences between the two PAP regimens and the CG, all samples obtained at hospital admission (t0), on days three (t1) and 10 (t2) after surgery, were screened for ESBL-producing Enterobacterales and subjected to 16S rRNA V1-V2 gene sequencing. Results We included 48 samples in the SSG (n = 16 horses), 45 in the 5DG (n = 15), and 20 in the CG (for t0 and t1, n = 10). Two samples of equine patients receiving antibiotic prophylaxis (6.5%) were positive for ESBL-producing Enterobacterales at t0, while this rate increased to 67% at t1 and decreased only slightly at t2 (61%). Shannon diversity index (SDI) was used to evaluate alpha-diversity changes, revealing there was no significant difference between horses suffering from acute colic (5DG, SDImean of 5.90, SSG, SDImean of 6.17) when compared to the CG (SDImean of 6.53) at t0. Alpha-diversity decreased significantly in both PAP groups at t1, while at t2 the onset of microbiome recovery was noticed. Although we did not identify a significant SDImean difference with respect to PAP duration, the community structure (beta-diversity) was considerably restricted in samples of the 5DG at t1, most likely due to the ongoing administration of antibiotics. An increased abundance of Enterobacteriaceae, especially Escherichia, was noted for both study groups at t1. Conclusion Colic surgery and PAP drive the equine gut microbiome towards dysbiosis and reduced biodiversity that is accompanied by an increase of samples positive for ESBL-producing Enterobacterales. Further studies are needed to reveal important factors promoting the increase and residency of ESBL-producing Enterobacterales among hospitalized horses.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Julian Brombach
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabita D. Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | | | - Natalie Scherff
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Robin Köck
- Institute of Hygiene, University of Münster, Münster, Germany
- Institute of Hygiene, DRK Kliniken Berlin, Berlin, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
- Section Microbiological Risks (1.4), Department II Environmental Hygiene, German Environment Agency, Berlin, Germany
| |
Collapse
|
10
|
Lee J, Kang YJ, Kim YK, Choi JY, Shin SM, Shin MC. Exploring the Influence of Growth-Associated Host Genetics on the Initial Gut Microbiota in Horses. Genes (Basel) 2023; 14:1354. [PMID: 37510259 PMCID: PMC10379381 DOI: 10.3390/genes14071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The influences of diet and environmental factors on gut microbial profiles have been widely acknowledged; however, the specific roles of host genetics remain uncertain. To unravel host genetic effects, we raised 47 Jeju crossbred (Jeju × Thoroughbred) foals that exhibited higher genetic diversity. Foals were raised under identical environmental conditions and diets. Microbial composition revealed that Firmicutes, Bacteroidetes, and Spirochaetes were the predominant phyla. We identified 31 host-microbiome associations by utilizing 47,668 single nucleotide polymorphisms (SNPs) and 734 taxa with quantitative trait locus (QTL) information related to horse growth. The taxa involved in 31 host-microbiome associations were functionally linked to carbohydrate metabolism, energy metabolic processes, short-chain fatty acid (SCFA) production, and lactic acid production. Abundances of these taxa were affected by specific SNP genotypes. Most growth-associated SNPs are found between genes. The rs69057439 and rs69127732 SNPs are located within the introns of the VWA8 and MFSD6 genes, respectively. These genes are known to affect energy balance and metabolism. These discoveries emphasize the significant effect of host SNPs on the development of the intestinal microbiome during the initial phases of life and provide insights into the influence of gut microbial composition on horse growth.
Collapse
Affiliation(s)
- Jongan Lee
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Yong-Jun Kang
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Yoo-Kyung Kim
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Jae-Young Choi
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Sang-Min Shin
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Moon-Cheol Shin
- Planning and Coordination Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
11
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
12
|
Gomez DE, Wong D, MacNicol J, Dembek K. The fecal bacterial microbiota of healthy and sick newborn foals. Vet Med (Auckl) 2022; 37:315-322. [PMID: 36519210 PMCID: PMC9889700 DOI: 10.1111/jvim.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The fecal bacterial microbiota of normal foals and foals with enterocolitis has been characterized using next-generation sequencing technology; however, there are no reports investigating the gut microbiota in foals hospitalized for other perinatal diseases. OBJECTIVE To describe and compare the fecal bacterial microbiota in healthy and sick foals using next-generation sequencing techniques. ANIMALS Hospitalized (17) and healthy foals (21). METHODS Case-control study. Fecal samples were collected from healthy and sick foals on admission. Sick foals were further divided into sick nonseptic (SNS, n = 9) and septic (n = 8) foals. After extraction of DNA, the V4 region of the 16 S rRNA gene was amplified using a PCR assay, and the final product was sequenced with an Illumina MiSeq. RESULTS Diversity was significantly lower in healthy than sick foals (P < .05). The bacterial membership (Jaccard index) and structure (Yue & Clayton index) of the fecal microbiota of healthy, septic, and SNS foals were similar (AMOVA, P > .05). Bacterial membership (AMOVA, P = .06) and structure (AMOVA, P = .33) were not different between healthy and sick foals. Enterobacteriaceae, Enterococcus, and Streptococcus were among the 5 more abundant taxa identified in both groups. CONCLUSION AND CLINICAL IMPORTANCE Higher fecal microbiota diversity in sick than healthy foals might suggest a high exposure to environmental microorganisms or an unstable colonic microbiota. The presence of microorganisms causing bacteremia in foals in a high relative abundance in the feces of foals suggests the intestine might play an essential role in the causation of bacteremia in foals.
Collapse
Affiliation(s)
- Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Jennifer MacNicol
- Department of Animal Biosciences, Ontario Agriculture CollegeUniversity of GuelphGuelphOntarioCanada
| | - Katarzyna Dembek
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
13
|
Perricone V, Sandrini S, Irshad N, Comi M, Lecchi C, Savoini G, Agazzi A. The Role of Yeast Saccharomyces cerevisiae in Supporting Gut Health in Horses: An Updated Review on Its Effects on Digestibility and Intestinal and Fecal Microbiota. Animals (Basel) 2022; 12:ani12243475. [PMID: 36552396 PMCID: PMC9774806 DOI: 10.3390/ani12243475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
To support the overall health of horses, it is essential to maintain an optimal gut health (GH) status, which encompasses several physiological and functional aspects, including the balance and functionality of intestinal microbial populations and, accordingly, the effective digestion and absorption of nutrients. Numerous biotic and abiotic stressors can lead to an imbalance of GH, such as the quality of forages and the composition of diet, e.g., the inclusion of high energy-dense feeds to meet the energy requirements of performance horses. To support the digestive function and the intestinal microbial populations, the diet can be supplemented with feed additives, such as probiotic yeasts, that promote the ability of cellulolytic bacteria in the hindgut to digest the available fiber fractions, finally increasing feed efficiency. Among the different yeasts available, S. cerevisiae is the most used in horses' nutrition; however, results of digestibility trials, as well as data on intestinal and fecal microbial populations, are sometimes contradictory. Therefore, the purpose of this review is to summarize the effects of S. cerevisiae on in vivo and in vitro digestibility, providing an updated overview of its effects on the intestinal and fecal microbial population.
