1
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 PMCID: PMC11528109 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
2
|
Prates I, Hutchinson MN, Singhal S, Moritz C, Rabosky DL. Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species boundaries in an Australian lizard clade (Scincidae: Ctenotus). Mol Ecol 2024; 33:e17074. [PMID: 37461158 DOI: 10.1111/mec.17074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/18/2024]
Abstract
Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, California, USA
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Wishingrad V, Thomson RC. Testing concordance and conflict in spatial replication of landscape genetics inferences. Mol Ecol 2024; 33:e17104. [PMID: 37602959 DOI: 10.1111/mec.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
The degree to which landscape genetics findings can be extrapolated to different areas of a species range is poorly understood. Here, we used a broadly distributed ectothermic lizard (Sceloporus occidentalis, Western Fence lizard) as a model species to evaluate the full role of topography, climate, vegetation, and roads on dispersal and genetic differentiation. We conducted landscape genetics analyses with a total of 119 individuals in five areas within the Sierra Nevada mountain range. Genetic distances calculated from thousands of ddRAD markers were used to optimize landscape resistance surfaces and infer the effects of landscape and topographic features on genetic connectivity. Across study areas, we found a great deal of consistency in the primary environmental gradients impacting genetic connectivity, along with some site-specific differences, and a range in the proportion of genetic variance explained by environmental factors across study sites. High-elevation colder areas were consistently found to be barriers to gene flow, as were areas of high ruggedness and slope. High temperature seasonality and high precipitation during the winter wet season also presented a substantial barrier to gene flow in a majority of study areas. The effect of other landscape variables on genetic differentiation was more idiosyncratic and depended on specific attributes at each site. Across study areas, canyon valleys were always implicated as facilitators to dispersal and key features linking populations and maintaining genetic connectivity, though the relative importance varied in different areas. We emphasize that spatial data layers are complex and multidimensional, and careful consideration of spatial data correlation structure and robust analytic frameworks will be critical to our continued understanding of spatial genetics processes.
Collapse
Affiliation(s)
- Van Wishingrad
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
4
|
Burbrink FT, Myers EA, Pyron RA. Understanding species limits through the formation of phylogeographic lineages. Ecol Evol 2024; 14:e70263. [PMID: 39364037 PMCID: PMC11446989 DOI: 10.1002/ece3.70263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well-defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype-environment interactions, and genome scans for selected loci. Employing these tests in eight lineage-pairs of snakes in North America, we show that six pairs represent 12 "good" species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid-Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology American Museum of Natural History New York New York USA
| | - Edward A Myers
- Department of Herpetology California Academy of Sciences San Francisco California USA
| | - R Alexander Pyron
- Department of Biological Sciences The George Washington University Washington DC USA
| |
Collapse
|
5
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
6
|
Sun Y, Yang T. Unraveling the Mitogenomic Characteristics and Phylogenetic Implications of Leuciscus merzbacheri (Zugmayer, 1912), an Endangered Fish in the Junggar Basin of Xinjiang, Northwest China. Genes (Basel) 2024; 15:1284. [PMID: 39457409 PMCID: PMC11507045 DOI: 10.3390/genes15101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Leuciscus merzbacheri is a rare and endangered fish in Xinjiang, China. As a representative species of the fauna in the Junggar Basin, it is of high economic and scientific value. The genetic data are still limited, and the mitochondrial genomic characteristics remain unexplored. METHODS A high-throughput sequencing method was used to obtain the complete mitogenome of L. merzbacheri. RESULTS The full length of the circular DNA was 16,609 bp, and it consisted of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs and 2 non-coding regions. The overall nucleotide compositions of both the mitogenome and PCGs showed an obvious AT preference with percentages of 54.20% and 53.60%, respectively. Three commonly used amino acids were Leu (16.43%), Ala (8.95%) and Thr (7.85%) in turn. All tRNAs could form the typical clover structures excluding tRNA-Ser AGY. The presumed secondary structures of two rRNAs contained several stem-loop domains, and the structure of 12S rRNA seemed to be more stable than that of 16S rRNA. Extended termination sequence regions (ETASs), central conserved regions (CSB-F, CSB-E and CSB-D), and conserved sequence regions (CSB-1, CSB-2 and CSB-3) were identified in the control region. The phylogenetic tree showed that L. merzbacheri was recovered with strong supports as a sister to the other members of the genus. The location in the outermost branch implied that it might be a relatively ancient species among its congeners. CONCLUSIONS This study would complement the genetic data on L. merzbacheri and contribute to a better understanding of molecular evolution in Leuciscus as well.
Collapse
Affiliation(s)
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China;
| |
Collapse
|
7
|
Lind BM, Lotterhos KE. The accuracy of predicting maladaptation to new environments with genomic data. Mol Ecol Resour 2024:e14008. [PMID: 39212146 DOI: 10.1111/1755-0998.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
8
|
Hancock ZB, Toczydlowski RH, Bradburd GS. A spatial approach to jointly estimate Wright's neighborhood size and long-term effective population size. Genetics 2024; 227:iyae094. [PMID: 38861403 PMCID: PMC11491530 DOI: 10.1093/genetics/iyae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume either panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested in describing the diversity of a population distributed continuously in space; this diversity is intimately linked to both the dispersal potential and the population density of the organism. A statistical model that leverages information from patterns of isolation by distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the two-form bumblebee (Bombus bifarius). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of bumblebees. The resulting inferences provide important insights into the population genetic dynamics of spatially structured populations.
Collapse
Affiliation(s)
- Zachary B Hancock
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481103, USA
| | | | - Gideon S Bradburd
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481103, USA
| |
Collapse
|
9
|
Briscoe Runquist R, Moeller DA. Isolation by environment and its consequences for range shifts with global change: Landscape genomics of the invasive plant common tansy. Mol Ecol 2024; 33:e17462. [PMID: 38993027 DOI: 10.1111/mec.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
Invasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA. We densely sampled individuals across the expanding range and performed reduced representation sequencing to generate a dataset of 3071 polymorphic loci for 176 individuals. We used non-spatial and spatially explicit analyses to determine the relative influences of geographic distance and environmental variation on patterns of genomic variation. We found no evidence for isolation by distance but strong evidence for isolation by environment, indicating that environmental factors may have modulated patterns of range expansion. Land use classification and soils were particularly important variables related to population structure although they operated on different spatial scales; land use classification was related to broad-scale patterns and soils were related to fine-scale patterns. All analyses indicated a distinctive genetic cluster in the most recently invaded portion of the range. Individuals from the far northwestern range margin were separated from the remainder of the range by reduced migration, which was associated with environmental resistance. This portion of the range was invaded primarily in the last 15 years. Ecological niche models also indicated that this cluster was associated with the expansion of the niche. While invasion is often assumed to be primarily influenced by dispersal limitation, our results suggest that ongoing invasion and range shifts with climate change may be strongly affected by environmental heterogeneity.
