1
|
Planas-Sitjà I, Ioannou CC. State-behaviour feedbacks between boldness and food intake shape escape responses in fish (Gasterosteus aculeatus). Commun Biol 2025; 8:227. [PMID: 39948246 PMCID: PMC11825722 DOI: 10.1038/s42003-025-07669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Consistent differences in intrinsic state, amplified through state-dependent behaviour, could explain the ubiquity of animal personality variation. Boldness is often positively associated with a high metabolism and food intake. Even though a high food consumption is known to compromise oxygen-demanding activities, the influence of food intake on anti-predator escape responses has rarely been considered. By conducting experiments with three-spined sticklebacks (Gasterosteus aculeatus) in a setup with real-time tracking and a decoy heron predator, we show that bolder fish benefited from a higher food intake than shy fish, and reacted faster to a predator attack when food intake was the same before being attacked. However, a higher food intake slowed down the escape responses. These results shine light on how the fitness of shy and bold tactics could be balanced in the wild: the faster reaction of bold fish is impaired by their higher food consumption.
Collapse
Affiliation(s)
- Isaac Planas-Sitjà
- Animal Ecology, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Japan.
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, United Kingdom
| |
Collapse
|
2
|
Yao Z, Huang K, Qi Y, Fu J. Does brain size of Asiatic toads (Bufo gargarizans) trade-off with other energetically expensive organs along altitudinal gradients? Evolution 2024; 79:28-37. [PMID: 39303020 DOI: 10.1093/evolut/qpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Brain size variation is often attributed to energetic trade-offs with other metabolically expensive tissues and organs, which is a prediction of the expensive brain hypothesis (EBH). Here we examine Asiatic toads (Bufo gargarizans) along altitudinal gradients and test size trade-offs between the brain and four visceral organs (heart, liver, alimentary tract, and kidney) with altitude. Body size and scaled mass index (a proxy for total energy intake) decline with altitude, implying stronger energetic constraints at high altitudes. Relative brain size decreases along altitudinal gradients, while visceral organs mostly increase in relative sizes. Using structural equation modeling, a significant negative relationship between brain size and a latent variable "budget," which represents the energy allocation to the four visceral organs, is detected among high-altitudinal toads. Heart appears to have the largest and most consistent response to changes in energy allocation. No such relationships are observed among toads at middle- and low-altitudes, where high energy intake may allow individuals to forego energetic trade-offs. When applying EBH to poikilotherms, a great emphasis should be placed on total energy intake in addition to energy allocation. Future research on EBH will benefit from more intra-specific comparisons and the evaluation of fitness consequences beyond energy limitation.
Collapse
Affiliation(s)
- Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kun Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Shirley Bezerra M, Helle S, Seunarine KK, Arthurs OJ, Eaton S, Williams JE, Clark CA, Wells JCK. Testing the expensive-tissue hypothesis' prediction of inter-tissue competition using causal modelling with latent variables. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e33. [PMID: 39469074 PMCID: PMC11514623 DOI: 10.1017/ehs.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024] Open
Abstract
The expensive-tissue hypothesis (ETH) posited a brain-gut trade-off to explain how humans evolved large, costly brains. Versions of the ETH interrogating gut or other body tissues have been tested in non-human animals, but not humans. We collected brain and body composition data in 70 South Asian women and used structural equation modelling with instrumental variables, an approach that handles threats to causal inference including measurement error, unmeasured confounding and reverse causality. We tested a negative, causal effect of the latent construct 'nutritional investment in brain tissues' (MRI-derived brain volumes) on the construct 'nutritional investment in lean body tissues' (organ volume and skeletal muscle). We also predicted a negative causal effect of the brain latent on fat mass. We found negative causal estimates for both brain and lean tissue (-0.41, 95% CI, -1.13, 0.23) and brain and fat (-0.56, 95% CI, -2.46, 2.28). These results, although inconclusive, are consistent with theory and prior evidence of the brain trading off with lean and fat tissues, and they are an important step in assessing empirical evidence for the ETH in humans. Analyses using larger datasets, genetic data and causal modelling are required to build on these findings and expand the evidence base.