Collapse
Affiliation(s)
- Vera Perricone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Sandrini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Nida Irshad
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-02-50334506
| |
Collapse
|
14
|
Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022; 9:832062. [PMID: 35812868 PMCID: PMC9257286 DOI: 10.3389/fvets.2022.832062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota and its metabolites play an important role in regulating the host metabolism and immunity. However, the underlying mechanism is still not well studied. Thus, we conducted the LC-MS/MS analysis and RNA-seq analysis on Equus przewalskii with and without horse botfly infestation to determine the metabolites produced by intestinal microbiota in feces and differentially expressed genes (DEGs) related to the immune response in blood and attempted to link them together. The results showed that parasite infection could change the composition of microbial metabolites. These identified metabolites could be divided into six categories, including compounds with biological roles, bioactive peptides, endocrine-disrupting compounds, pesticides, phytochemical compounds, and lipids. The three pathways involving most metabolites were lipid metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. The significant differences between the host with and without parasites were shown in 31 metabolites with known functions, which were related to physiological activities of the host. For the gene analysis, we found that parasite infection could alarm the host immune response. The gene of “cathepsin W” involved in innate and adaptive immune responses was upregulated. The two genes of the following functions were downregulated: “protein S100-A8” and “protein S100-A9-like isoform X2” involved in chemokine and cytokine production, the toll-like receptor signaling pathway, and immune and inflammatory responses. GO and KEGG analyses showed that immune-related functions of defense response and Th17 cell differentiation had significant differences between the host with and without parasites, respectively. Last, the relationship between metabolites and genes was determined in this study. The purine metabolism and pyrimidine metabolism contained the most altered metabolites and DEGs, which mainly influenced the conversion of ATP, ADP, AMP, GTP, GMP, GDP, UTP, UDP, UMP, dTTP, dTDP, dTMP, and RNA. Thus, it could be concluded that parasitic infection can change the intestinal microbial metabolic activity and enhance immune response of the host through the pathway of purine and pyrimidine metabolism. This results will be a valuable contribution to understanding the bidirectional association of the parasite, intestinal microbiota, and host.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yujun Tang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Xuefeng Li
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Dong Zhang
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Kai Li
| | - Hongjun Chu
- Institute of Forest Ecology, Xinjiang Academy of Forestry, Ürümqi, China
- Hongjun Chu
| |
Collapse
|
15
|
Lucassen A, Hankel J, Finkler-Schade C, Osbelt L, Strowig T, Visscher C, Schuberth HJ. Feeding a Saccharomyces cerevisiae Fermentation Product (Olimond BB) Does Not Alter the Fecal Microbiota of Thoroughbred Racehorses. Animals (Basel) 2022; 12:ani12121496. [PMID: 35739833 PMCID: PMC9219515 DOI: 10.3390/ani12121496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Saccharomyces cerevisiae fermentation products (SCFP) are feed supplements and are widely used in animal nutrition to promote health. The biological effects of SCFP are based on prebiotic mechanisms that directly influence the microbial community of the gut microbiome or postbiotic factors that directly interact with host cells. To show whether the immunomodulatory effects of SCFP feeding are due to an altered composition of gut microbiota, we analyzed the fecal microbiota of racehorses. Horses were fed either the SCFP (Olimond BB) or a placebo product for six weeks, and fecal samples were collected for 16S rRNA gene sequencing. During this period, SCFP feeding only subtly affected the fecal microbiota in bacterial composition and diversity. SCFP and placebo horses differed significantly in the fecal bacterial diversity directly after intramuscular influenza vaccination. Altogether, the findings argue against a strong prebiotic effect of SCFP in racehorses. In contrast, the modulation of vaccine- and host-induced alterations of the microbiome suggests that the main effects of SCFP are due to contained or induced postbiotic components. Abstract Feed supplements such as Saccharomyces cerevisiae fermentation products (SCFP) alter immune responses in horses. The purpose of this study was to analyze whether a prebiotic activity of the SCFP alters the gut microbiome in horses. Racehorses were fed either SCFP (Olimond BB, OLI, n = 6) or placebo pellets (PLA, n = 5) for 43 days. Fecal microbiota analysis was performed using 16S rRNA gene sequencing. The numbers and function of circulating immune cell subpopulations were analyzed by flow cytometry. SCFP supplementation resulted in non-consistent differences in fecal microbiota between the PLA and OLI during the feeding period. Rather, the individual animal had the highest impact on fecal microbiota composition. OLI and PLA horses displayed the same changes in numbers of blood leukocyte subpopulations over time. One day after a booster vaccination against equine influenza during the feeding period, the alpha diversity of fecal microbiota of PLA horses was significantly higher compared to OLI horses. This suggests that SCFP feeding altered the vaccination-induced spectrum of released mediators, potentially affecting gut microbiota. The overall non-consistent findings argue against a strong prebiotic effect of Olimond BB on the microbiota in racehorses. Fecal microbiota differences between the groups were also noticed outside the feeding period and, hence, are most likely not caused by the SCFP additive.
Collapse
Affiliation(s)
- Alexandra Lucassen
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
| | - Julia Hankel
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | | | - Lisa Osbelt
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-7921
| |
Collapse
|
16
|
Berreta A, Kopper J. Equine probiotics-what are they, where are we and where do we need to go? J Equine Vet Sci 2022; 115:104037. [DOI: 10.1016/j.jevs.2022.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
|
17
|
Kong Q, Zhang W, An M, Kulyar MFEA, Shang Z, Tan Z, Xu Y, Li J, Liu S. Characterization of Bacterial Microbiota Composition in Healthy and Diarrheal Early-Weaned Tibetan Piglets. Front Vet Sci 2022; 9:799862. [PMID: 35280137 PMCID: PMC8905297 DOI: 10.3389/fvets.2022.799862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The occurrence of diarrhea in Tibetan piglets is highly notable, but the microorganisms responsible are yet unclear. Its high incidence results in serious economic losses for the Tibetan pig industry. Moreover, the dynamic balance of intestinal microflora plays a crucial role in maintaining host health, as it is a prime cause of diarrhea. Therefore, the present study was performed to analyze the characteristics of bacterial microbiota structure in healthy, diarrheal and treated weaned piglets in Tibet autonomous region for providing a theoretical basis to prevent and control diarrhea. The study was based on the V3–V4 region of the 16S rRNA gene and gut microbiota functions following the metagenome analysis of fresh fecal samples (n = 5) from different groups. The Shannon and Simpson indices differed substantially between diarrheal and treated groups (p < 0.05). According to our findings, the beta diversities, especially between healthy and diarrheal groups, were found different. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in three groups. Furthermore, the abundance of Fusobacteria in the diarrheal group was higher than the other groups. The dominant genera in the diarrheal group were Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus, and Pasteurella. Moreover, Lactobacillus, Megasphaera and Clavibacter were distinctly less abundant in this group. It is noteworthy that the specific decrease in the abundance of pathogenic bacteria after antibiotic treatment in piglets was noticed, while the level of Lactobacillus was evidently increased. In conclusion, fecal microbial composition and structure variations were discovered across the three groups. Also, the ecological balance of the intestinal microflora was disrupted in diarrheal piglets. It might be caused by a reduction in the relative number of beneficial bacteria and an increase in the abundance of pathogenic bacteria. In the context of advocating for non-resistant feeding, we suspect that the addition of probiotics to feed may prevent early-weaning diarrhea in piglets. Moreover, our findings might help for preventing diarrhea in weaned Tibetan piglets with a better understanding of microbial population dynamics.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qinghui Kong
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
| | - Yefen Xu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Jiakui Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Jiakui Li
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
- Suozhu Liu
| |
Collapse
|
18
|
Age-Dependent Intestinal Repair: Implications for Foals with Severe Colic. Animals (Basel) 2021; 11:ani11123337. [PMID: 34944114 PMCID: PMC8697879 DOI: 10.3390/ani11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Colic is a leading cause of death in horses, with the most fatal form being strangulating obstruction which directly damages the intestinal barrier. Following surgical intervention, it is imperative that the intestinal barrier rapidly repairs to prevent translocation of gut bacteria and their products and ensure survival of the patient. Age-related disparities in survival have been noted in many species, including horses, humans, and pigs, with younger patients suffering poorer clinical outcomes. Maintenance and repair of the intestinal barrier is regulated by a complex mucosal microenvironment, of which the ENS, and particularly a developing network of subepithelial enteric glial cells, may be of particular importance in neonates with colic. Postnatal development of an immature enteric glial cell network is thought to be driven by the microbial colonization of the gut and therefore modulated by diet-influenced changes in bacterial populations early in life. Here, we review the current understanding of the roles of the gut microbiome, nutrition, stress, and the ENS in maturation of intestinal repair mechanisms after foaling and how this may influence age-dependent outcomes in equine colic cases.