Collapse
Affiliation(s)
- Ryan Briscoe Runquist
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Padilla-Iglesias C, Blanco-Portillo J, Pricop B, Ioannidis AG, Bickel B, Manica A, Vinicius L, Migliano AB. Deep history of cultural and linguistic evolution among Central African hunter-gatherers. Nat Hum Behav 2024; 8:1263-1275. [PMID: 38802540 PMCID: PMC11272592 DOI: 10.1038/s41562-024-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Human evolutionary history in Central Africa reflects a deep history of population connectivity. However, Central African hunter-gatherers (CAHGs) currently speak languages acquired from their neighbouring farmers. Hence it remains unclear which aspects of CAHG cultural diversity results from long-term evolution preceding agriculture and which reflect borrowing from farmers. On the basis of musical instruments, foraging tools, specialized vocabulary and genome-wide data from ten CAHG populations, we reveal evidence of large-scale cultural interconnectivity among CAHGs before and after the Bantu expansion. We also show that the distribution of hunter-gatherer musical instruments correlates with the oldest genomic segments in our sample predating farming. Music-related words are widely shared between western and eastern groups and likely precede the borrowing of Bantu languages. In contrast, subsistence tools are less frequently exchanged and may result from adaptation to local ecologies. We conclude that CAHG material culture and specialized lexicon reflect a long evolutionary history in Central Africa.
Collapse
Affiliation(s)
- Cecilia Padilla-Iglesias
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
| | | | - Bogdan Pricop
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
| | | | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lucio Vinicius
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Klimova A, Gutíerrez‐Rivera J, Ortega‐Rubio A, Eguiarte LE. Population genomics and distribution modeling revealed the history and suggested a possible future of the endemic Agave aurea (Asparagaceae) complex in the Baja California Peninsula. Ecol Evol 2024; 14:e70027. [PMID: 39050658 PMCID: PMC11267983 DOI: 10.1002/ece3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024] Open
Abstract
Agaves are an outstanding arid-adapted group of species that provide a unique chance to study the influence of multiple potential factors (i.e., geological and ecological) on plant population structure and diversification in the heterogeneous environment of the Baja California Peninsula. However, relatively little is known about the phylogeography of the endemic agave species of this region. Herein, we used over 10,000 single-nucleotide polymorphisms (SNPs) and spatial data from the Agave aurea species complex (i.e., A. aurea ssp. aurea, A. aurea ssp. promontorii, and A. aurea var. capensis) to resolve genetic relationships within this complex and uncover fine-scale population structure, diversity patterns, and their potential underlying drivers. Analyses resolved low genetic structure within this complex, suggesting that A. aurea is more likely to represent several closely related populations than separate species or varieties/subspecies. We found that geographical and historical ecological characteristics-including precipitation, latitude, and past climatic fluctuations-have played an important role in the spatial distribution of diversity and structure in A. aurea. Finally, species distribution modeling results suggested that climate change will become critical in the extinction risk of A. aurea, with the northernmost population being particularly vulnerable. The low population genetic structure found in A. aurea is consistent with agave's life history, and it is probably related to continuity of distribution, relatively low habitat fragmentation, and dispersion by pollinators. Together, these findings have important implications for management and conservation programs in agave, such as creating and evaluating protected areas and translocating and augmentation of particular populations.
Collapse
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biológicas del Noroeste S.C.La PazMexico
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | | | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
12
|
Herrera C, Pinto MA, Leza M, Alemany I, Jurado‐Rivera JA. Niche modelling and landscape genetics of the yellow-legged hornet ( Vespa velutina): An integrative approach for evaluating central-marginal population dynamics in Europe. Ecol Evol 2024; 14:e70029. [PMID: 39050656 PMCID: PMC11267635 DOI: 10.1002/ece3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Genetic diversity is an important biological trait for a successful invasion. During the expansion across a new territory, an invasive species may face unprecedented ecological conditions that will determine its demography and genetic diversity. The first record of the yellow-legged hornet (Vespa velutina) in Europe dates back to 2004 in France, from where it has successfully spread through a large territory in the continent, including Italy, Spain and Portugal. Integrative approaches offer a powerful strategy to detect and understand patterns of genetic variation in central and marginal populations. Here, we have analysed the relationship between genetic diversity parameters inferred from 15 V. velutina nuclear DNA microsatellite loci, and geographical and environmental drivers, such as the distance to the introduction focus, environmental suitability and distance to native and invasive niche centroids. Our results revealed a central-marginal dynamic, where allelic richness decreased towards the edge of the expansion range. The low environmental suitability of the territories invaded by marginal populations could prevent a diverse population from establishing and reducing the genetic diversity in populations at the expansion edge. Moreover, Markov chain Monte Carlo analysis showed both geographical and environmental distances were influencing population genetic differentiation. This study highlights the importance of combining genetic analysis with geographical and environmental drivers to understand genetic trends of invasive species to new environment.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - M. Alice Pinto
- Centro de Investigação de MontanhaInstituto Politécnico de BragançaBragançaPortugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões de Montanha (SusTEC)Instituto Politécnico de BragançaBragançaPortugal
| | - Mar Leza
- Department of Biology (Zoology)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - Iris Alemany
- Department of Biology (Genetics)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - José A. Jurado‐Rivera
- Department of Biology (Genetics)University of the Balearic IslandsPalmaBalearic IslandsSpain
| |
Collapse
|
13
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
14
|
Fonseca EM, Pope NS, Peterman WE, Werneck FP, Colli GR, Carstens BC. Genetic structure and landscape effects on gene flow in the Neotropical lizard Norops brasiliensis (Squamata: Dactyloidae). Heredity (Edinb) 2024; 132:284-295. [PMID: 38575800 PMCID: PMC11166928 DOI: 10.1038/s41437-024-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Nathaniel S Pope
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Fernanda P Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Brazil
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Rehmann CT, Ralph PL, Kern AD. Evaluating evidence for co-geography in the Anopheles-Plasmodium host-parasite system. G3 (BETHESDA, MD.) 2024; 14:jkae008. [PMID: 38230808 PMCID: PMC10917517 DOI: 10.1093/g3journal/jkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
The often tight association between parasites and their hosts means that under certain scenarios, the evolutionary histories of the two species can become closely coupled both through time and across space. Using spatial genetic inference, we identify a potential signal of common dispersal patterns in the Anopheles gambiae and Plasmodium falciparum host-parasite system as seen through a between-species correlation of the differences between geographic sampling location and geographic location predicted from the genome. This correlation may be due to coupled dispersal dynamics between host and parasite but may also reflect statistical artifacts due to uneven spatial distribution of sampling locations. Using continuous-space population genetics simulations, we investigate the degree to which uneven distribution of sampling locations leads to bias in prediction of spatial location from genetic data and implement methods to counter this effect. We demonstrate that while algorithmic bias presents a problem in inference from spatio-genetic data, the correlation structure between A. gambiae and P. falciparum predictions cannot be attributed to spatial bias alone and is thus likely a genetic signal of co-dispersal in a host-parasite system.