Collapse
Affiliation(s)
| | - Samuli Helle
- INVEST Research Flagship Centre, University of Turku, Turku, Finland
| | - Kiran K. Seunarine
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Owen J. Arthurs
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jane E. Williams
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chris A. Clark
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jonathan C. K. Wells
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
4
|
Farnworth MS, Montgomery SH. Evolution of neural circuitry and cognition. Biol Lett 2024; 20:20230576. [PMID: 38747685 PMCID: PMC11285921 DOI: 10.1098/rsbl.2023.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.
Collapse
Affiliation(s)
- Max S. Farnworth
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
5
|
Bryant KL, Hansen C, Hecht EE. Fermentation technology as a driver of human brain expansion. Commun Biol 2023; 6:1190. [PMID: 37996482 PMCID: PMC10667226 DOI: 10.1038/s42003-023-05517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain tissue is metabolically expensive. Consequently, the evolution of humans' large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans'. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define "external fermentation" as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.
Collapse
Affiliation(s)
- Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France.
| | - Christi Hansen
- Hungry Heart Farm and Dietary Consulting, Conley, GA, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kotrschal K. Wolf-Dog-Human: Companionship Based on Common Social Tools. Animals (Basel) 2023; 13:2729. [PMID: 37684993 PMCID: PMC10486892 DOI: 10.3390/ani13172729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Wolves, dogs and humans share extremely social and cooperative minds. These similarities are rooted in phylogenetic homology and in the convergence of neuronal and physiological mechanisms, particularly the brain, in the functioning and communication of basic affects and in the mechanisms of stress and calming. The domesticated wolves called dogs are particularly close companion animals. Both Palaeolithic humans and wolves were hypercursorial hunters, cooperating in complex and prosocial ways within their clans with respect to hunting, raising offspring, and defending against conspecific and heterospecific competitors and predators. These eco-social parallels have shaped the development of similar social mindsets in wolves and humans. Over the millennia of domestication, this social match was fine-tuned, resulting in the socio-cognitive specialists humans and dogs, possessing amazingly similar social brains and minds. Therefore, it can be concluded that the quality of their relationships with their human masters is a major factor in the wellbeing, welfare and even health of dogs, as well as in the wellbeing of their human partners. Based on their strikingly similar social brains and physiologies, it can be further concluded that anthropomorphically applying human empathy to dogs in an educated manner may not be as inappropriate as previously thought.
Collapse
Affiliation(s)
- Kurt Kotrschal
- Department of Behavioral & Cognitive Biology, University of Vienna, 1030 Wien, Austria
| |
Collapse
|
7
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
8
|
Abstract
Large brains support numerous cognitive adaptations and therefore may appear to be highly beneficial. Nonetheless, the high energetic costs of brain tissue may have prevented the evolution of large brains in many species. This problem may also have a developmental dimension: juveniles, with their immature and therefore poorly performing brains, would face a major energetic hurdle if they were to pay for the construction of their own brain, especially in larger-brained species. Here, we explore the possible role of parental provisioning for the development and evolution of adult brain size in birds. A comparative analysis of 1,176 bird species shows that various measures of parental provisioning (precocial vs. altricial state at hatching, relative egg mass, time spent provisioning the young) strongly predict relative brain size across species. The parental provisioning hypothesis also provides an explanation for the well-documented but so far unexplained pattern that altricial birds have larger brains than precocial ones. We therefore conclude that the evolution of parental provisioning allowed species to overcome the seemingly insurmountable energetic constraint on growing large brains, which in turn enabled bird species to increase survival and population stability. Because including adult eco- and socio-cognitive predictors only marginally improved the explanatory value of our models, these findings also suggest that the traditionally assessed cognitive abilities largely support successful parental provisioning. Our results therefore indicate that the cognitive adaptations underlying successful parental provisioning also provide the behavioral flexibility facilitating reproductive success and survival.