Collapse
|
19
|
Fernandes KA, Rogers CW, Gee EK, Kittelmann S, Bolwell CF, Bermingham EN, Biggs PJ, Thomas DG. Resilience of Faecal Microbiota in Stabled Thoroughbred Horses Following Abrupt Dietary Transition between Freshly Cut Pasture and Three Forage-Based Diets. Animals (Basel) 2021; 11:2611. [PMID: 34573577 PMCID: PMC8471312 DOI: 10.3390/ani11092611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The management of competition horses in New Zealand often involves rotations of short periods of stall confinement and concentrate feeding, with periods of time at pasture. Under these systems, horses may undergo abrupt dietary changes, with the incorporation of grains or concentrate feeds to the diet to meet performance needs, or sudden changes in the type of forage fed in response to a lack of fresh or conserved forage. Abrupt changes in dietary management are a risk factor for gastrointestinal (GI) disturbances, potentially due to the negative effects observed on the population of GI microbiota. In the present study, the faecal microbiota of horses was investigated to determine how quickly the bacterial communities; (1) responded to dietary change, and (2) stabilised following abrupt dietary transition. Six Thoroughbred mares were stabled for six weeks, consuming freshly cut pasture (weeks 1, 3 and 5), before being abruptly transitioned to conserved forage-based diets, both offered ad libitum. Intestinal markers were administered to measure digesta transit time immediately before each diet change. The conserved forage-based diets were fed according to a 3 × 3 Latin square design (weeks 2, 4 and 6), and comprised a chopped ensiled forage fed exclusively (Diet FE) or with whole oats (Diet FE + O), and perennial ryegrass hay fed with whole oats (Diet H + O). Faecal samples were collected at regular intervals from each horse following the diet changes. High throughput 16S rRNA gene sequencing was used to evaluate the faecal microbiota. There were significant differences in alpha diversity across diets (p < 0.001), and a significant effect of diet on the beta diversity (ANOSIM, p = 0.001), with clustering of samples observed by diet group. There were differences in the bacterial phyla across diets (p < 0.003), with the highest relative abundances observed for Firmicutes (62-64%) in the two diets containing chopped ensiled forage, Bacteroidetes (32-38%) in the pasture diets, and Spirochaetes (17%) in the diet containing hay. Major changes in relative abundances of faecal bacteria appeared to correspond with the cumulative percentage of intestinal markers retrieved in the faeces as the increasing amounts of digesta from each new diet transited the animals. A stable faecal microbiota profile was observed in the samples from 96 h after abrupt transition to the treatment diets containing ensiled chopped forage. The present study confirmed that the diversity and community structure of the faecal bacteria in horses is diet-specific and resilient following dietary transition and emphasised the need to have modern horse feeding management that reflects the ecological niche, particularly by incorporating large proportions of forage into equine diets.
Collapse
Affiliation(s)
- Karlette A. Fernandes
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| | - Chris W. Rogers
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Erica K. Gee
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Sandra Kittelmann
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Charlotte F. Bolwell
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - Emma N. Bermingham
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand; (S.K.); (E.N.B.)
| | - Patrick J. Biggs
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (E.K.G.); (C.F.B.); (P.J.B.)
| | - David G. Thomas
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; (K.A.F.); (C.W.R.)
| |
Collapse
|
20
|
Goodman-Davis R, Figurska M, Cywinska A. Gut Microbiota Manipulation in Foals-Naturopathic Diarrhea Management, or Unsubstantiated Folly? Pathogens 2021; 10:pathogens10091137. [PMID: 34578169 PMCID: PMC8467620 DOI: 10.3390/pathogens10091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Diarrhea in foals is a problem of significant clinical and economic consequence, and there are good reasons to believe microbiota manipulation can play an important role in its management. However, given the dynamic development of the foal microbiota and its importance in health and disease, any prophylactic or therapeutic efforts to alter its composition should be evidence based. The few clinical trials of probiotic preparations conducted in foals to date show underwhelming evidence of efficacy and a demonstrated potential to aggravate rather than mitigate diarrhea. Furthermore, recent studies have affirmed that variable but universally inadequate quality control of probiotics enables inadvertent administration of toxin-producing or otherwise pathogenic bacterial strains, as well as strains bearing transferrable antimicrobial resistance genes. Consequently, it seems advisable to approach probiotic therapy in particular with caution for the time being. While prebiotics show initial promise, an even greater scarcity of clinical trials makes it impossible to weigh the pros and cons of their use. Advancing technology will surely continue to enable more detailed and accurate mapping of the equine adult and juvenile microbiota and potentially elucidate the complexities of causation in dysbiosis and disease. In the meantime, fecal microbiota transplantation may be an attractive therapeutic shortcut, allowing practitioners to reconstruct a healthy microbiota even without fully understanding its constitution.
Collapse
Affiliation(s)
- Rachel Goodman-Davis
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
- The Scientific Society of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Marianna Figurska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (R.G.-D.); (M.F.)
| | - Anna Cywinska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
21
|
Freccero F, Lanci A, Mariella J, Viciani E, Quercia S, Castagnetti A, Castagnetti C. Changes in the Fecal Microbiota Associated with a Broad-Spectrum Antimicrobial Administration in Hospitalized Neonatal Foals with Probiotics Supplementation. Animals (Basel) 2021; 11:ani11082283. [PMID: 34438741 PMCID: PMC8388449 DOI: 10.3390/ani11082283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Post-antibiotic intestinal dysbiosis leads to an overall reduction in bacterial and functional diversity, along with a minor resistance against pathogens. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission, at the end of the antimicrobial treatment and at discharge. Seven foals treated with intravenous ampicillin and aminoglycosides for a mean of seven days were included. The results suggest that the fecal microbiota of neonatal foals rapidly returns to a high diversity after treatment. While the findings need to be confirmed in a larger population, the study suggests that in foals, the effect of antimicrobials may be strongly influenced by the changes that occur over time in the developing gut microbiota. Of note, the findings are influenced by the use of probiotics, and whether the changes would be consistent in antimicrobial-administered but not supplemented foals remains to be elucidated. Abstract There is a wide array of evidence across species that exposure to antibiotics is associated with dysbiosis, and due to their widespread use, this also raises concerns also in medicine. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission (Ta), at the end of the antimicrobial treatment (Te) and at discharge (Td). Feces were analysed by next-generation sequencing of the 16S rRNA gene on Illumina MiSeq. Seven foals treated with IV ampicillin and amikacin/gentamicin were included. The mean age at Ta was 19 h, the mean treatment length was 7 days and the mean time between Te and Td was 4.3 days. Seven phyla were identified: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, TM7 and Verrucomicrobia. At Ta, Firmicutes (48.19%) and Proteobacteria (31.56%) were dominant. The alpha diversity decreased from Ta to Te, but it was the highest at Td. The beta diversity was higher at Ta than at Te and higher at Td than at Te. An increase in Akkermansia over time was detected. The results suggest that the intestinal microbiota of neonatal foals rapidly returns to a high diversity after treatment. It is possible that in foals, the effect of antimicrobials is strongly influenced or overshadowed by the time-dependent changes in the developing gut microbiota.
Collapse
Affiliation(s)
- Francesca Freccero
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Correspondence:
| | - Jole Mariella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Elisa Viciani
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Sara Quercia
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Andrea Castagnetti
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
22
|
Hesta M, Costa M. How Can Nutrition Help with Gastrointestinal Tract-Based Issues? Vet Clin North Am Equine Pract 2021; 37:63-87. [PMID: 33820610 DOI: 10.1016/j.cveq.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many horses are fed differently than their wild ancestors. They often have limited access to pasture and are fed conserved forage and concentrates rich in starch and sugars, in only 2 meals per day. Feeding practices in contrast to natural feeding behavior can lead to gastrointestinal issues. Standard nutritional evaluation is warranted because of its important role in prevention and in treatment and management of diseases. When medical and nutritional treatments are combined, success rates are higher. New techniques to characterize equine microbiota have been used, allowing for microbiota manipulation to prevent and treat intestinal diseases.
Collapse
Affiliation(s)
- Myriam Hesta
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B9820, Belgium.