Collapse
Affiliation(s)
- Clara T Rehmann
- Institute of Ecology and Evolution and Department of Biology, University of Oregon, Eugene 97403, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution and Department of Biology, University of Oregon, Eugene 97403, USA
- Department of Mathematics, University of Oregon, Eugene 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution and Department of Biology, University of Oregon, Eugene 97403, USA
| |
Collapse
|
16
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
17
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. Riverscape community genomics: A comparative analytical approach to identify common drivers of spatial structure. Mol Ecol 2023; 32:6743-6765. [PMID: 36461662 DOI: 10.1111/mec.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Genetic differentiation among local groups of individuals, that is, genetic β-diversity, is a key component of population persistence related to connectivity and isolation. However, most genetic investigations of natural populations focus on a single species, overlooking opportunities for multispecies conservation plans to benefit entire communities in an ecosystem. We present an approach to evaluate genetic β-diversity within and among many species and demonstrate how this riverscape community genomics approach can be applied to identify common drivers of genetic structure. Our study evaluated genetic β-diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin (Ozarks, USA) using SNP genotyping (ddRAD). Despite variance among species in the degree of genetic divergence, general spatial patterns were identified corresponding to river network architecture. Most species (N = 24) were partitioned into discrete subpopulations (K = 2-7). We used partial redundancy analysis to compare species-specific genetic β-diversity across four models of genetic structure: Isolation by distance (IBD), isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by environment (IBE). A significant proportion of intraspecific genetic variation was explained by IBH (x̄ = 62%), with the remaining models generally redundant. We found evidence for consistent spatial modularity in that gene flow is higher within rather than between hierarchical units (i.e., catchments, watersheds, basins), supporting the generalization of the stream hierarchy model. We discuss our conclusions regarding conservation and management and identify the 8-digit hydrologic unit (HUC) as the most relevant spatial scale for managing genetic diversity across riverine networks.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
18
|
Rehmann CT, Ralph PL, Kern AD. Evaluating evidence for co-geography in the Anopheles-Plasmodium host-parasite system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549405. [PMID: 37503196 PMCID: PMC10370088 DOI: 10.1101/2023.07.17.549405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The often tight association between parasites and their hosts means that under certain scenarios, the evolutionary histories of the two species can become closely coupled both through time and across space. Using spatial genetic inference, we identify a potential signal of common dispersal patterns in the Anopheles gambiae and Plasmodium falciparum host-parasite system as seen through a between-species correlation of the differences between geographic sampling location and geographic location predicted from the genome. This correlation may be due to coupled dispersal dynamics between host and parasite, but may also reflect statistical artifacts due to uneven spatial distribution of sampling locations. Using continuous-space population genetics simulations, we investigate the degree to which uneven distribution of sampling locations leads to bias in prediction of spatial location from genetic data and implement methods to counter this effect. We demonstrate that while algorithmic bias presents a problem in inference from spatio-genetic data, the correlation structure between A. gambiae and P. falciparum predictions cannot be attributed to spatial bias alone, and is thus likely a genetic signal of co-dispersal in a host-parasite system.
Collapse
Affiliation(s)
- Clara T Rehmann
- University of Oregon, Institute of Ecology and Evolution and Department of Biology
| | - Peter L Ralph
- University of Oregon, Institute of Ecology and Evolution and Department of Biology
- University of Oregon, Department of Mathematics
| | - Andrew D Kern
- University of Oregon, Institute of Ecology and Evolution and Department of Biology
| |
Collapse
|
19
|
Liu W, Hao Y, Song X, Ma L, Li J, He J, Bu Y, Niu H. Exploring the endangerment mechanisms of Hipposideros pomona based on molecular phylogeographic methods. Ecol Evol 2023; 13:e10653. [PMID: 37869444 PMCID: PMC10587739 DOI: 10.1002/ece3.10653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The endangerment mechanisms of various species are a focus of studies on biodiversity and conservation biology. Hipposideros pomona is an endangered species, but the reasons behind its endangerment remain unclear. We investigated the endangerment mechanisms of H. pomona using mitochondrial DNA, nuclear DNA, and microsatellite loci markers. The results showed that the nucleotide diversity of mitochondria DNA and heterozygosity of microsatellite markers were high (π = 0.04615, H O = 0.7115), whereas the nucleotide diversity of the nuclear genes was low (THY: π = 0.00508, SORBS2: π = 0.00677, ACOX2: π = 0.00462, COPS7A: π = 0.00679). The phylogenetic tree and median-joining network based on mitochondrial DNA sequences clustered the species into three clades, namely North Vietnam-Fujian, Myanmar-West Yunnan, and Laos-Hainan clades. However, joint analysis of nuclear genes did not exhibit clustering. Analysis of molecular variance revealed a strong population genetic structure; IMa2 analysis did not reveal significant gene flow between all groups (p > .05), and isolation-by-distance analysis revealed a significant positive correlation between genetic and geographic distances (p < .05). The mismatch distribution analysis, neutral test, and Bayesian skyline plots revealed that the H. pomona population were relatively stable and exhibited a contraction trend. The results implied that H. pomona exhibits female philopatry and male-biased dispersal. The Hengduan Mountains could have acted as a geographical barrier for gene flow between the North Vietnam-Fujian clade and the Myanmar-West Yunnan clade, whereas the Qiongzhou Strait may have limited interaction between the Hainan populations and other clades. The warm climate during the second interglacial Quaternary period (c. 0.33 Mya) could have been responsible for species differentiation, whereas the cold climate during the late Quaternary last glacial maximum (c. 10 ka BP) might have caused the overall contraction of species. The lack of significant gene flow in nuclear microsatellite loci markers among the different populations investigated reflects recent habitat fragmentation due to anthropogenic activities; thus, on-site conservation of the species and restoration of gene flow corridors among populations need immediate implementation.
Collapse
Affiliation(s)
- Wei Liu
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Yan Hao
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Xinhang Song
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Liqun Ma
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Jing Li
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Jingying He
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Yanzhen Bu
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Hongxing Niu
- College of Life SciencesHenan Normal UniversityXinxiangChina
| |
Collapse
|
20
|
Herczeg D, Palomar G, Zieliński P, van Riemsdijk I, Babik W, Dankovics R, Halpern B, Cvijanović M, Vörös J. Genomic analysis reveals complex population structure within the smooth newt, Lissotriton vulgaris, in Central Europe. Ecol Evol 2023; 13:e10478. [PMID: 37664508 PMCID: PMC10469019 DOI: 10.1002/ece3.10478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Species with wide-range distributions usually display high genetic variation. This variation can be partly explained by historical lineages that were temporally isolated from each other and are back into secondary reproductive contact, and partly by local adaptations. The smooth newt (Lissotriton vulgaris) is one of the most widely distributed amphibians species across Eurasia and forms a species complex with a partially overlapping distribution and morphology. In the present study, we explored the population genomic structure of smooth newt lineages in the Carpathian Basin (CB) relying on single-nucleotide polymorphisms. Our dataset included new and previously published data to study the secondary contact zone between lineages in the CB and also tested for the barrier effect of rivers to gene flow between these lineages. We confirmed the presence of the South L. v. vulgaris Lineage distributed in Transdanubia and we provided new distribution records of L. v. ampelensis inhabiting the eastern territories of the CB. High genetic diversity of smooth newts was observed, especially in the North Hungarian Mountains and at the interfluves of the main rivers in the South with four distinct lineages of L. v. vulgaris and one lineage of L. v. ampelensis showing a low level of admixture with the spatially closest L. v. vulgaris lineage. Moreover, admixture detected at the interfluve of the main rivers (i.e. Danube and Tisza) suggested a secondary contact zone in the area. Finally, we found that the river Danube has a very weak effect on population divergence, while the river Tisza is a geographical barrier limiting gene flow between smooth newt lineages. As the range boundaries of L. v. vulgaris and L. v. ampelensis in the CB coincide with the river Tisza, our study underpins the influence of rivers in lineage diversification.
