1
|
Zahri A, Ahlamine M, Abou-Elaaz FZ, Talimi H, El Berbri I, Balenghien T, Bourquia M. Diversity of biting midges, mosquitoes and sand flies at four dog shelters in rural and peri-urban areas of Central Morocco. Parasite 2024; 31:57. [PMID: 39331804 PMCID: PMC11433837 DOI: 10.1051/parasite/2024057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024] Open
Abstract
Blood-feeding arthropods are involved in the transmission of several pathogens that have a major impact on public health. Entomological investigations highlighted the composition, abundance, and diversity of flying hematophagous arthropods at four dog shelters located in central Morocco during an eight-month study, with the aim of discussing their vectorial roles and assessing the risk of these shelters as foci for zoonotic diseases. Monitoring of the arthropod fauna for 64 catch nights resulted in the collection of 2,321 biting midges (Ceratopogonidae), 570 mosquitoes (Culicidae), and 475 sand flies (Psychodidae). Fourteen Culicoides species were recorded and dominant species were Culicoides imicola (55.96%), C. paolae (16.07%), C. circumscriptus (10.29%), and C. newsteadi (5.77%). Three mosquito species were collected, including Culex pipiens s.l. (96.84%), Culiseta longiareolata (2.80%), and Cx. perexiguus (0.36%). Ten sand fly species were collected, including seven Phlebotomus species (62.70%) and three Sergentomyia species (37.30%); Sergentomyia minuta was the most dominant species (34.31%), followed by Phlebotomus sergenti (32.42%), typical Ph. perniciosus (8.63%), Ph. alexandri (6.94%), and Ph. riouxi (6.52%). The coexistence of several vectors in these study areas indicates the potential circulation of a wide range of pathogens, including zoonotic ones, thus requiring the implementation of surveillance and control programs to prevent the emergence and spread of disease outbreaks.
Collapse
Affiliation(s)
- Abderrahmane Zahri
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Mehdi Ahlamine
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Fatima-Zahra Abou-Elaaz
- Geophysics, Natural Patrimony and Green Chemistry Research Centre (GEOPAC), Geo-Biodiversity and Natural Patrimony Laboratory (GEOBIOL), Scientific Institute, Mohammed V University Rabat Morocco
| | - Hasnaa Talimi
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc Casablanca Morocco
- Systems and Data Engineering Team, National School of Applied Sciences, Abdelmalek Essaâdi University Tangier Morocco
| | - Ikhlass El Berbri
- Microbiology, Immunology and Contagious Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Thomas Balenghien
- CIRAD, UMR ASTRE 34398 Montpellier France
- ASTRE, Université de Montpellier, CIRAD, INRAE Montpellier France
| | - Maria Bourquia
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| |
Collapse
|
2
|
de Klerk J, Tildesley M, Labuschagne K, Gorsich E. Modelling bluetongue and African horse sickness vector (Culicoides spp.) distribution in the Western Cape in South Africa using random forest machine learning. Parasit Vectors 2024; 17:354. [PMID: 39169433 PMCID: PMC11340078 DOI: 10.1186/s13071-024-06446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Culicoides biting midges exhibit a global spatial distribution and are the main vectors of several viruses of veterinary importance, including bluetongue (BT) and African horse sickness (AHS). Many environmental and anthropological factors contribute to their ability to live in a variety of habitats, which have the potential to change over the years as the climate changes. Therefore, as new habitats emerge, the risk for new introductions of these diseases of interest to occur increases. The aim of this study was to model distributions for two primary vectors for BT and AHS (Culicoides imicola and Culicoides bolitinos) using random forest (RF) machine learning and explore the relative importance of environmental and anthropological factors in a region of South Africa with frequent AHS and BT outbreaks. METHODS Culicoides capture data were collected between 1996 and 2022 across 171 different capture locations in the Western Cape. Predictor variables included climate-related variables (temperature, precipitation, humidity), environment-related variables (normalised difference vegetation index-NDVI, soil moisture) and farm-related variables (livestock densities). Random forest (RF) models were developed to explore the spatial distributions of C. imicola, C. bolitinos and a merged species map, where both competent vectors were combined. The maps were then compared to interpolation maps using the same capture data as well as historical locations of BT and AHS outbreaks. RESULTS Overall, the RF models performed well with 75.02%, 61.6% and 74.01% variance explained for C. imicola, C. bolitinos and merged species models respectively. Cattle density was the most important predictor for C. imicola and water vapour pressure the most important for C. bolitinos. Compared to interpolation maps, the RF models had higher predictive power throughout most of the year when species were modelled individually; however, when merged, the interpolation maps performed better in all seasons except winter. Finally, midge densities did not show any conclusive correlation with BT or AHS outbreaks. CONCLUSION This study yielded novel insight into the spatial abundance and drivers of abundance of competent vectors of BT and AHS. It also provided valuable data to inform mathematical models exploring disease outbreaks so that Culicoides-transmitted diseases in South Africa can be further analysed.