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
23
|
Dong ZX, Chen YF, Li HY, Tang QH, Guo J. The Succession of the Gut Microbiota in Insects: A Dynamic Alteration of the Gut Microbiota During the Whole Life Cycle of Honey Bees ( Apis cerana). Front Microbiol 2021; 12:513962. [PMID: 33935980 PMCID: PMC8079811 DOI: 10.3389/fmicb.2021.513962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
The Asian honey bee Apis cerana is a valuable biological resource insect that plays an important role in the ecological environment and agricultural economy. The composition of the gut microbiota has a great influence on the health and development of the host. However, studies on the insect gut microbiota are rarely reported, especially studies on the dynamic succession of the insect gut microbiota. Therefore, this study used high-throughput sequencing technology to sequence the gut microbiota of A. cerana at different developmental stages (0 days post emergence (0 dpe), 1 dpe, 3 dpe, 7 dpe, 12 dpe, 19 dpe, 25 dpe, 30 dpe, and 35 dpe). The results of this study indicated that the diversity of the gut microbiota varied significantly at different developmental stages (ACE, P = 0.045; Chao1, P = 0.031; Shannon, P = 0.0019; Simpson, P = 0.041). In addition, at the phylum and genus taxonomic levels, the dominant constituents in the gut microbiota changed significantly at different developmental stages. Our results also suggest that environmental exposure in the early stages of development has the greatest impact on the gut microbiota. The results of this study reveal the general rule of gut microbiota succession in the A. cerana life cycle. This study not only deepens our understanding of the colonization pattern of the gut microbiota in workers but also provides more comprehensive information for exploring the colonization of the gut microbiota in insects and other animals.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
24
|
Compo NR, Mieles-Rodriguez L, Gomez DE. Fecal Bacterial Microbiota of Healthy Free-Ranging, Healthy Corralled, and Chronic Diarrheic Corralled Rhesus Macaques ( Macaca mulatta). Comp Med 2021; 71:152-165. [PMID: 33814032 DOI: 10.30802/aalas-cm-20-000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A clinical challenge to nearly every primate facility in North America is chronic idiopathic diarrhea (CID), the pathogenesis of which has yet to be fully elucidated. However, wild macaques appear resistant to CID, a trend that we observed in the free-ranging population of the Caribbean Primate Research Center. The gastrointestinal microbiota has been shown to have a significant role in the pathogenesis of disease and in maintaining normal health and development of the gut. In humans, chronic diarrhea is associated with alteration of the gut microbiota, which has lower bacterial diversity than does the microbiota of healthy humans. The current study was designed to describe and compare the fecal bacterial microbiota of healthy corralled, CID corralled, and healthy, free-ranging macaques. Fresh fecal samples were collected from healthy corralled (HC; n = 30) and CID (n = 27) rhesus macaques and from healthy macaques from our free-ranging colony (HF; n = 43). We excluded macaques that had received antibiotics during the preceding 60 d (90 d for healthy animals). Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced and compared with known databases. The relative abundance of Proteobacteria was higher in CID animals than HC animals, but otherwise few differences were found between these 2 groups. HF macaques were differentially enriched with Christensenellaceae and Helicobacter, which are highly associated with a 'healthy' gut in humans, as compared to corralled animals, whereas CID animals were enriched with Proteobacteria, which are associated with dysbiosis in other species. These results indicate that environment has a greater influence than health status on the gut microbiota. Furthermore, the current data provided targets for future studies on potential clinical interventions, such as probiotics and fecal transplants.
Collapse
Affiliation(s)
- Nicole R Compo
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, Sabana Seca, Puerto Rico; SoBran Bioscience, Norfolk, Virginia;,
| | - Luis Mieles-Rodriguez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, Sabana Seca, Puerto Rico
| | - Diego E Gomez
- Department of Large Animal Clinical Studies, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
The Fecal Bacterial Microbiota in Horses with Equine Recurrent Uveitis. Animals (Basel) 2021; 11:ani11030745. [PMID: 33803123 PMCID: PMC7998804 DOI: 10.3390/ani11030745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.
Collapse
|
26
|
Freeman DE. Retrograde intussusception of the descending colon in a neonatal foal. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. E. Freeman
- College of Veterinary Medicine Large Animal Clinical Sciences University of Florida Gainesville Florida USA
| |
Collapse
|
27
|
No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals (Basel) 2020; 10:ani10122309. [PMID: 33291496 PMCID: PMC7762139 DOI: 10.3390/ani10122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary There is increasing evidence for the importance of gut bacteria in animal health and disease. This is particularly relevant for gastrointestinal infections, such as parasitic worms, which share a niche with gut bacteria. Parasitic worms are highly prevalent in domestic horses and are a significant cause of disease in this population. This commentary explores the complex relationships between the most common parasitic worm in horses (cyathostomins) and gut bacteria, based on recent studies in horses and other species. We propose novel theories and avenues for research that harness these relationships and have the potential to improve control of parasitic worms, and overall equine health, in the future. Abstract The importance of the gut microbiome for host health has been the subject of intense research over the last decade. In particular, there is overwhelming evidence for the influence of resident microbiota on gut mucosal and systemic immunity; with significant implications for the outcome of gastrointestinal (GI) infections, such as parasitic helminths. The horse is a species that relies heavily on its gut microbiota for GI and overall health, and disturbances in this complex ecosystem are often associated with life-threatening disease. In turn, nearly all horses harbour parasitic helminths from a young age, the most prevalent of which are the small strongyles, or cyathostomins. Research describing the relationship between gut microbiota and cyathostomin infection is in its infancy, however, to date there is evidence of meaningful interactions between these two groups of organisms which not only influence the outcome of cyathostomin infection but have long term consequences for equine host health. Here, we describe these interactions alongside supportive evidence from other species and suggest novel theories and avenues for research which have the potential to revolutionize our approach to cyathostomin prevention and control in the future.
Collapse
|
28
|
Xing J, Liu G, Zhang X, Bai D, Yu J, Li L, Wang X, Su S, Zhao Y, Bou G, Dugarjaviin M. The Composition and Predictive Function of the Fecal Microbiota Differ Between Young and Adult Donkeys. Front Microbiol 2020; 11:596394. [PMID: 33343537 PMCID: PMC7744375 DOI: 10.3389/fmicb.2020.596394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023] Open
Abstract
The community of microorganisms inhabiting the gastrointestinal tract of monogastric herbivores played critical roles in the absorption of nutrients and keeping the host healthy. However, its establishment at different age groups has not been quantitatively and functionally examined. The knowledge of microbial colonization and its function in the intestinal tract of different-age donkeys is still limited. By applying the V3–V4 region of the bacterial 16S rRNA gene and functional prediction on fecal samples from different-age donkeys, we characterized the gut microbiota during the different age groups. In contrast to the adult donkeys, the gut microbiota diversity and richness of the young donkeys showed significantly less resemblance. The microbial data showed that diversity and richness increased with age, but a highly individual variation of microbial composition was observed at month 1. Principal coordinate analysis (PCoA) revealed a significant difference across five time points in the feces. The abundance of Bacteroides, Lactobacillus, and Odoribacter tended to decrease, while the proportion of Streptococcus was significantly increased with age. For functional prediction, the relative abundance of pathways had a significant difference in the feces across different age groups, for example, Terpenoids and Polyketides and Folding, Sorting, and Degradation (P < 0.05 or P < 0.01). The analysis of beta diversity (PCoA and LEfSe) and microbial functions predicted with PICRUSt (NSTIs) clearly divided the donkeys into foals (≤3 months old) and adults (≥7 months old). Microbial community composition and structure had distinctive features at each age group, in accordance with functional stability of the microbiota. Our findings established a framework for understanding the composition and function of the fecal microbiota to differ between young and adult donkeys.