Collapse
Affiliation(s)
- Dávid Herczeg
- ELKH‐ELTE‐MTM Integrative Ecology Research GroupBudapestHungary
- Department of Systematic Zoology and Ecology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
- Institute of Environmental SciencesFaculty of Biology, Jagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of Biology, Jagiellonian UniversityKrakówPoland
| | | | - Wiesław Babik
- Institute of Environmental SciencesFaculty of Biology, Jagiellonian UniversityKrakówPoland
| | | | - Bálint Halpern
- ELKH‐ELTE‐MTM Integrative Ecology Research GroupBudapestHungary
- Department of Systematic Zoology and Ecology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
- MME Birdlife HungaryBudapestHungary
| | - Milena Cvijanović
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Judit Vörös
- Department of ZoologyHungarian Natural History MuseumBudapestHungary
| |
Collapse
|
21
|
Burbrink FT, Ruane S, Rabibisoa N, Raselimanana AP, Raxworthy CJ, Kuhn A. Speciation rates are unrelated to the formation of population structure in Malagasy gemsnakes. Ecol Evol 2023; 13:e10344. [PMID: 37529593 PMCID: PMC10375368 DOI: 10.1002/ece3.10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Speciation rates vary substantially across the tree of life. These rates should be linked to the rate at which population structure forms if a continuum between micro and macroevolutionary patterns exists. Previous studies examining the link between speciation rates and the degree of population formation in clades have been shown to be either correlated or uncorrelated depending on the group, but no study has yet examined the relationship between speciation rates and population structure in a young group that is constrained spatially to a single-island system. We examine this correlation in 109 gemsnakes (Pseudoxyrhophiidae) endemic to Madagascar and originating in the early Miocene, which helps control for extinction variation across time and space. We find no relationship between rates of speciation and the formation rates of population structure over space in 33 species of gemsnakes. Rates of speciation show low variation, yet population structure varies widely across species, indicating that speciation rates and population structure are disconnected. We suspect this is largely due to the persistence of some lineages not susceptible to extinction. Importantly, we discuss how delimiting populations versus species may contribute to problems understanding the continuum between shallow and deep evolutionary processes.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Nirhy Rabibisoa
- Sciences de la Vie et de l'Environnement, Faculté des Sciences, de Technologies et de l'EnvironnementUniversité de MahajangaMahajangaMadagascar
| | - Achille P. Raselimanana
- Zoologie et Biodiversité Animale, Faculté des SciencesUniversité d'AntananarivoAntananarivoMadagascar
| | | | - Arianna Kuhn
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- Virginia Museum of Natural HistoryMartinsvilleVirginiaUSA
| |
Collapse
|
22
|
Liu H, Wang Z, Zhang Y, Li M, Wang T, Su Y. Geographic isolation and environmental heterogeneity contribute to genetic differentiation in Cephalotaxus oliveri. Ecol Evol 2023; 13:e9869. [PMID: 36919017 PMCID: PMC10008294 DOI: 10.1002/ece3.9869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Evaluating the contributions of geographic distance and environmental heterogeneity to the genetic divergence can inform the demographic history and responses to environmental change of natural populations. The isolation-by-distance (IBD) reveals that genetic differentiation among populations increases with geographic distance, while the isolation-by-environment (IBE) assumes a linear relationship between genetic variation and environmental differences among populations. Here, we sampled and genotyped 330 individuals from 18 natural populations of Cephalotaxus oliveri throughout the species' distribution. Twenty-eight EST-SSR markers were applied to analyze population genetics, for the investigation of the driving factors that shaped spatial structure. In addition, we identified the outlier loci under positive selection and tested their association with environmental factors. The results showed a moderate genetic diversity in C. oliveri and high genetic differentiation among populations. Population structure analyses indicated that 18 populations were clustered into two major groups. We observed that the genetic diversity of central populations decreased and the genetic differentiation increased towards the marginal populations. Additionally, the signatures of IBD and IBE were detected in C. oliveri, and IBE provided a better contribution to genetic differentiation. Six outlier loci under positive selection were demonstrated to be closely correlated with environmental variables, among which bio8 was associated with the greatest number of loci. Genetic evidence suggests the consistency of the central-marginal hypothesis (CMH) for C. oliveri. Furthermore, our results suggest that temperature-related variables played an important role in shaping genetic differentiation.
Collapse
Affiliation(s)
- Hanjing Liu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuli Zhang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Minghui Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| |
Collapse
|
23
|
Schmidt TL, Elfekih S, Cao LJ, Wei SJ, Al-Fageeh MB, Nassar M, Al-Malik A, Hoffmann AA. Close Kin Dyads Indicate Intergenerational Dispersal and Barriers. Am Nat 2023; 201:65-77. [PMID: 36524932 DOI: 10.1086/722175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe movement of individuals through continuous space is typically constrained by dispersal ability and dispersal barriers. A range of approaches have been developed to investigate these. Kindisperse is a new approach that infers recent intergenerational dispersal (σ) from close kin dyads and appears particularly useful for investigating taxa that are difficult to observe individually. This study, focusing on the mosquito Aedes aegypti, shows how the same close kin data can also be used for barrier detection. We empirically demonstrate this new extension of the method using genome-wide sequence data from 266 Ae. aegypti. First, we use the spatial distribution of full-sib dyads collected within one generation to infer past movements of ovipositing female mosquitoes. These dyads indicated the relative barrier strengths of two roads and performed favorably against alternative genetic methods for detecting barriers. We then use Kindisperse to quantify recent intergenerational dispersal (σ=81.5-197.1 m generation-1/2) from the difference in variance between the sib and the first cousin spatial distributions and, from this, estimate effective population density (ρ=833-4,864 km-2). Dispersal estimates showed general agreement with those from mark-release-recapture studies. Barriers, σ, ρ, and neighborhood size (331-526) can inform forthcoming releases of dengue-suppressing Wolbachia bacteria into this mosquito population.
Collapse
|
24
|
Snead AA, Alda F. Time-Series Sequences for Evolutionary Inferences. Integr Comp Biol 2022; 62:1771-1783. [PMID: 36104153 DOI: 10.1093/icb/icac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
25
|
Quiroga-Carmona M, D’Elía G. Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Sci Rep 2022; 12:22395. [PMID: 36575268 PMCID: PMC9794701 DOI: 10.1038/s41598-022-26937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Even when environmental variation over time and space is commonly considered as an important driver of population divergence, few evaluations of intraspecific genetic variation explicitly assess whether observed structure has been caused by or is correlated with landscape heterogeneity. Several phylogeographic studies have characterized the mitochondrial diversity of Abrothrix olivacea, but none has incorporated landscape genetics analyses and ecological niche modeling, leaving a gap in the understanding of the species evolutionary history. Here, these aspects were addressed based on 186 single nucleotide polymorphisms, extracted from sequences of 801 bp of Cytb gene, gathered from 416 individuals collected at 103 localities in Argentina and Chile. Employing multivariate statistical analyses (gPCA, Mantel and Partial Mantel Tests, Procrustes Analysis, and RDA), associations between genetic differences and geographic and climatic distances were evaluated. Presence data was employed to estimate the potential geographic distribution of this species during historical and contemporary climatic scenarios, and to address differences among the climatic niches of their main mitochondrial lineages. The significant influence of landscape features in structuring mitochondrial variability was evidenced at different spatial scales, as well as the role of past climatic dynamics in driving geographic range shifts, mostly associated to Quaternary glaciations. Overall, these results suggest that throughout geographic range gene flow is unevenly influenced by climatic dissimilarity and the geographic distancing, and that studied lineages do not exhibit distributional signals of climatic niche conservatism. Additionally, genetic differentiation occurred by more complex evolutionary processes than mere disruption of gene flow or drift.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.24434.350000 0004 1937 0060School of Biological Sciences, University of Nebraska, Lincoln, USA
| | - Guillermo D’Elía
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
26
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
27
|
Yoder JB, Dang A, MacGregor C, Plaza M. Plant‐associate interactions and diversification across trophic levels. Evol Lett 2022; 6:375-389. [PMID: 36254257 PMCID: PMC9554764 DOI: 10.1002/evl3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/27/2022] [Indexed: 11/11/2022] Open
Abstract
Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.