Collapse
|
9
|
Lesch R, Kotrschal K, Kitchener AC, Fitch WT, Kotrschal A. The expensive-tissue hypothesis may help explain brain-size reduction during domestication. Commun Integr Biol 2022; 15:190-192. [PMID: 35957842 PMCID: PMC9359384 DOI: 10.1080/19420889.2022.2101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Morphological traits, such as white patches, floppy ears and curly tails, are ubiquitous in domestic animals and are referred to as the ‘domestication syndrome’. A commonly discussed hypothesis that has the potential to provide a unifying explanation for these traits is the ‘neural crest/domestication syndrome hypothesis’. Although this hypothesis has the potential to explain most traits of the domestication syndrome, it only has an indirect connection to the reduction of brain size, which is a typical trait of domestic animals. We discuss how the expensive-tissue hypothesis might help explain brain-size reduction in domestication.
Collapse
Affiliation(s)
- Raffaela Lesch
- Institute of Animal Welfare Science, University for Veterinary Medicine, Austria
| | - Kurt Kotrschal
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - W. Tecumseh Fitch
- Institute of Animal Welfare Science, University for Veterinary Medicine, Austria
| | - Alexander Kotrschal
- Behavioural Ecology, Animal Science, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
11
|
Fu Y, Song Y, Yang C, Liu X, Liu Y, Huang Y. Relationship between brain size and digestive tract length support the expensive-tissue hypothesis in Feirana quadranus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain is among the most energetically costly organs in the vertebrate body, while the size of the brain varies within species. The expensive-tissue hypothesis (ETH) predicts that increasing the size of another costly organ, such as the gut, should compensate for the cost of a small brain. Here, the ETH was tested by analyzing the relationship between brain size variation and digestive tract length in a Swelled-vented frog (Feirana quadranus). A total of 125 individuals across 10 populations ranging from 586 to 1,702 m a.s.l. from the Qinling-Daba Mountains were sampled. With the increase in altitude, the brain size decreases and the digestive tract length increases. Different brain regions do not change their relative size in a consistent manner. The sizes of telencephalon and cerebellum decrease with the increase in altitude, while the olfactory nerve increases its size at high altitudes. However, the olfactory bulb and optic tectum have no significant relationship with altitude. After controlling for snout-vent length (SVL), a significant negative correlation could be found between brain size and digestive tract length in F. quadranus. Therefore, the intraspecific variation of brain size follows the general patterns of ETH in this species. The results suggest that annual mean temperature and annual precipitation are environmental factors influencing the adaptive evolution of brain size and digestive tract length. This study also suggests that food composition, activity times, and habitat complexity are the potential reasons driving the adaptive evolution of brain size and digestive tract length.
Collapse
|
12
|
Stark G. Large and expensive brain comes with a short lifespan: The relationship between brain size and longevity among fish taxa. JOURNAL OF FISH BIOLOGY 2022; 101:92-99. [PMID: 35482011 PMCID: PMC9544989 DOI: 10.1111/jfb.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Vertebrates show substantial interspecific variation in brain size in relation to body mass. It has long been recognized that the evolution of large brains is associated with both costs and benefits, and it is their net benefit which should be favoured by natural selection. On one hand, the substantial energetic cost imposed by the maintenance of neural tissue is expected to compromise the energetic budget of organisms with large brains and their investment in other critical organs (expensive brain framework, EBF) or important physiological process, such as somatic maintenance and repair, thus accelerating ageing that shortens lifespan, as predicted by the disposable soma theory (DST). However, selection towards larger brain size can provide cognitive benefits (e.g., high behavioural flexibility) that may mitigate extrinsic mortality pressures, and thus may indirectly select for slower ageing that prolongs lifespan, as predicted by the cognitive buffer hypothesis (CBH). The relationship between longevity and brain size has been investigated to date only among terrestrial vertebrates, although the same selective forces acting on those species may also affect vertebrates living in aquatic habitats, such as fish. Thus, whether this evolutionary trade-off for brain size and longevity exists on a large scale among fish clades remains to be addressed. In this study, using a global dataset of 407 fish species, I undertook the first phylogenetic test of the brain size/longevity relationship in aquatic vertebrate species. The study revealed a negative relationship between brain size and longevity among cartilaginous fish confirming EBF and DST. However, no pattern emerged among bony fish species. Among sharks and rays, the high metabolic cost of producing neural tissue transcends the cognitive benefits of evolving a larger brain. Consequently, my findings suggest that the cost of maintaining brain tissue is relatively higher in ectothermic species than in endothermic ones.