Collapse
Affiliation(s)
- Joanna de Klerk
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
| | - Michael Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Karien Labuschagne
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, 0110, South Africa
| | - Erin Gorsich
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
3
|
Pitchers KG, Boakye OD, Campeotto I, Daly JM. The Potential of Plant-Produced Virus-like Particle Vaccines for African Horse Sickness and Other Equine Orbiviruses. Pathogens 2024; 13:458. [PMID: 38921755 PMCID: PMC11206403 DOI: 10.3390/pathogens13060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
African horse sickness is a devastating viral disease of equids. It is transmitted by biting midges of the genus Culicoides with mortalities reaching over 90% in naïve horses. It is endemic to sub-Saharan Africa and is seasonally endemic in many parts of southern Africa. However, outbreaks in Europe and Asia have occurred that caused significant economic issues. There are attenuated vaccines available for control of the virus but concerns regarding the safety and efficacy means that alternatives are sought. One promising alternative is the use of virus-like particles in vaccine preparations, which have the potential to be safer and more efficacious as vaccines against African horse sickness. These particles are best made in a complex, eukaryotic system, but due to technical challenges, this may cause significant economic strain on the developing countries most affected by the disease. Therefore, this review also summarises the success so far, and potential, of recombinant protein expression in plants to reduce the economic strain of production.
Collapse
Affiliation(s)
- Kieran G. Pitchers
- One Virology, School of Veterinary Medicine and Science, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK;
| | - Oliver D. Boakye
- School of Biosciences, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK; (O.D.B.); (I.C.)
| | - Ivan Campeotto
- School of Biosciences, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK; (O.D.B.); (I.C.)
| | - Janet M. Daly
- One Virology, School of Veterinary Medicine and Science, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK;
| |
Collapse
|
4
|
Taesuji M, Rattanamas K, Yim PB, Ruenphet S. Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction. Animals (Basel) 2024; 14:1242. [PMID: 38672390 PMCID: PMC11047397 DOI: 10.3390/ani14081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Flinders Technology Associates (FTA) card, a cotton-based cellulose membrane impregnated with a chaotropic agent, effectively inactivates infectious microorganisms, lyses cellular material, and fixes nucleic acid. The aim of this study is to assess the stability and detection limit of various RNA viruses, especially the avian influenza virus (AIV), Newcastle disease virus (NDV), and African horse sickness virus (AHSV), on the FTA card, which could significantly impact virus storage and transport practices. To achieve this, each virus dilution was inoculated onto an FTA card and stored at room temperature in plastic bags for durations ranging from 1 week to 6 months. Following storage, the target genome was detected using conventional reverse transcription polymerase chain reaction. The present study demonstrated that the detection limit of AIV ranged from 1.17 to 6.17 EID50 values over durations ranging from 1 week to 5 months, while for NDV, it ranged from 2.83 to 5.83 ELD50 over the same duration. Additionally, the detection limit of AHSV was determined as 4.01 PFU for both 1 and 2 weeks, respectively. Based on the demonstrated effectiveness, stability, and safety implications observed in the study, FTA cards are recommended for virus storage and transport, thus facilitating the molecular detection and identification of RNA viral pathogens.
Collapse
Affiliation(s)
- Machimaporn Taesuji
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand;
| | - Khate Rattanamas
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
| | - Peter B. Yim
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
| | - Sakchai Ruenphet
- Master of Science Program in Animal Biotechnology, Mahanakorn University of Technology, Bangkok 10530, Thailand; (K.R.); (P.B.Y.)
- Immunology and Virology Department, Mahanakorn University of Technology, Bangkok 10530, Thailand
| |
Collapse
|
5
|
Calvo-Pinilla E, Jiménez-Cabello L, Utrilla-Trigo S, Illescas-Amo M, Ortego J. Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus. Int J Mol Sci 2024; 25:2065. [PMID: 38396742 PMCID: PMC10888608 DOI: 10.3390/ijms25042065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
African horse sickness (AHS) is a highly severe disease caused by a viral etiological agent, African horse sickness virus (AHSV). It is endemic in sub-Saharan Africa, while sporadic outbreaks have occurred in North Africa, Asia, and Europe, with the most recent cases in Thailand. AHSV transmission between equines occurs primarily by biting midges of the genus Culicoides, especially C. imicola, with a wide distribution globally. As research in horses is highly restricted due to a variety of factors, small laboratory animal models that reproduce clinical signs and pathology observed in natural infection of AHSV are highly needed. Here, we investigated the expression profile of several pro-inflammatory cytokines in target organs and serum of IFNAR (-/-) mice, to continue characterizing this established animal model and to go deep into the innate immune responses that are still needed.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28130 Valdeolmos, Spain; (L.J.-C.); (S.U.-T.); (M.I.-A.); (J.O.)