Collapse
Affiliation(s)
- Jingya Xing
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Guiqin Liu
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China.,College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Xinzhuang Zhang
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Lanjie Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Xisheng Wang
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaofeng Su
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Yiping Zhao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
29
|
Tavenner MK, McDonnell SM, Biddle AS. Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals. Anim Microbiome 2020; 2:43. [PMID: 33499959 PMCID: PMC7807438 DOI: 10.1186/s42523-020-00060-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein. DCM foal microbiomes were more similar to their dams in week five and six than were SFM foals at the same age. Conclusions This study demonstrates the impact of management on the development of the foal gut microbiome in the first 6 weeks of life. The higher numbers of taxa within and between bacterial groups found in SFM dams and foals suggests more diversity and functional redundancy in their gut microbiomes, which could lend greater stability and resiliency to these communities. The colonization of lactic acid bacteria in the early life of DCM foals suggests enrichment in response to the availability of dams’ feed. Thus, management type is an important driver of gut microbiome establishment on horses, and we may look to semi-feral horses for guidance in defining a healthy gut microbiome for domestic horses. Supplementary Information Supplementary information accompanies this paper at 10.1186/s42523-020-00060-6.
Collapse
Affiliation(s)
- Meredith K Tavenner
- Department of Animal and Food Sciences, University of Delaware, College of Agriculture and Natural Resources, Newark, DE, 19711, USA
| | - Sue M McDonnell
- Havemeyer Equine Behavior Laboratory, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - Amy S Biddle
- Department of Animal and Food Sciences, University of Delaware, College of Agriculture and Natural Resources, Newark, DE, 19711, USA.
| |
Collapse
|
30
|
Liu Y, Bailey KE, Dyall-Smith M, Marenda MS, Hardefeldt LY, Browning GF, Gilkerson JR, Billman-Jacobe H. Faecal microbiota and antimicrobial resistance gene profiles of healthy foals. Equine Vet J 2020; 53:806-816. [PMID: 33030244 DOI: 10.1111/evj.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The human and domestic animal faecal microbiota can carry various antimicrobial resistance genes (ARGs), especially if they have been exposed to antimicrobials. However, little is known about the ARG profile of the faecal microbiota of healthy foals. A high-throughput qPCR array was used to detect ARGs in the faecal microbiota of healthy foals. OBJECTIVES To characterise the faecal microbiota and ARG profiles in healthy Australian foals aged less than 1 month. STUDY DESIGN Observational study. METHODS The faecal microbiota and ARG profiles of 37 Thoroughbred foals with no known gastrointestinal disease or antimicrobial treatment were determined using 16S rRNA gene sequencing and a high-throughput ARG qPCR array. Each foal was sampled on one occasion. RESULTS Firmicutes and Bacteroidetes were dominant in the faecal microbiota. Foals aged 1-2 weeks had significantly lower microbiota richness than older foals. Tetracycline resistance genes were the most common ARGs in the majority of foals, regardless of age. ARGs of high clinical concern were rarely detected in the faeces. The presence of ARGs was associated with the presence of class I integron genes. MAIN LIMITATIONS Samples were collected for a case-control study so foals were not sampled longitudinally, and thus the development of the microbiota as individual foals aged could not be proven. The history of antimicrobial treatment of the dams was not collected and may have affected the microbiota of the foals. CONCLUSION The ARGs in foal faeces varied concomitantly with age-related microbiota shifts. The high abundance of tetracycline resistance genes was likely due to the dominance of Bacteroides spp.
Collapse
Affiliation(s)
- Yuhong Liu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Kirsten E Bailey
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Michael Dyall-Smith
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Laura Y Hardefeldt
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - James R Gilkerson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| |
Collapse
|
31
|
van Best N, Rolle-Kampczyk U, Schaap FG, Basic M, Olde Damink SWM, Bleich A, Savelkoul PHM, von Bergen M, Penders J, Hornef MW. Bile acids drive the newborn's gut microbiota maturation. Nat Commun 2020; 11:3692. [PMID: 32703946 PMCID: PMC7378201 DOI: 10.1038/s41467-020-17183-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Following birth, the neonatal intestine is exposed to maternal and environmental bacteria that successively form a dense and highly dynamic intestinal microbiota. Whereas the effect of exogenous factors has been extensively investigated, endogenous, host-mediated mechanisms have remained largely unexplored. Concomitantly with microbial colonization, the liver undergoes functional transition from a hematopoietic organ to a central organ of metabolic regulation and immune surveillance. The aim of the present study was to analyze the influence of the developing hepatic function and liver metabolism on the early intestinal microbiota. Here, we report on the characterization of the colonization dynamics and liver metabolism in the murine gastrointestinal tract (n = 6-10 per age group) using metabolomic and microbial profiling in combination with multivariate analysis. We observed major age-dependent microbial and metabolic changes and identified bile acids as potent drivers of the early intestinal microbiota maturation. Consistently, oral administration of tauro-cholic acid or β-tauro-murocholic acid to newborn mice (n = 7-14 per group) accelerated postnatal microbiota maturation.
Collapse
Affiliation(s)
- N van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - U Rolle-Kampczyk
- Department of Molecular Systems Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - F G Schaap
- Department of General Surgery, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - M Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - S W M Olde Damink
- Department of General Surgery, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - A Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - P H M Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - M von Bergen
- Department of Molecular Systems Biology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - J Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
- School of Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.
| | - M W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany.
| |
Collapse
|
32
|
Fang S, Chen X, Pan J, Chen Q, Zhou L, Wang C, Xiao T, Gan QF. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG). BMC Microbiol 2020; 20:116. [PMID: 32410629 PMCID: PMC7227296 DOI: 10.1186/s12866-020-01797-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The mammalian intestinal tract harbors diverse and dynamic microbial communities that play pivotal roles in host health, metabolism, immunity, and development. Average daily gain (ADG) is an important growth trait in meat rabbit industry. The effects of gut microbiota on ADG in meat rabbits are still unknown. Results In this study, we investigated the dynamic distribution of gut microbiota in commercial Ira rabbits from weaning to finishing and uncover the relationship between the microbiota and average daily gain (ADG) via 16S rRNA gene sequencing. The results indicated that the richness and diversity of gut microbiota significantly increased with age. Gut microbial structure was less variable among finishing rabbits than among weaning rabbits. The relative abundances of the dominant phyla Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria, and the 15 predominant genera significantly varied with age. Metagenomic prediction analysis showed that both KOs and KEGG pathways related to the metabolism of monosaccharides and vitamins were enriched in the weaning rabbits, while those related to the metabolism of amino acids and polysaccharides were more abundant in the finishing rabbits. We identified 34 OTUs, 125 KOs, and 25 KEGG pathways that were significantly associated with ADG. OTUs annotation suggested that butyrate producing bacteria belong to the family Ruminococcaceae and Bacteroidales_S24-7_group were positively associated with ADG. Conversely, Eubacterium_coprostanoligenes_group, Christensenellaceae_R-7_group, and opportunistic pathogens were negatively associated with ADG. Both KOs and KEGG pathways correlated with the metabolism of vitamins, basic amino acids, and short chain fatty acids (SCFAs) showed positive correlations with ADG, while those correlated with aromatic amino acids metabolism and immune response exhibited negative correlations with ADG. In addition, our results suggested that 10.42% of the variation in weaning weight could be explained by the gut microbiome. Conclusions Our findings give a glimpse into the dynamic shifts in gut microbiota of meat rabbits and provide a theoretical basis for gut microbiota modulation to improve ADG in the meat rabbit industry.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuan Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahua Pan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaohui Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwen Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Fu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
33
|
Langner K, Blaue D, Schedlbauer C, Starzonek J, Julliand V, Vervuert I. Changes in the faecal microbiota of horses and ponies during a two-year body weight gain programme. PLoS One 2020; 15:e0230015. [PMID: 32191712 PMCID: PMC7082044 DOI: 10.1371/journal.pone.0230015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is a major health concern in many domesticated equids animals since it is related to metabolic abnormalities such as insulin dysregulation, hyperlipidaemia or laminitis. Ponies especially are known as "easy keepers" and are often affected by obesity and its related metabolic disorders. Research in the last decade indicated that the intestinal microbiota may play an important role in the development of obesity, at least in humans. Therefore, the objective of our study was to characterize changes in the faecal microbiota during a two-year weight gain programme which compared ponies and warmblood horses. For this purpose, 10 Shetland ponies and ten warmblood horses were fed a ration which provided 200% of their maintenance energy requirement over two years. Feed intake, body weight, body condition and cresty neck score were recorded weekly. At three standardized time points faecal samples were collected to characterize the faecal microbiota and its fermentation products such as short chain fatty acids and lactate. Next generation sequencing was used for the analysis of the faecal microbiota. During body weight gain the richness of the faecal microbiota decreased in ponies. Besides changes in the phylum Firmicutes in ponies that were already described in human studies, we found a decrease of the phylum Fibrobacteres in horses and an increase of the phylum Actinobacteria. We were also able to show that the phylum Fibrobacteres is more common in the microbiota of horses than in the microbiota of ponies. Therefore, the fibrolytic phylum Fibrobacteres seems to be an interesting phylum in the equine microbiota that should receive more attention in future studies.