Collapse
Affiliation(s)
- Gavin Stark
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
13
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Fischer S, Jungwirth A. The costs and benefits of larger brains in fishes. J Evol Biol 2022; 35:973-985. [PMID: 35612352 DOI: 10.1111/jeb.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
The astonishing diversity of brain sizes observed across the animal kingdom is typically explained in the context of trade-offs: the benefits of a larger brain, such as enhanced cognitive ability, are balanced against potential costs, such as increased energetic demands. Several hypotheses have been formulated in this framework, placing different emphasis on ecological, behavioural, or physiological aspects of trade-offs in brain size evolution. Within this body of work, there exists considerable taxonomic bias towards studies of birds and mammals, leaving some uncertainty about the generality of the respective arguments. Here, we test three of the most prominent such hypotheses, the 'expensive tissue', 'social brain' and 'cognitive buffer' hypotheses, in a large dataset of fishes, derived from a publicly available resource (FishBase). In accordance with predictions from the 'expensive tissue' and the 'social brain' hypothesis, larger brains co-occur with reduced fecundity and increased sociality in at least some Classes of fish. Contrary to expectations, however, lifespan is reduced in large-brained fishes, and there is a tendency for species that perform parental care to have smaller brains. As such, it appears that some potential costs (reduced fecundity) and benefits (increased sociality) of large brains are near universal to vertebrates, whereas others have more lineage-specific effects. We discuss our findings in the context of fundamental differences between the classically studied birds and mammals and the fishes we analyse here, namely divergent patterns of growth, parenting and neurogenesis. As such, our work highlights the need for a taxonomically diverse approach to any fundamental question in evolutionary biology.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Arne Jungwirth
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
15
|
Oyarzún-Salazar R, Martínez D, Nualart D, Muñoz JLP, Vargas-Chacoff L. The fasted and post-prandial physiological responses of the Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111158. [PMID: 35123064 DOI: 10.1016/j.cbpa.2022.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Eleginops maclovinus is a native species with potential for Chilean aquaculture. Understanding the variations between the post-prandial and fasted metabolic responses can contribute to improving the aquaculture of this species. This study aimed to characterize variations in intermediate metabolism during the course of the day in the liver, serum, and gills of fed and unfed fish. For this, 72 fish were assigned to two experimental groups, "fed" and "fasted". The first group was fed "ad libitum" at 8.30, while the fasted group was not fed for 24 h. Samples were taken from both groups at 9:00, and every 2 h: 11:00, 13:00, 15:00, 17:00, and 19:00. In the fed group, food spent a long time in the gastrointestinal tract, with a large increase in stomach size and without evidence of complete emptying of the stomach at 19:00 (10.5 h post-feeding). In serum, the levels of amino acids, glucose, and triglycerides presented significant differences with peak levels at different times of day in the fed group. The cortisol in the fasted group presented a diurnal pattern with high levels during the morning and very low levels after 13:00, while in the fed group, the high cortisol variability did not allow a clear pattern to be established. In the liver, the effect of time on the enzymatic activity of the intermediary metabolism was greater compared to the effect of feeding. In the liver, enzyme activity decreased at later hours of the day, while glycogen levels increased at later hours of the day in both groups: but its levels were higher in the fed group. In gills, as well as in the liver, time had a greater effect than feeding on intermediate metabolism, since feeding only had a significant effect on the levels of hexokinase, lactate, and amino acids, suggesting an effect on carbohydrate metabolism. Meanwhile, time significantly affected the levels of Na+, K+-ATPase, glutamate dehydrogenase, aspartate aminotransferase, amino acids, and proteins, suggesting an effect on amino acid metabolism. In conclusion, the intermediate metabolism of E. maclovinus presents variations according to the time of day, with an increased metabolism during the morning and decreased metabolism as the day progresses, especially at the hepatic level. The gill tissue, despite not being a metabolic organ, presents feeding-dependent variations in its metabolism. Additional studies will be required to corroborate if coordinating a feeding strategy during the first hours of the day when metabolism is greater would improve the growth of E. maclovinus.