| | | | | | | | | |
Collapse
|
6
|
Poochipakorn C, Wonghanchao T, Huangsaksri O, Sanigavatee K, Joongpan W, Tongsangiam P, Charoenchanikran P, Chanda M. Effect of Exercise in a Vector-Protected Arena for Preventing African Horse Sickness Transmission on Physiological, Biochemical, and Behavioral Variables of Horses. J Equine Vet Sci 2023; 131:104934. [PMID: 37776920 DOI: 10.1016/j.jevs.2023.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
During an African horse sickness (AHS) outbreak, horses were able to exercise daily in a net-covered arena, yet the physiological responses to exercise in a netted arena was unknown. In a cross-over study design, eight horses performed a 39-minute aerobic exercise in conventional (CA) and vector-protected arenas (VPA). Horses were slower in some gaits and covered less distance in the VPA arena (P < .01). Cortisol release, hematology, and heart rate variability (HRV) were also examined. An interaction between the riding arena and time was observed in hematocrit (P = .0013), hemoglobin (P = .0012), and red blood cell count (P = .0027) and HRV variables, including mean beat-to-beat (RR) intervals (P < .0001), mean heart rate (P < .0001), sympathetic nervous system (SNS) index (P = .0038) and parasympathetic nervous system (PNS) index (P < .0001). Cortisol concentrations increased during exercise and 30 minutes postexercise in both arenas. Hematocrit, hemoglobin, and red blood cell count increased immediately postexercise in horses in VPA while remaining high from immediate post-exercise to 60 minutes postexercise in horses in CA. HRV decreased during exercise and was not different between horses in both arenas, but a higher RR interval and PNS index, corresponding to lower heart rate and SNS index, were detected during 30 to 60 minutes postexercise in horses in the VPA compared to the CA. Riding horses in different arenas impacted hematological and HRV variables. The greater RR intervals and PNS index, coinciding with the lower SNS index and heart rate, indicated parasympathetic dominance post-exercise in horses in VPA compared to CA.
Collapse
Affiliation(s)
- Chanoknun Poochipakorn
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thita Wonghanchao
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Onjira Huangsaksri
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Kanokpan Sanigavatee
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Weena Joongpan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand
| | - Pongphon Tongsangiam
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand
| | | | - Metha Chanda
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand; Thailand Equestrian Federation, Sports Authority of Thailand, Bangkok, Thailand.
| |
Collapse
|
7
|
de Klerk JN, Gorsich EE, Grewar JD, Atkins BD, Tennant WSD, Labuschagne K, Tildesley MJ. Modelling African horse sickness emergence and transmission in the South African control area using a deterministic metapopulation approach. PLoS Comput Biol 2023; 19:e1011448. [PMID: 37672554 PMCID: PMC10506717 DOI: 10.1371/journal.pcbi.1011448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.
Collapse
Affiliation(s)
- Joanna N. de Klerk
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Erin E. Gorsich
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - John D. Grewar
- South African Equine Health and Protocols NPC, Baker Square, Paardevlei, Cape Town, South Africa
| | - Benjamin D. Atkins
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Warren S. D. Tennant
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Karien Labuschagne
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
Kunanusont N, Taesuji M, Kulthonggate U, Rattanamas K, Mamom T, Thongsri K, Phannithi T, Ruenphet S. Longitudinal humoral immune response and maternal immunity in horses after a single live-attenuated vaccination against African horse sickness during the disease outbreak in Thailand. Vet World 2023; 16:1690-1694. [PMID: 37766699 PMCID: PMC10521193 DOI: 10.14202/vetworld.2023.1690-1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim African horse sickness (AHS) has become a newly emerging disease after an outbreak in northeastern Thailand in March 2020. Mass vaccination in horses with live-attenuated AHS virus (AHSV) vaccine is essential for AHS control and prevention. This study aimed to monitor the longitudinal humoral immune response before and after a single vaccination using a live-attenuated vaccine against AHS in stallions, mares, and pregnant mares, including maternal immunity in foals born from pregnant mares during the outbreak in Thailand. Materials and Methods A total of 13 stallions and 23 non-pregnant and 21 pregnant mares were vaccinated with live-attenuated AHSV vaccines. Serum samples from selected horses were collected on the day of vaccination and 1, 6, 8, 9, 10, and 12-months post-vaccination. Furthermore, seven serum samples of foals born from vaccinated pregnant mares were collected on parturition date and 1, 3, and 6-months old. The antibody titer against AHS in all collected serum samples was evaluated using a commercial enzyme-linked immunosorbent assay kit. All data were analyzed for mean and standard deviation for each group of samples using a spreadsheet program. Antibody titers between times were analyzed using a one-way analysis of variance as repeated measurement, and antibody titers between horse groups were analyzed using a general linear model for statistically significant differences when p < 0.05. Results In stallion and non-pregnant mare groups, there were no statistically significant differences in antibody titers in all 6 time periods after vaccination. The antibody titer in the pregnant mare group showed a non-statistically significant difference between each gestation stage, except at 8 months post-vaccination. Furthermore, increasing antibody titers on days 1 and 3 after receiving colostrum in foals indicate the major role of transcolostral antibody transfer for AHS. Conclusion This study demonstrated that a single AHS vaccination using a live-attenuated vaccine could stimulate high antibody titers sufficient for AHS control and prevention during the outbreak in Thailand. Similarly, the antibody response of vaccinated horses of both genders, including various stages of pregnant mares, was statistically not different.