Collapse
Affiliation(s)
- Katharina Langner
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
| | - Dominique Blaue
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
| | - Carola Schedlbauer
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
| | - Janine Starzonek
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
| | - Veronique Julliand
- PAM UMR A 02.102, AgroSup Dijon, Université Bourgogne Franche- Comte, France
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany
| |
Collapse
|
34
|
Edwards JE, Schennink A, Burden F, Long S, van Doorn DA, Pellikaan WF, Dijkstra J, Saccenti E, Smidt H. Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim Microbiome 2020; 2:8. [PMID: 33499942 PMCID: PMC7807894 DOI: 10.1186/s42523-020-00027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Compared to horses and ponies, donkeys have increased degradation of dietary fiber. The longer total mean retention time of feed in the donkey gut has been proposed to be the basis of this, because of the increased time available for feed to be acted upon by enzymes and the gut microbiota. However, differences in terms of microbial concentrations and/or community composition in the hindgut may also underpin the increased degradation of fiber in donkeys. Therefore, a study was conducted to assess if differences existed between the fecal microbiota of pony, donkey and hybrids derived from them (i.e. pony × donkey) when fed the same forage diet. RESULTS Fecal community composition of prokaryotes and anaerobic fungi significantly differed between equine types. The relative abundance of two bacterial genera was significantly higher in donkey compared to both pony and pony x donkey: Lachnoclostridium 10 and 'probable genus 10' from the Lachnospiraceae family. The relative abundance of Piromyces was significantly lower in donkey compared to pony × donkey, with pony not significantly differing from either of the other equine types. In contrast, the uncultivated genus SK3 was only found in donkey (4 of the 8 animals). The number of anaerobic fungal OTUs was also significantly higher in donkey than in the other two equine types, with no significant differences found between pony and pony × donkey. Equine types did not significantly differ with respect to prokaryotic alpha diversity, fecal dry matter content or fecal concentrations of bacteria, archaea and anaerobic fungi. CONCLUSIONS Donkey fecal microbiota differed from that of both pony and pony × donkey. These differences related to a higher relative abundance and diversity of taxa with known, or speculated, roles in plant material degradation. These findings are consistent with the previously reported increased fiber degradation in donkeys compared to ponies, and suggest that the hindgut microbiota plays a role. This offers novel opportunities for pony and pony × donkey to extract more energy from dietary fiber via microbial mediated strategies. This could potentially decrease the need for energy dense feeds which are a risk factor for gut-mediated disease.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| | - A. Schennink
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
- Present address: Micreos Human Health B.V, Bilthoven, Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - S. Long
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - E. Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
35
|
Su S, Zhao Y, Liu Z, Liu G, Du M, Wu J, Bai D, Li B, Bou G, Zhang X, Dugarjaviin M. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. Microbiologyopen 2020; 9:1085-1101. [PMID: 32153142 PMCID: PMC7294312 DOI: 10.1002/mbo3.1020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota plays an important role in the health and metabolism of the host. Next‐generation sequencing technology has enabled the characterization of the gut microbiota of several animal species. We analyzed the intestinal microbiota in six different parts of the gastrointestinal tracts (GITs) of five Mongolian horses by sequencing the 16S rRNA gene V3‐V4 hypervariable region. All horses were kept in the natural habitat of the Inner Mongolia grassland. Significant differences were observed among the microbiota compositions of the distinct GIT regions. In addition, while the microbial community structures of the small and large intestine were significantly different, those of the cecum and colon were similar. In the foregut, Firmicutes (65%) and Proteobacteria (23%) were the most abundant, while Firmicutes (45%) and Bacteroidetes (42%) were the most common in the hindgut. At the level of family, Ruminococcaceae (p = .203), Lachnospiraceae (p = .157), Rikenellaceae (p = .122), and Prevotellaceae (p = .068) were predominant in the hindgut, while the relative abundance of the Akkermansia genus (5.7%, p = .039) was higher in the ventral colon. In terms of the putative functions, the ratio of microbial abundance in the different parts of the GIT was similar, the result can help characterize the gut microbial structure of different animals.
Collapse
Affiliation(s)
- Shaofeng Su
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China.,Biotechnology Research Centre, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Zongzheng Liu
- Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao, China
| | - Guiqin Liu
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China.,Agricultural College, Liaocheng University, Liaocheng, China
| | - Ming Du
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wu
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Bei Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
36
|
Leclere M, Costa MC. Fecal microbiota in horses with asthma. J Vet Intern Med 2020; 34:996-1006. [PMID: 32128892 PMCID: PMC7096608 DOI: 10.1111/jvim.15748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastrointestinal microbiota can be influenced by several factors, including diet and systemic inflammation, and in turn could act as a modulator of the allergic response. Fecal microbiota of horses with asthma has not been described. HYPOTHESIS/OBJECTIVES Analyze the bacterial fecal microbiota of horses with and without asthma under different environment and diet conditions, during both remission and exacerbation. METHODS Prospective observational study. Feces from 6 asthmatic and 6 healthy horses were collected under 3 different conditions: on pasture, housed indoors receiving good quality hay ("good hay"), and housed indoors receiving poor quality hay ("dusty hay"). Sequencing was performed using an Illumina MiSeq platform and data were processed using the software mothur v.1.41.3 and LEfSe. RESULTS In horses with asthma, low-abundance bacteria were more affected by changes in environment and diet (ie, when horses were experiencing an exacerbation), as shown by changes in membership and results from the LEfSe analysis. There was a significant increase in the relative abundance of Fibrobacter in healthy horses eating hay, a change that was not observed in horses with asthma. CONCLUSIONS AND CLINICAL IMPORTANCE The intestinal microbiota of horses with asthma does not adapt in the same way to changes in diet and environment compared to the microbiota of healthy horses. Mechanisms explaining how airway obstruction and inflammation could influence the intestinal microbiota and how in turn this microbiota could modulate systemic inflammation in asthmatic horses deserves further investigation.
Collapse
Affiliation(s)
- Mathilde Leclere
- Clinical Sciences Department, Université de Montréal, Québec, Canada
| | - Marcio C Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Québec, Canada
| |
Collapse
|
37
|
Garber A, Hastie P, Murray JA. Factors Influencing Equine Gut Microbiota: Current Knowledge. J Equine Vet Sci 2020; 88:102943. [PMID: 32303307 DOI: 10.1016/j.jevs.2020.102943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Gastrointestinal microbiota play a crucial role in nutrient digestion, maintaining animal health and welfare. Various factors may affect microbial balance often leading to disturbances that may result in debilitating conditions such as colic and laminitis. The invention of next-generation sequencing technologies and bioinformatics has provided valuable information on the effects of factors influencing equine gut microbiota. Among those factors are nutrition and management (e.g., diet, supplements, exercise), medical substances (e.g., antimicrobials, anthelmintics, anesthetics), animal-related factors (breed and age), various pathological conditions (colitis, diarrhea, colic, laminitis, equine gastric ulcer syndrome), as well as stress-related factors (transportation and weaning). The aim of this review is to assimilate current knowledge on equine microbiome studies, focusing on the effect of factors influencing equine gastrointestinal microbiota. Decrease in microbial diversity and richness leading to decrease in stability; decrease in Lachnospiraceae and Ruminococcaceae family members, which contribute to gut homeostasis; increase in Lactobacillus and Streptococcus; decrease in lactic acid utilizing bacteria; decrease in butyrate-producing bacteria that have anti-inflammatory properties may all be considered as a negative change in equine gut microbiota. Shifts in Firmicutes and Bacteroidetes have often been observed in the literature in response to certain treatments or when describing healthy and unhealthy animals; however, these shifts are inconsistent. It is time to move forward and use the knowledge now acquired to start manipulating the microbiota of horses.