Collapse
Affiliation(s)
- R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunología y estrés de organismos acuáticos, Instituto de Patología animal, Facultad de Ciencias Veterinarias, Chile
| | - D Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J L P Muñoz
- Centro i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| |
Collapse
|
16
|
The Evolution of Brain Size in Ectothermic Tetrapods: Large Brain Mass Trades-Off with Lifespan in Reptiles. Evol Biol 2022. [DOI: 10.1007/s11692-022-09562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Stibel JM. Decreases in Brain Size and Encephalization in Anatomically Modern Humans. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:64-77. [PMID: 34718234 DOI: 10.1159/000519504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/28/2021] [Indexed: 12/25/2022]
Abstract
Growth in human brain size and encephalization is well documented throughout much of prehistory and believed to be responsible for increasing cognitive faculties. Over the past 50,000 years, however, both body size and brain mass have decreased but little is known about the scaling relationship between the two. Here, changes to the human brain are examined using matched body remains to determine encephalization levels across an evolutionary timespan. The results find decreases to encephalization levels in modern humans as compared to earlier Holocene H. sapiens and Late Pleistocene anatomically modern Homo. When controlled for lean body mass, encephalization changes are isometric, suggesting that much of the declines in encephalization are driven by recent increases in obesity. A meta-review of genome-wide association studies finds some evidence for selective pressures acting on human cognitive ability, which may be an evolutionary consequence of the more than 5% loss in brain mass over the past 50,000 years.
Collapse
|
18
|
Tsuboi M. Exceptionally Steep Brain-Body Evolutionary Allometry Underlies the Unique Encephalization of Osteoglossiformes. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:49-63. [PMID: 34634787 DOI: 10.1159/000519067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023]
Abstract
Brain-body static allometry, which is the relationship between brain size and body size within species, is thought to reflect developmental and genetic constraints. Existing evidence suggests that the evolution of large brain size without accompanying changes in body size (that is, encephalization) may occur when this constraint is relaxed. Teleost fish species are generally characterized by having close-fitting brain-body static allometries, leading to strong allometric constraints and small relative brain sizes. However, one order of teleost, Osteoglossiformes, underwent extreme encephalization, and its mechanistic bases are unknown. Here, I used a dataset and phylogeny encompassing 859 teleost species to demonstrate that the encephalization of Osteoglossiformes occurred through an increase in the slope of evolutionary (among-species) brain-body allometry. The slope is virtually isometric (1.03 ± 0.09 SE), making it one of the steepest evolutionary brain-body allometric slopes reported to date, and it deviates significantly from the evolutionary brain-body allometric slopes of other clades of teleost. Examination of the relationship between static allometric parameters (intercepts and slopes) and evolutionary allometry revealed that the dramatic steepening of the evolutionary allometric slope in Osteoglossiformes was a combined result of evolution in the slopes and intercepts of static allometry. These results suggest that the evolution of static allometry, which likely has been driven by evolutionary changes in the rate and timing of brain development, has facilitated the unique encephalization of Osteoglossiformes.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Biology, Lund University, Lund, Sweden.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Wong S, Bigman JS, Yopak KE, Dulvy NK. Gill surface area provides a clue for the respiratory basis of brain size in the blacktip shark (Carcharhinus limbatus). JOURNAL OF FISH BIOLOGY 2021; 99:990-998. [PMID: 34019307 DOI: 10.1111/jfb.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.