Collapse
Affiliation(s)
- Jeremy B. Yoder
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Albert Dang
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Caitlin MacGregor
- Department of Biology California State University Northridge Northridge CA 91330 USA
| | - Mikhail Plaza
- Program in Plant Biology and Conservation Northwestern University Evanston IL 60208 USA
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Glencoe IL 60035 USA
| |
Collapse
|
28
|
Repeated genetic adaptation to altitude in two tropical butterflies. Nat Commun 2022; 13:4676. [PMID: 35945236 PMCID: PMC9363431 DOI: 10.1038/s41467-022-32316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/26/2022] [Indexed: 01/02/2023] Open
Abstract
Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment. Here, the authors study adaptation to altitude in 518 whole genomes from two species of tropical butterflies. They find repeated genetic differentiation within species, little molecular parallelism between these species, and introgression from closely related species, concluding that standing genetic variation promotes parallel local adaptation.
Collapse
|
29
|
Burgin G, Hopkins R. A missing link: Connecting plant and pollinator population structure. AMERICAN JOURNAL OF BOTANY 2022; 109:668-671. [PMID: 35421258 DOI: 10.1002/ajb2.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Grace Burgin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
30
|
Wang Z, Pierce NE. Fine-scale genome-wide signature of Pleistocene glaciation in Thitarodes moths (Lepidoptera: Hepialidae), host of Ophiocordyceps fungus in the Hengduan Mountains. Mol Ecol 2022; 32:2695-2714. [PMID: 35377501 DOI: 10.1111/mec.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of inter-species divergence, the accumulation of intra-species (i.e. population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 meters apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.
Collapse
Affiliation(s)
- Zhengyang Wang
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Naomi E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
31
|
Kolis KM, Berg CS, Nelson TC, Fishman L. Population genomic consequences of life-history and mating system adaptation to a geothermal soil mosaic in yellow monkeyflowers. Evolution 2022; 76:765-781. [PMID: 35266558 DOI: 10.1111/evo.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
Local selection can promote phenotypic divergence despite gene flow across habitat mosaics, but adaptation itself may generate substantial barriers to genetic exchange. In plants, life-history, phenology, and mating system divergence have been proposed to promote genetic differentiation in sympatry. In this study, we investigate phenotypic and genetic variation in Mimulus guttatus (yellow monkeyflowers) across a geothermal soil mosaic in Yellowstone National Park (YNP). Plants from thermal annual and nonthermal perennial habitats were heritably differentiated for life-history and mating system traits, consistent with local adaptation to the ephemeral thermal-soil growing season. However, genome-wide genetic variation primarily clustered plants by geographic region, with little variation sorting by habitat. The one exception was an extreme thermal population also isolated by a 200 m geographical gap of no intermediate habitat. Individual inbreeding coefficients (FIS ) were higher (and predicted by trait variation) in annual plants and annual pairs showed greater isolation by distance at local (<1 km) scales. Finally, YNP adaptation does not reuse a widespread inversion that underlies M. guttatus life-history ecotypes range-wide, suggesting a novel genetic mechanism. Overall, this work suggests that life-history and mating system adaptation strong enough to shape individual mating patterns does not necessarily generate incipient speciation without geographical barriers.
Collapse
Affiliation(s)
- Kory M Kolis
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: O'Connor Center for the Rocky Mountain West, University of Montana, Missoula, MT, 59812
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: Embark Veterinary, Inc., Boston, Massachusetts, 02210
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
32
|
Genomic Screening to Identify Food Trees Potentially Dispersed by Precolonial Indigenous Peoples. Genes (Basel) 2022; 13:genes13030476. [PMID: 35328030 PMCID: PMC8954434 DOI: 10.3390/genes13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Over millennia, Indigenous peoples have dispersed the propagules of non-crop plants through trade, seasonal migration or attending ceremonies; and potentially increased the geographic range or abundance of many food species around the world. Genomic data can be used to reconstruct these histories. However, it can be difficult to disentangle anthropogenic from non-anthropogenic dispersal in long-lived non-crop species. We developed a genomic workflow that can be used to screen out species that show patterns consistent with faunal dispersal or long-term isolation, and identify species that carry dispersal signals of putative human influence. We used genotyping-by-sequencing (DArTseq) and whole-plastid sequencing (SKIMseq) to identify nuclear and chloroplast Single Nucleotide Polymorphisms in east Australian rainforest trees (4 families, 7 genera, 15 species) with large (>30 mm) or small (<30 mm) edible fruit, either with or without a known history of use by Indigenous peoples. We employed standard population genetic analyses to test for four signals of dispersal using a limited and opportunistically acquired sample scheme. We expected different patterns for species that fall into one of three broadly described dispersal histories: (1) ongoing faunal dispersal, (2) post-megafauna isolation and (3) post-megafauna isolation followed by dispersal of putative human influence. We identified five large-fruited species that displayed strong population structure combined with signals of dispersal. We propose coalescent methods to investigate whether these genomic signals can be attributed to post-megafauna isolation and dispersal by Indigenous peoples.
Collapse
|
33
|
Clark MI, Bradburd GS, Akopyan M, Vega A, Rosenblum EB, Robertson JM. Genetic isolation by distance underlies colour pattern divergence in red-eyed treefrogs (Agalychnis callidryas). Mol Ecol 2022; 31:1666-1681. [PMID: 35034406 PMCID: PMC8923152 DOI: 10.1111/mec.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Investigating the spatial distribution of genetic and phenotypic variation can provide insights into the evolutionary processes that shape diversity in natural systems. We characterized patterns of genetic and phenotypic diversity to learn about drivers of colour-pattern diversification in red-eyed treefrogs (Agalychnis callidryas) in Costa Rica. Along the Pacific coast, red-eyed treefrogs have conspicuous leg colour patterning that transitions from orange in the north to purple in the south. We measured phenotypic variation of frogs, with increased sampling at sites where the orange-to-purple transition occurs. At the transition zone, we discovered the co-occurrence of multiple colour-pattern morphs. To explore possible causes of this variation, we generated a single nucleotide polymorphism data set to analyse population genetic structure, measure genetic diversity and infer the processes that mediate genotype-phenotype dynamics. We investigated how patterns of genetic relatedness correspond to individual measures of colour pattern along the coast, including testing for the role of hybridization in geographic regions where orange and purple phenotypic groups co-occur. We found no evidence that colour-pattern polymorphism in the transition zone arose through recent hybridization. Instead, a strong pattern of genetic isolation by distance indicates that colour-pattern variation was either retained through other processes such as ancestral colour polymorphisms or ancient secondary contact, or else it was generated by novel mutations. We found that phenotype changes along the Pacific coast more than would be expected based on genetic divergence and geographic distance alone. Combined, our results suggest the possibility of selective pressures acting on colour pattern at a small geographic scale.