Collapse
Affiliation(s)
- Nutnaree Kunanusont
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Machimaporn Taesuji
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Usakorn Kulthonggate
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Khate Rattanamas
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Thanongsak Mamom
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Kosin Thongsri
- Department of Veterinary and Remount, Division of First Livestock and Agriculture, The Veterinary Hospital, Royal Thai Army, 57 Koh Samrong Subdistrict, Mueang District, Kanchanaburi Province 71000 Thailand
| | - Thawijit Phannithi
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| | - Sakchai Ruenphet
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530 Thailand
| |
Collapse
|
9
|
Lazić S, Savić S, Petrović T, Lazić G, Žekić M, Drobnjak D, Lupulović D. Serological Examinations of Significant Viral Infections in Domestic Donkeys at the Special Nature Reserve "Zasavica", Serbia. Animals (Basel) 2023; 13:2056. [PMID: 37443854 DOI: 10.3390/ani13132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
The paper presents the findings of specific antibodies in the blood sera of donkeys against the following viruses: equine infectious anemia virus (EIAV), African horse sickness virus (AHSV), equine herpesvirus type 1 (EHV-1), equine influenza virus subtype H3N8 (EIV) and equine arteritis virus (EAV). The analyses were conducted during the year 2022. From a total of 199 donkeys bred in "Zasavica", blood was sampled from 53 animals (2 male donkeys and 51 female donkeys), aged 3 to 10 years. Specific antibodies against EIAV were not detected in any of the tested animals using the agar-gel immunodiffusion (AGID) assay. No specific antibodies against AHSV, tested by enzyme-linked immunosorbent assay (ELISA), or antibodies against EAV, tested by the virus neutralization test (VNT) and ELISA were detected in any of these animals. A positive serological result for EHV-1 was determined by the VNT in all animals, with antibody titer values ranging from 1:2 to 1:128, while a very low antibody titer value for EIV (subtype H3N8) of 1:16 was determined in 18 donkeys using the hemagglutination inhibition test (HI test).
Collapse
Affiliation(s)
- Sava Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Tamaš Petrović
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Gospava Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Marina Žekić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| | - Darko Drobnjak
- Center for Preservation of Indigenous Breeds-CEPIB, Vere Dimitrijević, 11186 Zemun, Serbia
| | - Diana Lupulović
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
11
|
Hoffmann B, Joseph S, Patteril NAG, Caveney MR, Elizabeth SK, Muhammed R, Wernery R, Wernery U. Comparative Genome Analysis of All Nine African Horse Sickness Serotypes Isolated From Equine Fatalities in Kenya and South Africa. J Equine Vet Sci 2022; 119:104137. [PMID: 36223818 DOI: 10.1016/j.jevs.2022.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
African horse sickness (AHS) is a viral disease of equids, caused by a virus of the genus Orbivirus, family Reoviridae. The African horse sickness virus (AHSV) genome is made up of ten double-stranded RNA (dsRNA) segments that together code for seven structural and four nonstructural proteins. AHS is endemic in sub-Saharan countries. The efficacy and safety of inactivated AHS vaccines containing all nine serotypes, produced at the Central Veterinary Research Laboratory (CVRL) in Dubai, United Arab Emirates have been proven in the past. All nine AHSV serotypes were isolated from 102 samples collected in the last 20 years from horse fatalities in seven different area of Kenya, Africa. CVRL inactivated AHS vaccines are used in a few African countries defining the importance of this present study to compare the genome sequences of the nine AHSV serotypes isolated from horse fatalities in Kenya and nine AHSV serotypes isolated in South Africa. The hypothesized serotypes of the newly sequenced AHSV field strains from Kenya were likewise confirmed in this investigation, and they show substantial sequence homologies with recently isolated AHSV field strains.