Collapse
Affiliation(s)
- Serena Wong
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, North Carolina, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
20
|
Abstract
Abstract
Brain size exhibits significant changes within and between species. Evolution of large brains can be explained by the need to improve cognitive ability for processing more information in changing environments. However, brains are among the most energetically expensive organs. Enlarged brains can impose energetic demands that limit brain size evolution. The expensive tissue hypothesis (ETH) states that a decrease in the size of another expensive tissue, such as the gut, should compensate for the cost of a large brain. We studied the interplay between energetic limitations and brain size evolution in small mammals using phylogenetically generalized least squares (PGLS) regression analysis. Brain mass was not correlated with the length of the digestive tract in 37 species of small mammals after correcting for phylogenetic relationships and body size effects. We further found that the evolution of a large brain was not accompanied by a decrease in male reproductive investments into testes mass and in female reproductive investment into offspring number. The evolution of brain size in small mammals is inconsistent with the prediction of the ETH.
Collapse
|
21
|
Elizondo Lara LC, Young J, Schliep K, De León LF. Brain Allometry Across Macroevolutionary Scales in Squamates Suggests a Conserved Pattern in Snakes. ZOOLOGY 2021; 146:125926. [PMID: 33932854 DOI: 10.1016/j.zool.2021.125926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022]
Abstract
Despite historical interest in brain size evolution in vertebrates, few studies have assessed variation in brain size in squamate reptiles such as snakes and lizards. Here, we analyzed the pattern of brain allometry at macroevolutionary scale in snakes and lizards, using body mass and snout vent length as measures of body size. We also assessed potential energetic trade-offs associated with relative brain size changes in Crotalinae vipers. Body mass showed a conserved pattern of brain allometry across taxa of snakes, but not in lizards. Body length favored changes of brain allometry in both snakes and lizards, but less variability was observed in snakes. Moreover, we did not find evidence for trade-offs between brain size and the size of other organs in Crotalinae. Thus, despite the contribution of body elongation to changes in relative brain size in squamate reptiles, snakes present low variation in brain allometry across taxa. Although the mechanisms driving this conserved pattern are unknown, we hypothesize that the snake body plan plays an important role in balancing the energetic demands of brain and body size increase at macroevolutionary scales. We encourage future research on the evolution of brain and body size in snakes to test this hypothesis.
Collapse
Affiliation(s)
- Luis C Elizondo Lara
- Programa de Maestría en Ciencias Biológicas, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama; Departamento de Fisiología y Comportamiento Animal, Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama.
| | - José Young
- Departamento de Fisiología y Comportamiento Animal, Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Avenida Simón Bolívar, Panama City, Panama, Apartado 3366 Panama 4, Panama
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Luis F De León
- Department of Biology, University of Massachusetts, Boston, USA; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Clayton, Panama
| |
Collapse
|
22
|
Todorov OS, Blomberg SP, Goswami A, Sears K, Drhlík P, Peters J, Weisbecker V. Testing hypotheses of marsupial brain size variation using phylogenetic multiple imputations and a Bayesian comparative framework. Proc Biol Sci 2021; 288:20210394. [PMID: 33784860 PMCID: PMC8059968 DOI: 10.1098/rspb.2021.0394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.