Collapse
Affiliation(s)
- Meaghan I. Clark
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Gideon S. Bradburd
- Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Maria Akopyan
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Jeanne M. Robertson
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| |
Collapse
|
34
|
Robles-Bello SM, Vázquez-López M, Ramírez-Barrera SM, Terrones-Ramírez AK, Hernández-Baños BE. Drivers of phenotypic divergence in a Mesoamerican highland bird. PeerJ 2022; 10:e12901. [PMID: 35198262 PMCID: PMC8860067 DOI: 10.7717/peerj.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Animals derive their coloration from a variety of pigments as well as non-pigmentary structural features. One of the most widespread types of pigments are carotenoids, which are used by all invertebrate taxa and most vertebrate orders to generate red, pink, orange and yellow coloration. Despite their widespread use by diverse animal groups, animals obligately obtain carotenoid pigments from diet. Carotenoid-based coloration is therefore modulated by evolutionary and ecological processes that affect the acquisition and deposition of these pigments into tegumentary structures. The Flame-colored Tanager (Piranga bidentata) is a highland songbird in the cardinal family (Cardinalidae) that is distributed from Mexican sierras through Central America up to western Panama. While female plumage throughout its entire range is predominantly yellow, males exhibit a noticeable split in ventral plumage color, which is bright orange on the West slope and the Tres Marias Islands and blood red in Eastern Mexico and Central America. We used Multiple Regression on Matrices (MRM) to evaluate the relative contributions of geographic distance, climate and genetic distance on color divergence and body differences between geographically disjunct populations. We found that differentiation in carotenoid plumage coloration was mainly explained by rainfall differences between disjunct populations, whereas body size differences was best explained by variation in the annual mean temperature and temperature of coldest quarter. These results indicate that climate is a strong driver of phenotypic divergence in Piranga bidentata.
Collapse
Affiliation(s)
- Sahid M. Robles-Bello
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| | - Melisa Vázquez-López
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Sandra M. Ramírez-Barrera
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Alondra K. Terrones-Ramírez
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Blanca E. Hernández-Baños
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
35
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
36
|
Landscape Genetics and Species Delimitation in the Andean Palm Rocket Frog (Aromobatidae, Rheobates). J ZOOL SYST EVOL RES 2022. [DOI: 10.1155/2022/6774225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex topography of the species-rich northern Andes creates heterogeneous environmental landscapes that are hypothesized to have promoted population fragmentation and diversification by processes such as vicariance or local adaptation. Previous phylogenetic work on the palm rocket frog (Anura: Aromobatidae: Rheobates spp.), endemic to midelevation forests of Colombia, suggested that valleys were important in promoting divergence between lineages. In this study, we first evaluated previous hypotheses of species-level diversity, then fitted an isolation-with-migration (IM) historical demographic model, and tested two landscape genetic models to explain genetic divergence within Rheobates: isolation by distance and isolation by environment. The data consisted of two mitochondrial and four nuclear genes from 24 samples covering most of the geographic range of the genus. Species delimitation by Bayesian Phylogenetics and Phylogeography recovered five highly divergent genetic lineages within Rheobates, among which few to no migrants are exchanged according to IM. We found that isolation by environment provided the only variable significantly correlated with genetic distances for both mitochondrial and nuclear genes, suggesting that local adaptation may have a role in driving the genetic divergence within this frog genus. Thus, genetic divergence in Rheobates may be driven more by variation among the local environments where these frogs live rather than by geographic distance.
Collapse
|
37
|
Li L, Zhao C, Zhao X, Wang D, Li Y. Pattern of plant communities' influence to grasshopper abundance distribution in heterogeneous landscapes at the upper reaches of Heihe River, Qilian Mountains, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13177-13187. [PMID: 34585356 DOI: 10.1007/s11356-021-16430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Understanding the impact of the heterogeneity of the ecological environment on biodiversity is a key issue in ecology. Topographical heterogeneity was potentially important in grassland systems to create or change habitats for grasshopper settlement and foraging. Yet, there was little knowledge of how grasshopper communities respond to plant communities along the altitude gradient. We investigated the role of plant communities on grasshopper diversity with geostatistical methods to test the effects of heterogeneity in the natural grassland on the upper reaches of the Heihe River, Qilian Mountains. To aim the goal of the study, nonreturn experiments were used to collect the grasshoppers' diversity and populations, and the plant's community was sampled at the same location. The results showed that the semivariograms of grasshopper abundance and plant communities were both nonlinear models, while the grasshopper abundance typically produces heterogeneity with a larger range and nuggets than plant communities (except the plant coverage range in the model, range <1.5 m). The two communities presented the spatial distribution pattern of aggregated distribution, and the spatial trend is more intense in the northeast-southwest direction than in the northwest-southeast. The grasshopper species developed a good selection on microenvironment to habitat and the distribution consistent with plants, forming the horizontal distribution with a flaky and plaque distribution pattern. The relationship between grasshoppers and plants was highly dependent on the altitude, and grasshopper abundance has a positive correlation with plant richness (F = 0.68) and plant coverage (F = 0.32) and has a negative correlation with plant height (F = 0.13). In summary, the spatial distribution and correlation characteristics of plant communities and grasshoppers formed a plaque heterogeneity structure under the altitude gradients.
Collapse
Affiliation(s)
- Lili Li
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China.
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu, 730000, People's Republic of China.
| | - Chengzhang Zhao
- Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730000, People's Republic of China.
| | - Xiawei Zhao
- Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730000, People's Republic of China
| | - Dawei Wang
- Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730000, People's Republic of China
- Northwest Regional Climate Center, Gansu Meteorological Bureau, Lanzhou, 730000, People's Republic of China
| | - Yu Li
- School of Tourism and Land Resource, Chongqing Technology and Business University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Vidaković A, Šatović Z, Tumpa K, Idžojtić M, Liber Z, Pintar V, Radunić M, Runjić TN, Runjić M, Rošin J, Gaunt D, Poljak I. Phenotypic Variation in European Wild Pear (Pyrus pyraster (L.) Burgsd.) Populations in the North-Western Part of the Balkan Peninsula. PLANTS 2022; 11:plants11030335. [PMID: 35161316 PMCID: PMC8837925 DOI: 10.3390/plants11030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Leaves play a central role in plant fitness, allowing efficient light capture, gas exchange and thermoregulation, ensuring optimal growing conditions for the plant. Phenotypic variability in leaf shape and size has been linked to environmental heterogeneity and habitat characteristics. Therefore, the study of foliar morphology in plant populations can help us to identify the environmental factors that may have influenced the process of species diversification. In this study, we used European wild pear (Pyrus pyraster (L.) Burgsd., Rosaceae) as a model species to investigate the phenotypic variability of leaves under different environmental conditions. Using leaf morphometric data from 19 natural populations from the north-western part of the Balkan Peninsula, a high level of variability among and within populations were found. Leaf traits related to leaf size were more variable compared to leaf shape traits, with both influenced by geographic and environmental factors. Consequently, patterns of isolation by environment (IBE) and distance (IBD) were identified, with IBE showing a stronger influence on leaf variability. Multivariate statistical analysis revealed that European wild pear populations from the north-western part of the Balkan Peninsula can be divided into two morphological clusters, consistent with their geographical distance and environmental conditions. Our results confirm a high level of phenotypic variability in European wild pear populations, providing additional data on this poorly studied species, emphasizing phenotypic plasticity as a major driver in the adaptation of this noble hardwood species to rapid climate change.