Collapse
Affiliation(s)
- Bernd Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Sunitha Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | | | - Rubeena Muhammed
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Renate Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates.
| |
Collapse
|
12
|
Taesuji M, Rattanamas K, Kulthonggate U, Mamom T, Ruenphet S. Sensitivity and specificity for African horse sickness antibodies detection using monovalent and polyvalent vaccine antigen-based dot blotting. Vet World 2022; 15:2760-2763. [PMID: 36718334 PMCID: PMC9880840 DOI: 10.14202/vetworld.2022.2760-2763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/07/2022] Open
Abstract
Background and Aim The immune responses of animals infected with African horse sickness (AHS) virus are determined by enzyme-linked immunosorbent assay (ELISA), complement fixation, and virus neutralization test. During the outbreaks of AHS in Thailand, the immune response after vaccination has been monitored using commercial test kits such as blocking ELISA, which are expensive imported products unavailable commercially in Thailand. This study aimed to assess the sensitivity and specificity of anti-AHS virus antibodies using dot blotting based on monovalent and polyvalent strains of live attenuated AHS vaccine. Materials and Methods A total of 186 horse sera, namely, 93 AHS-unvaccinated samples and 93 AHS-vaccinated samples, were used in this study. All sera underwent antibodies detection using commercial blocking ELISA and in-house dot blotting based on monovalent and polyvalent strains of live attenuated AHS vaccine. The numbers of true positive, false positive, true negative, and false negative results in the dot blotting were compared with those in blocking ELISA and the sensitivity and specificity of dot blotting were assessed. Results For the monovalent antigen, there were 78, 19, 74, and 15 true positive, false positive, true negative, and false negative results, respectively, while for the polyvalent antigen, the corresponding numbers were 84, 34, 58, and 9. Meanwhile, the diagnostic sensitivity and specificity for monovalent antigen were 83.87% and 79.57%, respectively, but 90.32% and 62.37% for polyvalent antigen. Conclusion Dot blotting for AHS antibodies detection using vaccine antigen showed high sensitivity and rather a high specificity compared with the findings with the commercial ELISA test kit. In countries where commercial ELISA test kits are not available and when the size of a serum sample is small, dot blotting could become a good alternative test given its advantages, including its simplicity, rapidity, and convenience. To the best of our knowledge, these findings are the first report on the use of dot blotting for detecting AHS antibodies in horses. In conclusion, monovalent antigen-based dot blotting could be used as a reliable alternative serodiagnostic test for monitoring AHS humoral immune response, especially in vaccinated horses.
Collapse
Affiliation(s)
- Machimaporn Taesuji
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Khate Rattanamas
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Usakorn Kulthonggate
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Thanongsak Mamom
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sakchai Ruenphet
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Corresponding author: Sakchai Ruenphet, e-mail: Co-authors: MT: , KR: , UK: , TM:
| |
Collapse
|
13
|
Wang Y, Ong J, Ng OW, Songkasupa T, Koh EY, Wong JPS, Puangjinda K, Fernandez CJ, Huangfu T, Ng LC, Chang SF, Yap HH. Development of Differentiating Infected from Vaccinated Animals (DIVA) Real-Time PCR for African Horse Sickness Virus Serotype 1. Emerg Infect Dis 2022; 28:2446-2454. [PMID: 36417933 PMCID: PMC9707579 DOI: 10.3201/eid2812.220594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
African horse sickness (AHS) is a highly infectious and often fatal disease caused by 9 serotypes of the orbivirus African horse sickness virus (AHSV). In March 2020, an AHS outbreak was reported in Thailand in which AHSV serotype 1 was identified as the causative agent. Trivalent live attenuated vaccines serotype 1, 3, and 4 were used in a targeted vaccination campaign within a 50-km radius surrounding the infected cases, which promptly controlled the spread of the disease. However, AHS-like symptoms in vaccinated horses required laboratory diagnostic methods to differentiate infected horses from vaccinated horses, especially for postvaccination surveillance. We describe a real-time reverse transcription PCR-based assay for rapid characterization of the affecting field strain. The development and validation of this assay should imbue confidence in differentiating AHS-vaccinated horses from nonvaccinated horses. This method should be applied to determining the epidemiology of AHSV in future outbreaks.