Collapse
Affiliation(s)
- Anna Garber
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | - Peter Hastie
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jo-Anne Murray
- School of Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Husso A, Jalanka J, Alipour MJ, Huhti P, Kareskoski M, Pessa-Morikawa T, Iivanainen A, Niku M. The composition of the perinatal intestinal microbiota in horse. Sci Rep 2020; 10:441. [PMID: 31949191 PMCID: PMC6965133 DOI: 10.1038/s41598-019-57003-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The establishment of the intestinal microbiota is critical for the digestive and immune systems. We studied the early development of the rectal microbiota in horse, a hindgut fermenter, from birth until 7 days of age, by qPCR and 16S rRNA gene amplicon sequencing. To evaluate initial sources of the foal microbiota, we characterised dam fecal, vaginal and oral microbiotas. We utilised an amplicon sequence variant (ASV) pipeline to maximise resolution and reproducibility. Stringent ASV filtering based on prevalence and abundance in samples and controls purged contaminants while preserving intestinal taxa. Sampled within 20 minutes after birth, rectal meconium contained small amounts of diverse bacterial DNA, with a profile closer to mare feces than mouth. 24 hours after birth, rectum was colonised by Firmicutes and Proteobacteria, some foals dominated by single genera. At day 7, the rectal genera were still different from adult feces. The mare vaginal microbiota contributed to 24 h and 7 day microbiotas. It contained few lactobacilli, with Corynebacterium, Porphyromonas, Campylobacter and Helcococcus as the most abundant genera. In the oral mucosa, Gemella was extremely abundant. Our observations indicate that bacteria or bacterial components are present in the intestine immediately after birth, but the newborn microbiota changes rapidly.
Collapse
Affiliation(s)
- A Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - J Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M J Alipour
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - P Huhti
- Saharan ravitalli (Sahara stud), Haapamäki, Finland
| | - M Kareskoski
- Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - T Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - A Iivanainen
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - M Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Mols KL, Boe-Hansen GB, Mikkelsen D, Bryden WL, Cawdell-Smith AJ. Prenatal establishment of the foal gut microbiota: a critique of the in utero colonisation hypothesis. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria colonisation of the foal’s gastrointestinal tract (GIT) is a critical developmental stage, effecting subsequent immunological and health outcomes. It has long been thought that the equine fetus develops in a sterile intrauterine environment and GIT colonisation commences at birth. Research now suggests that bacteria isolated from amniotic fluid are the initial colonisers of the fetal GIT, and exposure to the dam’s microbiota and the external environment during birth provide supplementary colonisation. This in utero colonisation hypothesis has only recently been examined in the horse and microbiota were detected in the amniotic fluid and meconium of healthy equine pregnancies. This review highlights the possible colonisation routes of these bacteria into the fetal compartments and examines their likely origins from the existing maternal microbiome. However, the current data describing the amniotic microbiota of the horse are limited and there is a need for research to fill this gap. Understanding the significance of intrauterine microbes for foal GIT colonisation may provide strategies to improve neonatal health.
Collapse
|
40
|
Leng J, Walton G, Swann J, Darby A, La Ragione R, Proudman C. "Bowel on the Bench": Proof of Concept of a Three-Stage, In Vitro Fermentation Model of the Equine Large Intestine. Appl Environ Microbiol 2019; 86:e02093-19. [PMID: 31676474 PMCID: PMC6912081 DOI: 10.1128/aem.02093-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota of the horse, an animal of huge economic and social importance worldwide, is essential to the health of the animal. Understanding the intestinal ecosystem and its dynamic interaction with diet and dietary supplements currently requires the use of experimental animals, with consequent welfare and financial constraints. Here, we describe the development and assessment, using multiple analytical platforms, of a three-vessel, continuous-flow, in vitro model of the equine hindgut. After inoculation of the model with fresh horse feces, the bacterial communities established in each vessel had a taxonomic distribution similar to that of the source animal. Short-chain fatty acid (SCFA) and branched-chain fatty acid (BCFA) production within the model at steady state was consistent with the expected bacterial function, although higher concentrations of some SCFA/BCFA relative to those in the ex vivo gut content were apparent. We demonstrate the intermodel repeatability and the ability of the model to capture some aspects of individual variation in bacterial community profiles. The findings of this proof-of-concept study, including recognition of the limitions of the model, support its future development as a tool for investigating the impact of disease, nutrition, dietary supplementation, and medication on the equine intestinal microbiota.IMPORTANCE The equine gut model that we have developed and describe has the potential to facilitate the exploration of how the equine gut microbiota is affected by diet, disease, and medication. It is a convenient, cost-effective, and welfare-friendly alternative to in vivo research models.
Collapse
Affiliation(s)
- J Leng
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - G Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - J Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - A Darby
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - R La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - C Proudman
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
41
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
42
|
Gomez DE, Galvão KN, Rodriguez-Lecompte JC, Costa MC. The Cattle Microbiota and the Immune System: An Evolving Field. Vet Clin North Am Food Anim Pract 2019; 35:485-505. [PMID: 31590899 DOI: 10.1016/j.cvfa.2019.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New insights into the host-microbiota relationship have recently emerged with the advancement of molecular technologies such as next-generation sequencing. This article presents the current knowledge regarding the interaction between bacteria and the immune system of the gut, the uterus, and the mammary gland of cattle.
Collapse
Affiliation(s)
- Diego E Gomez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32608, USA.
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32608, USA
| | - Juan C Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Marcio C Costa
- Department of Veterinary Biomedicine, University of Montreal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
43
|
Lindenberg F, Krych L, Kot W, Fielden J, Frøkiær H, van Galen G, Nielsen DS, Hansen AK. Development of the equine gut microbiota. Sci Rep 2019; 9:14427. [PMID: 31594971 PMCID: PMC6783416 DOI: 10.1038/s41598-019-50563-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Shortly after birth the mammalian gut is colonized, by a transient microbiota, highly susceptible to environment and diet, that eventually stabilizes and becomes the resident gut microbiota. In a window of opportunity during the colonization, oral tolerance is established towards resident bacteria. In this study, the development of the equine gut microbiota was investigated in ten foals from parturition until post weaning. We found great differences in the core species of the gut microbiota composition between time-matched samples on Day 7 and 20 post-partum. Between day 20 and Day 50 post-partum, we saw the gut microbiota became increasingly dominated by fiber fermenting species. After Day 50, no significant changes in species abundance were observed. Gene expression analysis of pro- and anti-inflammatory cytokines in the blood revealed no significant changes before and after weaning. In summary, relative stability of the gut microbiota was reached within 50 days post-partum and, weaning did not have a major impact on the microbial composition.
Collapse
Affiliation(s)
- F Lindenberg
- Brogaarden Aps, Copenhagen, Denmark. .,Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - L Krych
- Faculty of Sciences, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - W Kot
- Department of Environmental Sciences, Aarhus University, København, Denmark
| | | | - H Frøkiær
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G van Galen
- Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D S Nielsen
- Faculty of Sciences, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - A K Hansen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Affiliation(s)
- P. R. Murcia
- MRC‐University of Glasgow Centre for Virus Research Glasgow UK
| |
Collapse
|
45
|
Lindenberg F, Krych L, Fielden J, Kot W, Frøkiær H, van Galen G, Nielsen DS, Hansen AK. Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Sci Rep 2019; 9:12674. [PMID: 31481726 PMCID: PMC6722064 DOI: 10.1038/s41598-019-49081-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Billions of bacteria inhabit the gastrointestinal tract. Immune-microbial cross talk is responsible for immunological homeostasis, and symbiotic microbial species induce regulatory immunity, which helps to control the inflammation levels. In this study we aimed to identify species within the equine intestinal microbiota with the potential to induce regulatory immunity. These could be future targets for preventing or treating low-grade chronic inflammation occurring as a result of intestinal microbial changes and disruption of the homeostasis. 16S rRNA gene amplicon sequencing was performed on samples of intestinal microbial content from ileum, cecum, and colon of 24 healthy horses obtained from an abattoir. Expression of genes coding for IL-6, IL-10, IL-12, IL-17, 18 s, TNFα, TGFβ, and Foxp3 in the ileum and mesenteric lymph nodes was measured by qPCR. Intestinal microbiota composition was significantly different in the cecum and colon compared to the ileum, which contains large abundances of Proteobacteria. Especially members of the Clostridiales order correlated positively with the regulatory T-cell transcription factor Foxp3 and so did the phylum Verrucomicrobia. We conclude that Clostridiales and Verrucomicrobia have the potential to induce regulatory immunity and are possible targets for intestinal microbial interventions aiming at regulatory immunity improvement.