Collapse
Affiliation(s)
- Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia
| | - Valentino Pintar
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Nature Sector, Radnička cesta 80, HR-10000 Zagreb, Croatia;
| | - Mira Radunić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Tonka Ninčević Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Marko Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Jakša Rošin
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Daniel Gaunt
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
- Correspondence: ; Tel.: +385-1-2352547
| |
Collapse
|
39
|
Shakya SB, Wang-Claypool CY, Cicero C, Bowie RCK, Mason NA. Neo-sex chromosome evolution and phenotypic differentiation across an elevational gradient in horned larks (Eremophila Alpestris). Mol Ecol 2022; 31:1783-1799. [PMID: 35048444 DOI: 10.1111/mec.16357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Genetic structure and phenotypic variation among populations is affected by both geographic distance and environmental variation across species' distributions. Understanding the relative contributions of isolation by distance (IBD) and isolation by environment (IBE) is important for elucidating population dynamics across habitats and ecological gradients. In this study, we compared phenotypic and genetic variation among Horned Lark (Eremophila alpestris) populations from 10 sites encompassing an elevational gradient from low-elevation desert scrub in Death Valley (285 a.s.l.) to high-elevation meadows in the White Mountains of the Sierra Nevada of California (greater than 3000 m a.s.l.). Using a ddRAD dataset of 28,474 SNPs aligned to a high-quality reference genome, we compared genetic structure with elevational, environmental, and spatial distance to quantify how different aspects of the landscape drive genomic and phenotypic differentiation in Horned Larks. We found larger-bodied birds were associated with sites that had less seasonality and higher annual precipitation, and longer spurs occurred in soils with more clay and silt content, less sand, and finer fragments. Larks have large neo-sex chromosomes, and we found that associations with elevation and environmental variation were much stronger among neo-sex chromosomes compared to autosomes. Furthermore, we found that putative chromosomal translocations, fusions, and inversions were associated with elevation and may underlie local adaptation across an elevational gradient in Horned Larks. Our results suggest that genetic variation in Horned Larks is affected more by IBD than IBE, but specific phenotypes and genomic regions-particually on neo-sex chromosomes-bear stronger associations with the environment.
Collapse
Affiliation(s)
- Subir B Shakya
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cynthia Y Wang-Claypool
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nicholas A Mason
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| |
Collapse
|
40
|
Prates I, Singhal S, Marchán-Rivadeneira MR, Grundler MR, Moritz C, Donnellan SC, Rabosky DL. Genetic and Ecogeographic Controls on Species Cohesion in Australia’s Most Diverse Lizard Radiation. Am Nat 2022; 199:E57-E75. [DOI: 10.1086/717411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sonal Singhal
- Department of Biology, California State University–Dominguez Hills, Carson, California 90747
| | | | - Maggie R. Grundler
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Camberra, Australian Capital Territory, Australia
| | | | - Daniel L. Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
41
|
Faske TM, Agneray AC, Jahner JP, Sheta LM, Leger EA, Parchman TL. Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evol Appl 2021; 14:2881-2900. [PMID: 34950235 PMCID: PMC8674890 DOI: 10.1111/eva.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023] Open
Abstract
The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.
Collapse
Affiliation(s)
- Trevor M. Faske
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Alison C. Agneray
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | | | - Lana M. Sheta
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - Elizabeth A. Leger
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| | - Thomas L. Parchman
- Department of BiologyUniversity of NevadaRenoNevadaUSA
- Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
42
|
Muñoz‐Valencia V, Vélez‐Martínez GA, Montoya‐Lerma J, Díaz F. Role of the Andean uplift as an asymmetrical barrier to gene flow in the neotropical leaf‐cutting ant
Atta cephalotes. Biotropica 2021. [DOI: 10.1111/btp.13050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Vanessa Muñoz‐Valencia
- Grupo de Ecología de Agroecosistemas y Hábitats Naturales Universidad del Valle Cali, Valle del Cauca Colombia
| | | | - James Montoya‐Lerma
- Grupo de Ecología de Agroecosistemas y Hábitats Naturales Universidad del Valle Cali, Valle del Cauca Colombia
| | - Fernando Díaz
- Biology Department Colgate University Hamilton New York USA
| |
Collapse
|
43
|
Oboudi R, Malekian M, Khosravi R, Fadakar D, Adibi MA. Genetic structure and ecological niche segregation of Indian gray mongoose ( Urva edwardsii) in Iran. Ecol Evol 2021; 11:14813-14827. [PMID: 34765143 PMCID: PMC8571580 DOI: 10.1002/ece3.8168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023] Open
Abstract
Combining genetic data with ecological niche models is an effective approach for exploring climatic and nonclimatic environmental variables affecting spatial patterns of intraspecific genetic variation. Here, we adopted this combined approach to evaluate genetic structure and ecological niche of the Indian gray mongoose (Urva edwardsii) in Iran, as the most western part of the species range. Using mtDNA, we confirmed the presence of two highly differentiated clades. Then, we incorporated ensemble of small models (ESMs) using climatic and nonclimatic variables with genetic data to assess whether genetic differentiation among clades was coupled with their ecological niche. Climate niche divergence was also examined based on a principal component analysis on climatic factors only. The relative habitat suitability values predicted by the ESMs for both clades revealed their niche separation. Between-clade climate only niche comparison revealed that climate space occupied by clades is similar to some extent, but the niches that they utilize differ between the distribution ranges of clades. We found that in the absence of evidence for recent genetic exchanges, distribution models suggest the species occurs in different niches and that there are apparent areas of disconnection across the species range. The estimated divergence time between the two Iranian clades (4.9 Mya) coincides with the uplifting of the Zagros Mountains during the Early Pliocene. The Zagros mountain-building event seems to have prevented the distribution of U. edwardsii populations between the western and eastern parts of the mountains as a result of vicariance events. Our findings indicated that the two U. edwardsii genetic clades in Iran can be considered as two conservation units and can be utilized to develop habitat-specific and climate change-integrated management strategies.
Collapse
Affiliation(s)
- Razie Oboudi
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | - Mansoureh Malekian
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | - Rasoul Khosravi
- Department of Natural ResourcesSchool of AgricultureShiraz UniversityShirazIran
| | - Davoud Fadakar
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | | |
Collapse
|
44
|
Calfee E, Gates D, Lorant A, Perkins MT, Coop G, Ross-Ibarra J. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genet 2021; 17:e1009810. [PMID: 34634032 PMCID: PMC8530355 DOI: 10.1371/journal.pgen.1009810] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize's global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations. Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.
Collapse
Affiliation(s)
- Erin Calfee
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Daniel Gates
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - M. Taylor Perkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
45
|
Medina R, Wogan GOU, Bi K, Termignoni-García F, Bernal MH, Jaramillo-Correa JP, Wang IJ, Vázquez-Domínguez E. Phenotypic and genomic diversification with isolation by environment along elevational gradients in a neotropical treefrog. Mol Ecol 2021; 30:4062-4076. [PMID: 34160853 DOI: 10.1111/mec.16035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.