Collapse
|
14
|
Rattanamas K, Taesuji M, Kulthonggate U, Jantafong T, Mamom T, Ruenphet S. Sensitivity of RNA viral nucleic acid-based detection of avian influenza virus, Newcastle disease virus, and African horse sickness virus on flinders technology associates card using conventional reverse-transcription polymerase chain reaction. Vet World 2022; 15:2754-2759. [PMID: 36590111 PMCID: PMC9798050 DOI: 10.14202/vetworld.2022.2754-2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aim The flinders technology associates (FTA) card is a cotton-based cellulose membrane impregnated with a chaotropic agent that inactivates infectious microorganisms, lyses cellular material, and fixes DNA and/or RNA within the fiber matrix. However, little is known about the effectiveness of these cards for detecting RNA viruses in animals. This study aimed to evaluate the sensitivity of RNA virus detection using conventional reverse-transcription polymerase chain reaction (RT-PCR) on FTA cards. Materials and Methods A highly virulent Newcastle disease virus (NDV) and an avian influenza virus (AIV) with low pathogenicity were propagated using chicken embryonic eggs. Three days after inoculation, the allantoic fluid was harvested, stored at -80°C, and the stock virus was tested for virus titration. African horse sickness virus (AHSV) was obtained from a live attenuated vaccine that was dissolved and stored at -80°C. For sample preparation, each stock virus was 10-fold serially diluted and each dilution was inoculated onto an FTA card, followed by drying in a Class II safety cabinet. Both the stock virus and infected FTA card were genomically isolated using an extraction kit, FTA purification kit, and extraction kit with Tris-EDTA (TE) buffer. The target genome was then detected by one-step RT-PCR for NDV and AIV, and two-step RT-PCR for African horse sickness, including gel electrophoresis for the detection of specific nucleic acids. Results The detection limit of stock AIV was compared on FTA cards, using the FTA purification kit, and with TE buffer with an extraction kit. The corresponding results were 1.47, 1.17, and 2.18 log10 EID50, respectively, while for NDV the results were 4.13, 4.83, and 4.84 log10 ELD50. Finally, detection limit of stock AHSV and AHSV on the FTA card extracted using TE buffer with an extraction kit were 4.30 and 4.01 log10 plaque-forming units, respectively. Conclusion This study demonstrated that the detection limit or sensitivity of all tested RNA viruses on FTA cards did not differ when compared with those of the stock virus and in both methods for RNA isolation on FTA cards. These cards are suitable for collecting and transporting samples infected with RNA viruses, particularly AIV, NDV, and AHSV. Flinders technology associates cards also provide hazard-free samples, a reliable source of RNA for molecular characterization, and sufficient quantity for diagnostic applications based on nucleic acid-based detection.
Collapse
Affiliation(s)
- Khate Rattanamas
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Machimaporn Taesuji
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Usakorn Kulthonggate
- Clinic for Horse, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Tippawan Jantafong
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Thanongsak Mamom
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sakchai Ruenphet
- Master of Science Program in Animal Biotechnology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand,Corresponding author: Sakchai Ruenphet, e-mail: Co-authors: KR: , MT: , UK: , TJ: , TM:
| |
Collapse
|
15
|
Choocherd S, Pattanatanang K, Chimnoi W, Kamyingkird K, Tongyoo P, Phasuk J. Preliminary Study on Comparative Efficacy of Four Light Sources for Trapping Culicoides spp. (Diptera: Ceratopogonidae) in Prachuap Khiri Khan Province, Thailand. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1719-1723. [PMID: 35899797 DOI: 10.1093/jee/toac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The light trap is an important tool to determine the presence and abundance of vectors in the field. However, no one has studied the efficiency of light traps for collecting Culicoides in Thailand. In the present study, the efficacy of four light sources was evaluated in Prachuap Khiri Khan province, Thailand. Incandescent (INCND) light, white fluorescent (WHT-FLR) light, ultraviolet fluorescent (UV-FLR) light, and UV light-emitting diode (UV-LED) light were tested using commercial traps. In total, 30,866 individuals of Culicoides species were collected from November 2020 to June 2021, of which 21,016 were trapped on site 1 and 6,731 were trapped on site 2. The two most abundant Culicoides species were C. imicola (54%) and C. oxystoma (31.2%). UV-FLR was highly effective, followed by UV-LED light, WHT-FLR light, and INCND light, respectively, for Culicoides collection. Significantly, more Culicoides species were collected in those traps baited with UV-FLR light, UV-LED light, or WHT-FLR light than for INCND light traps. Traps equipped with UV-FLR lights can be recommended to trap Culcoides biting midges for monitoring purposes.
Collapse
Affiliation(s)
- Suchada Choocherd
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Khampee Pattanatanang
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| | - Jumnongjit Phasuk
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Exploiting V-Gene Bias for Rapid, High-Throughput Monoclonal Antibody Isolation from Horses. Viruses 2022; 14:v14102172. [PMID: 36298728 PMCID: PMC9609571 DOI: 10.3390/v14102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Horses and humans share a close relationship that includes both species' viromes. Many emerging infectious diseases can be transmitted between horses and humans and can exhibit mortality rates as high as 90% in both populations. Antibody biologics represents an emerging field of rapidly discoverable and potent antiviral therapeutics. These biologics can be used to provide passive immunity, as well as blueprints for the rational design of novel active vaccine antigens. Here, we exploit the limited diversity of immunoglobulin variable genes used by horses to develop a rapid, high-throughput monoclonal antibody discovery pipeline. The antibodies isolated from two horses in this study were developed with near exclusivity from a few highly related germline genes within a single IgHV and IgλV gene family and could be recovered for cloning with just three primer pairs. This variable gene pairing was compatible with both horse and human immunoglobulin G isotypes, confirming the suitability of an equine antibody discovery pipeline for developing novel therapeutics to meet the One Health approach to infectious diseases.