Collapse
Affiliation(s)
- F Lindenberg
- Brogaarden Aps, Lynge, Denmark. .,University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Copenhagen, Denmark.
| | - L Krych
- University of Copenhagen, Faculty of Sciences, Department of Food Science, Copenhagen, Denmark
| | | | - W Kot
- Department of Environmental Sciences, Aarhus University, Aarhus, Denmark
| | - H Frøkiær
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Copenhagen, Denmark
| | - G van Galen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Copenhagen, Denmark
| | - D S Nielsen
- University of Copenhagen, Faculty of Sciences, Department of Food Science, Copenhagen, Denmark
| | - A K Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Copenhagen, Denmark
| |
Collapse
|
46
|
Kraimi N, Dawkins M, Gebhardt-Henrich SG, Velge P, Rychlik I, Volf J, Creach P, Smith A, Colles F, Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol Behav 2019; 210:112658. [PMID: 31430443 DOI: 10.1016/j.physbeh.2019.112658] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence of a pivotal role of the gut microbiota (GUT-M) in key physiological functions in vertebrates. Many studies discuss functional implications of the GUT-M not only on immunity, growth, metabolism, but also on brain development and behavior. However, while the influence of the microbiota-gut-brain axis (MGBA) on behavior is documented in rodents and humans, data on farm animals are scarce. This review will first report the well-known influence of the MGBA on behavior in rodent and human and then describe its influence on emotion, memory, social and feeding behaviors in farm animals. This corpus of experiments suggests that a better understanding of the effects of the MGBA on behavior could have large implications in various fields of animal production. Specifically, animal welfare and health could be improved by selection, nutrition and management processes that take into account the role of the GUT-M in behavior.
Collapse
Affiliation(s)
- Narjis Kraimi
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France
| | - Marian Dawkins
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | | | - Philippe Velge
- ISP, INRA, Université de Tours, UMR 1282, Centre Val de Loire, 37380 Nouzilly, France
| | - Ivan Rychlik
- Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jiří Volf
- Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Adrian Smith
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Frances Colles
- University of Oxford, Department of Zoology, OX1 3PS Oxford, United Kingdom
| | - Christine Leterrier
- INRA, CNRS, IFCE, Université de Tours, UMR 85, Centre Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
47
|
Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9:11121. [PMID: 31366962 PMCID: PMC6668452 DOI: 10.1038/s41598-019-47204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with specific compositional alterations of the developing microbiome; in particular, the faecal microbiota of animals with heavy worm infection burdens was characterised by lower microbial richness, and alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino acids and glucose were increased in faecal samples from the same cohort, which indicated the likely occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections in young livestock are associated with significant alterations to the GI microbiota, which may impact on both metabolism and development of acquired immunity. This knowledge will direct future studies aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young livestock.
Collapse
|
48
|
Fecal Microbiota, Lactic Acid and Short Chain Fatty Levels of Infants Following Rotavirus Infection Revealed by Illumina Miseq High-Throughput Sequencing and HPLC Method. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.68389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
De La Torre U, Henderson JD, Furtado KL, Pedroja M, Elenamarie O, Mora A, Pechanec MY, Maga EA, Mienaltowski MJ. Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning. PLoS One 2019; 14:e0216211. [PMID: 31039168 PMCID: PMC6490953 DOI: 10.1371/journal.pone.0216211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In this study, we hypothesized that gut establishment in the foal transitioning from a diet of milk to a diet of grain, forage, and pasture would be detectable through analyses of the fecal microbiotas. Fecal samples from 37 sets of foals and mares were collected at multiple time points ranging from birth to weaning. Bacterial DNA was isolated from the samples, and the V4 domain of bacterial 16S rRNA genes were amplified via polymerase chain reaction. Next generation sequencing was then performed on the resulting amplicons, and analyses were performed to characterize the microbiome as well as the relative abundance of microbiota present. We found that bacterial population compositions followed a pattern throughout the early life of the foal in an age-dependent manner. As foals transitioned from milk consumption to a forage and grain diet, there were recognizable changes in fecal microbial compositions from initial populations predominant in the ability to metabolize milk to populations capable of utilizing fibrous plant material. We were also able to recognize differences in microbial populations amongst diarrheic foals as well as microbial population differences associated with differences in management styles between facilities. Future efforts will gauge the effects of lesser abundant bacterial populations that could also be essential to GI health, as well as to determine how associations between microbial population profiles and animal management practices can be used to inform strategies for improving upon the health and growth of horses overall.
Collapse
Affiliation(s)
- Ubaldo De La Torre
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - John D. Henderson
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Kathleen L. Furtado
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Madeleine Pedroja
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - O’Malley Elenamarie
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Anthony Mora
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Monica Y. Pechanec
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Elizabeth A. Maga
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Michael J. Mienaltowski
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
50
|
Urubschurov V, Stroebel C, Günther E, Romanowski K, Büsing K, Zeyner A. Effect of oral supplementation of probiotic strains of Lactobacillus rhamnosus and Enterococcus faecium on the composition of the faecal microbiota of foals. J Anim Physiol Anim Nutr (Berl) 2019; 103:915-924. [PMID: 30854744 DOI: 10.1111/jpn.13079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Effects of probiotics on the intestinal microbiota of foals are yet insufficiently studied. The aim of this study was to investigate whether supplementation of Lactobacillus rhamnosus (DSM 7133) and Enterococcus faecium (DSM 7134) influences the bacterial composition of the faecal microbiota of foals. A total of 34 newborn foals were randomly assigned to the placebo group (PG, n = 16) and the treatment group (TG, n = 18). From day 1 to day 14 of life, foals orally received 3 ml of either a probiotic preparation (1.05 × 109 CFU E. faecium and 4.50 × 108 CFU L. rhamnosus) or placebo (carrier) once a day. Faeces were collected directly from the rectum immediately after birth (meconium) and at day 14 and day 56 of life. Samples of 12 foals per group were selected for microbiological analysis. DNA was extracted and used for polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR. No DNA or amplicons were obtained from meconium. There were no differences in richness of bands and Shannon index of diversity regarding the Clostridium cluster XIVa between groups. Cluster analysis and principal coordinate analysis of DGGE data showed a clear effect of age. Band-based similarity of bacterial clusters (Dice coefficient) decreased from day 14 to day 56 of life (p < 0.001) in PG foals only resulting in lower similarity in PG versus TG foals when 2 month old (p < 0.01). Five of thirty re-amplified bands were identified on species level. Others were assigned either to family (mainly Lachnospiraceae) or genus level (Akkermansia). The bands related to Akkermansia muciniphila or Akkermansia spp. appeared almost in all DGGE profiles. Two-week supplementation of the probiotic preparation to foals had no significant impact on the composition of the faecal microbiota but it appears to have prevented the reduction of bacterial similarity between 2 and 8 weeks of age observed in not treated foals.
Collapse
Affiliation(s)
- Vladimir Urubschurov
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christina Stroebel
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elena Günther
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Kirsten Büsing
- District Administration Vulkaneifel, Department 8: Veterinary Office and Agriculture, Daun, Germany
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|