Collapse
Affiliation(s)
- Ricardo Medina
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Guinevere O U Wogan
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA.,Department of Integrative Biology, Oklahoma State University, Oklahoma, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Computational Genomics Resource Laboratory (CGRL, California Institute for Quantitative Biosciences (QB3, University of California, Berkeley, California, USA
| | - Flavia Termignoni-García
- Department of Organismic and Evolutionary Biology (OEB, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Hernando Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Juan P Jaramillo-Correa
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
46
|
Rosenthal WC, McIntyre PB, Lisi PJ, Prather RB, Moody KN, Blum MJ, Hogan JD, Schoville SD. Invasion and rapid adaptation of guppies ( Poecilia reticulata) across the Hawaiian Archipelago. Evol Appl 2021; 14:1747-1761. [PMID: 34295361 PMCID: PMC8288002 DOI: 10.1111/eva.13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 01/19/2023] Open
Abstract
How much does natural selection, as opposed to genetic drift, admixture, and gene flow, contribute to the evolution of invasive species following introduction to a new environment? Here we assess how evolution can shape biological invasions by examining population genomic variation in non-native guppies (Poecilia reticulata) introduced to the Hawaiian Islands approximately a century ago. By examining 18 invasive populations from four Hawaiian islands and four populations from the native range in northern South America, we reconstructed the history of introductions and evaluated population structure as well as the extent of ongoing gene flow across watersheds and among islands. Patterns of differentiation indicate that guppies have developed significant population structure, with little natural or human-mediated gene flow having occurred among populations following introduction. Demographic modeling and admixture graph analyses together suggest that guppies were initially introduced to O'ahu and Maui and then translocated to Hawai'i and Kaua'i. We detected evidence for only one introduction event from the native range, implying that any adaptive evolution in introduced populations likely utilized the genetic variation present in the founding population. Environmental association tests accounting for population structure identified loci exhibiting signatures of adaptive variation related to predators and landscape characteristics but not nutrient regimes. When paired with high estimates of effective population sizes and detectable population structure, the presence of environment-associated loci supports the role of natural selection in shaping contemporary evolution of Hawaiian guppy populations. Our findings indicate that local adaptation may engender invasion success, particularly in species with life histories that facilitate rapid evolution. Finally, evidence of low gene flow between populations suggests that removal could be an effective approach to control invasive guppies across the Hawaiian archipelago.
Collapse
Affiliation(s)
- William C. Rosenthal
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Peter B. McIntyre
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | - Peter J. Lisi
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Robert B. Prather
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| | - Kristine N. Moody
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTNUSA
- The ByWater InstituteTulane UniversityNew OrleansLAUSA
- Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Michael J. Blum
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTNUSA
- The ByWater InstituteTulane UniversityNew OrleansLAUSA
| | - James Derek Hogan
- Department of Life SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTXUSA
| | | |
Collapse
|
47
|
Briñoccoli YF, Jardim de Queiroz L, Bogan S, Paracampo A, Posadas PE, Somoza GM, Montoya‐Burgos JI, Cardoso YP. Processes that drive the population structuring of Jenynsia lineata (Cyprinidontiformes, Anablepidae) in the La Plata Basin. Ecol Evol 2021; 11:6119-6132. [PMID: 34141207 PMCID: PMC8207347 DOI: 10.1002/ece3.7427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
The distribution of genetic diversity across a species distribution range is rarely homogeneous, as the genetic structure among populations is related to the degree of isolation among them, such as isolation by distance, isolation by barrier, and isolation by environment. Jenynsia lineata is a small viviparous fish that inhabits a wide range of habitats in South America. To decipher the isolation processes that drive population structuring in J. lineata, we analyzed 221 sequences of the mitochondrial cytochrome c oxidase I gene (COI), from 19 localities. Then, we examined the influence of the three most common types of isolation in order to explain the genetic variation found in this species.Our results revealed a marked structuration, with three groups: (a) La Plata/Desaguadero Rivers (sampling sites across Argentina, Uruguay, and Southern Brazil), (b) Central Argentina, and (c) Northern Argentina. A distance-based redundancy analysis, including the explanatory variables geographical distances, altitude, latitude, and basin, was able to explain up to 65% of the genetic structure. A variance partitioning analysis showed that the two most important variables underlying the structuration in J. lineata were altitude (isolation by environment) and type of basin (isolation by barrier).Our results show that in this species, the processes of population diversification are complex and are not limited to a single mechanism. The processes that play a prominent role in this study could explain the high rate of diversity that characterizes freshwater fish species. And these processes in turn are the basis for possible speciation events.
Collapse
Affiliation(s)
- Yanina F. Briñoccoli
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Sergio Bogan
- Fundación de Historia Natural “Félix de Azara”Departamento de Ciencias Naturales y AntropologíaUniversidad MaimónidesCiudad Autónoma de Buenos AiresArgentina
| | - Ariel Paracampo
- Instituto de Limnología Dr. Raúl A. RingueletCONICET‐CCT La Plata‐UNLPBuenos AiresArgentina
| | - Paula E. Posadas
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| | - Gustavo M. Somoza
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Yamila P. Cardoso
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| |
Collapse
|
48
|
Bourgeois YXC, Warren BH. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol Ecol 2021; 30:6036-6071. [PMID: 34009688 DOI: 10.1111/mec.15989] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Characterizing the population history of a species and identifying loci underlying local adaptation is crucial in functional ecology, evolutionary biology, conservation and agronomy. The constant improvement of high-throughput sequencing techniques has facilitated the production of whole genome data in a wide range of species. Population genomics now provides tools to better integrate selection into a historical framework, and take into account selection when reconstructing demographic history. However, this improvement has come with a profusion of analytical tools that can confuse and discourage users. Such confusion limits the amount of information effectively retrieved from complex genomic data sets, and impairs the diffusion of the most recent analytical tools into fields such as conservation biology. It may also lead to redundancy among methods. To address these isssues, we propose an overview of more than 100 state-of-the-art methods that can deal with whole genome data. We summarize the strategies they use to infer demographic history and selection, and discuss some of their limitations. A website listing these methods is available at www.methodspopgen.com.
Collapse
Affiliation(s)
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
49
|
Jones MR, Winkler DE, Massatti R. The demographic and ecological factors shaping diversification among rare
Astragalus
species. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Matthew R. Jones
- Southwest Biological Science Center U.S. Geological Survey Flagstaff AZ USA
| | - Daniel E. Winkler
- Southwest Biological Science Center U.S. Geological Survey Moab UT USA
| | - Rob Massatti
- Southwest Biological Science Center U.S. Geological Survey Flagstaff AZ USA
| |
Collapse
|
50
|
Bose A, Platt DE, Parida L, Drineas P, Paschou P. Integrating Linguistics, Social Structure, and Geography to Model Genetic Diversity within India. Mol Biol Evol 2021; 38:1809-1819. [PMID: 33481022 PMCID: PMC8097304 DOI: 10.1093/molbev/msaa321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
India represents an intricate tapestry of population substructure shaped by geography, language, culture, and social stratification. Although geography closely correlates with genetic structure in other parts of the world, the strict endogamy imposed by the Indian caste system and the large number of spoken languages add further levels of complexity to understand Indian population structure. To date, no study has attempted to model and evaluate how these factors have interacted to shape the patterns of genetic diversity within India. We merged all publicly available data from the Indian subcontinent into a data set of 891 individuals from 90 well-defined groups. Bringing together geography, genetics, and demographic factors, we developed Correlation Optimization of Genetics and Geodemographics to build a model that explains the observed population genetic substructure. We show that shared language along with social structure have been the most powerful forces in creating paths of gene flow in the subcontinent. Furthermore, we discover the ethnic groups that best capture the diverse genetic substructure using a ridge leverage score statistic. Integrating data from India with a data set of additional 1,323 individuals from 50 Eurasian populations, we find that Indo-European and Dravidian speakers of India show shared genetic drift with Europeans, whereas the Tibeto-Burman speaking tribal groups have maximum shared genetic drift with East Asians.
Collapse
Affiliation(s)
- Aritra Bose
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Daniel E Platt
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Laxmi Parida
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Petros Drineas
- Computer Science Department, Purdue University, West Lafayette, IN, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|