Collapse
|
17
|
Durán-Ferrer M, Villalba R, Fernández-Pacheco P, Tena-Tomás C, Jiménez-Clavero MÁ, Bouzada JA, Ruano MJ, Fernández-Pinero J, Arias M, Castillo-Olivares J, Agüero M. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022; 14:v14071545. [PMID: 35891525 PMCID: PMC9316263 DOI: 10.3390/v14071545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study described the clinical, virological, and serological responses of immunologically naïve and vaccinated horses to African horse sickness virus (AHSV) serotype 9. Naïve horses developed a clinical picture resembling the cardiac form of African horse sickness. This was characterized by inappetence, reduced activity, and hyperthermia leading to lethargy and immobility–recumbency by days 9–10 post-infection, an end-point criteria for euthanasia. After challenge, unvaccinated horses were viremic from days 3 or 4 post-infection till euthanasia, as detected by serogroup-specific (GS) real time RT-PCR (rRT-PCR) and virus isolation. Virus isolation, antigen ELISA, and GS-rRT-PCR also demonstrated high sensitivity in the post-mortem detection of the pathogen. After infection, serogroup-specific VP7 antibodies were undetectable by blocking ELISA (b-ELISA) in 2 out of 3 unvaccinated horses during the course of the disease (9–10 dpi). Vaccinated horses did not show significant side effects post-vaccination and were largely asymptomatic after the AHSV-9 challenge. VP7-specific antibodies could not be detected by the b-ELISA until day 21 and day 30 post-inoculation, respectively. Virus neutralizing antibody titres were low or even undetectable for specific serotypes in the vaccinated horses. Virus isolation and GS-rRT-PCR detected the presence of AHSV vaccine strains genomes and infectious vaccine virus after vaccination and challenge. This study established an experimental infection model of AHSV-9 in horses and characterized the main clinical, virological, and immunological parameters in both immunologically naïve and vaccinated horses using standardized bio-assays.
Collapse
Affiliation(s)
- Manuel Durán-Ferrer
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | | | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - José-Antonio Bouzada
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - María-José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Marisa Arias
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
- Correspondence:
| |
Collapse
|
18
|
Vector-Borne Viral Diseases as a Current Threat for Human and Animal Health—One Health Perspective. J Clin Med 2022; 11:jcm11113026. [PMID: 35683413 PMCID: PMC9181581 DOI: 10.3390/jcm11113026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, an increase in the emergence or re-emergence of arthropod-borne viruses has been observed in many regions. Viruses such as dengue, yellow fever, or zika are a threat for millions of people on different continents. On the other hand, some arboviruses are still described as endemic, however, they could become more important in the near future. Additionally, there is a group of arboviruses that, although important for animal breeding, are not a direct threat for human health. Those include, e.g., Schmallenberg, bluetongue, or African swine fever viruses. This review focuses on arboviruses and their major vectors: mosquitoes, ticks, biting midges, and sandflies. We discuss the current knowledge on arbovirus transmission, ecology, and methods of prevention. As arboviruses are a challenge to both human and animal health, successful prevention and control are therefore only possible through a One Health perspective.
Collapse
|
19
|
Fairbanks EL, Baylis M, Daly JM, Tildesley MJ. Inference for a spatio-temporal model with partial spatial data: African horse sickness virus in Morocco. Epidemics 2022; 39:100566. [DOI: 10.1016/j.epidem.2022.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
|
20
|
Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides. Sci Rep 2022; 12:3910. [PMID: 35273211 PMCID: PMC8913660 DOI: 10.1038/s41598-022-07512-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
African horse sickness (AHS) is a devastating equine infectious disease. On 17 March 2020, it first appeared in Thailand and threatened all the South-East Asia equine industry security. Therefore, it is imperative to carry out risk warnings of the AHS in China. The maximum entropy algorithm was used to model AHS and Culicoides separately by using climate and non-climate variables. The least cost path (LCP) method was used to analyze the habitat connectivity of Culicoides with the reclassified land cover and altitude as cost factors. The models showed the mean area under the curve as 0.918 and 0.964 for AHS and Culicoides. The prediction result map shows that there is a high risk area in the southern part of China while the habitats of the Culicoides are connected to each other. Therefore, the risk of introducing AHS into China is high and control of the border area should be strengthened immediately.
Collapse
|
21
|
Fairbanks EL, Brennan ML, Mertens PPC, Tildesley MJ, Daly JM. Re-parameterisation of a mathematical model of African horse sickness virus using data from a systematic literature search. Transbound Emerg Dis 2021; 69:e671-e681. [PMID: 34921513 PMCID: PMC9543668 DOI: 10.1111/tbed.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
African horse sickness (AHS) is a vector‐borne disease transmitted by Culicoides spp., endemic to sub‐Saharan Africa. There have been many examples of historic and recent outbreaks in the Middle East, Asia and Europe. However, not much is known about infection dynamics and outbreak potential in these naive populations. In order to better inform a previously published ordinary differential equation model, we performed a systematic literature search to identify studies documenting experimental infection of naive (control) equids in vaccination trials. Data on the time until the onset of viraemia, clinical signs and death after experimental infection of a naive equid and duration of viraemia were extracted. The time to viraemia was 4.6 days and the time to clinical signs was 4.9 days, longer than the previously estimated latent period of 3.7 days. The infectious periods of animals that died/were euthanized or survived were found to be 3.9 and 8.7 days, whereas previous estimations were 4.4 and 6 days, respectively. The case fatality was also found to be higher than previous estimations. The updated parameter values (along with other more recently published estimates from literature) resulted in an increase in the number of host deaths, decrease in the duration of the outbreak and greater prevalence in vectors.
Collapse
Affiliation(s)
- Emma L Fairbanks
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Marnie L Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Peter P C Mertens
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
22
|
Bunpapong N, Charoenkul K, Nasamran C, Chamsai E, Udom K, Boonyapisitsopa S, Tantilertcharoen R, Kesdangsakonwut S, Techakriengkrai N, Suradhat S, Thanawongnuwech R, Amonsin A. African Horse Sickness Virus Serotype 1 on Horse Farm, Thailand, 2020. Emerg Infect Dis 2021; 27:2208-2211. [PMID: 34287126 PMCID: PMC8314833 DOI: 10.3201/eid2708.210004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate an outbreak of African horse sickness (AHS) on a horse farm in northeastern Thailand, we used whole-genome sequencing to detect and characterize the virus. The viruses belonged to serotype 1 and contained unique amino acids (95V,166S, 660I in virus capsid protein 2), suggesting a single virus introduction to Thailand.
Collapse
|
23
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
24
|
Redmond EF, Jones D, Rushton J. Economic assessment of African horse sickness vaccine impact. Equine Vet J 2021; 54:368-378. [PMID: 33527473 DOI: 10.1111/evj.13430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND African horse sickness (AHS) is endemic in sub-Saharan Africa posing a threat to equine populations in non-endemic regions. Available vaccine technologies have limitations, creating barriers to horse movement, AHS control and, in non-endemic areas or countries, rapid elimination of virus after incursion. The literature lacks an economic assessment of the benefits of bringing a new, more effective AHS vaccine to market. OBJECTIVES The study assesses the economic impact of AHS and tests the hypothesis that investment in a safer, more effective AHS vaccine would give an economic return. STUDY DESIGN Cost-benefit analysis. METHODS Primary and secondary data were collected to populate the cost-benefit analysis model. A literature review was followed by a questionnaire survey and interviews to gather primary data. At-risk populations were defined and qualitative assessment completed to narrow the target populations for quantitative assessment. A deterministic cost-benefit model was developed in Excel and different scenarios tested. Break-even and sensitivity analysis were conducted on key parameters. RESULTS The economic impact of AHS was estimated to be US$95million per annum, and this was mainly in endemic regions with domestic equine industries and involved in international trade. Investment required to bring a new AHS vaccine to market was estimated to be up to US$3.5million, which was very small relative to the benefits estimated in this study. The economic return on investment in bringing a new AHS vaccine to market was predicted to be positive and the analysis demonstrates this result was robust. MAIN LIMITATIONS Data for the analysis were scarce, requiring expert opinion and extrapolation by the authors. Sensitivity analysis with the deterministic modelling structure indicated there was no justification for stochastic modelling, given the robustness of the return on investment. CONCLUSIONS The analysis predicts a strong and robust economic return on the investment in bringing a new AHS vaccine to market. Main economic beneficiaries would be the high value horse sectors, specifically the equine industries in Republic of South Africa (RSA) and in non-endemic countries. In addition, major benefits would be captured in poor communities in sub-Saharan Africa where working equids are of high economic and social importance.
Collapse
Affiliation(s)
- Elizabeth F Redmond
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Jonathan Rushton
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Castillo‐Olivares J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet J 2021; 53:9-14. [PMID: 33007121 PMCID: PMC7821295 DOI: 10.1111/evj.13353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Javier Castillo‐Olivares
- Laboratory of Viral ZoonoticsDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
- School of Veterinary Medicine and ScienceUniversity of NottinghamLoughboroughLeicsUK
| |
Collapse
|