Collapse
Affiliation(s)
- Orlin S. Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Simone P. Blomberg
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Karen Sears
- Department of Ecology and Evolutionary Biology, College of Life Sciences, University of California Los Angeles, CA, USA
| | - Patrik Drhlík
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Czechia
| | - James Peters
- Department of Animal Biology, University of Illinois at Urbana Champaign, USA
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- College of Science and Engineering, Flinders University, Australia
| |
Collapse
|
23
|
Salena MG, Turko AJ, Singh A, Pathak A, Hughes E, Brown C, Balshine S. Understanding fish cognition: a review and appraisal of current practices. Anim Cogn 2021; 24:395-406. [PMID: 33595750 DOI: 10.1007/s10071-021-01488-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023]
Abstract
With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Andy J Turko
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Angad Singh
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Avani Pathak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Emily Hughes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Boussard A, Amcoff M, Buechel SD, Kotrschal A, Kolm N. The link between relative brain size and cognitive ageing in female guppies (Poecilia reticulata) artificially selected for variation in brain size. Exp Gerontol 2020; 146:111218. [PMID: 33373711 DOI: 10.1016/j.exger.2020.111218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Abstract
Cognitive ageing is the general process when certain mental skills gradually deteriorate with age. Across species, there is a pattern of a slower brain structure degradation rate in large-brained species. Hence, having a larger brain might buffer the impact of cognitive ageing and positively affect survival at older age. However, few studies have investigated the link between relative brain size and cognitive ageing at the intraspecific level. In particular, experimental data on how brain size affects brain function also into higher age is largely missing. We used 288 female guppies (Poecilia reticulata), artificially selected for large and small relative brain size, to investigate variation in colour discrimination and behavioural flexibility, at 4-6, 12 and 24 months of age. These ages are particularly interesting since they cover the life span from sexual maturation until maximal life length under natural conditions. We found no evidence for a slower cognitive ageing rate in large-brained females in neither initial colour discrimination nor reversal learning. Behavioural flexibility was predicted by large relative brain size in the youngest group, but the effect of brain size disappeared with increasing age. This result suggests that cognitive ageing rate is faster in large-brained female guppies, potentially due to the faster ageing and shorter lifespan in the large-brained selection lines. It also means that cognition levels align across different brain sizes with older age. We conclude that there are cognitive consequences of ageing that vary with relative brain size in advanced learning abilities, whereas fundamental aspects of learning can be maintained throughout the ecologically relevant life span.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Severine D Buechel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| |
Collapse
|
25
|
Interactions with conspecific outsiders as drivers of cognitive evolution. Nat Commun 2020; 11:4937. [PMID: 33024110 PMCID: PMC7538913 DOI: 10.1038/s41467-020-18780-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
The social intelligence hypothesis (SIH) posits that within-group interactions drive cognitive evolution, but it has received equivocal support. We argue the SIH overlooks a major component of social life: interactions with conspecific outsiders. Competition for vital resources means conspecific outsiders present myriad threats and opportunities in all animal taxa across the social spectrum (from individuals to groups). We detail cognitive challenges generated by conspecific outsiders, arguing these select for ‘Napoleonic’ intelligence; explain potential influences on the SIH; and highlight important considerations when empirically testing these ideas. Including interactions with conspecific outsiders may substantially improve our understanding of cognitive evolution. The social intelligence hypothesis predicts that social organisms tend to be more intelligent because within-group interactions drive cognitive evolution. Here, authors propose that conspecific outsiders can be just as important in selecting for sophisticated cognitive adaptations.
Collapse
|
26
|
Mull CG, Yopak KE, Dulvy NK. Maternal Investment, Ecological Lifestyle, and Brain Evolution in Sharks and Rays. Am Nat 2020; 195:1056-1069. [PMID: 32469656 DOI: 10.1086/708531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Across vertebrates increased maternal investment (via increased pre- and postnatal provisioning) is associated with larger relative brain size, yet it remains unclear how brain organization is shaped by life history and ecology. Here, we tested whether maternal investment and ecological lifestyle are related to variation in brain size and organization across 100 chondrichthyans. We hypothesized that brain size and organization would vary with the level of maternal investment and habitat depth and complexity. We found that chondrichthyan brain organization varies along four main axes according to (1) absolute brain size, (2) relative diencephalon and mesencephalon size, (3) relative telencephalon and medulla size, and (4) relative cerebellum size. Increased maternal investment is associated with larger relative brain size, while ecological lifestyle is informative for variation between relative telencephalon and medulla size and relative cerebellum size after accounting for the independent effects of reproductive mode. Deepwater chondrichthyans generally provide low levels of yolk-only (lecithotrophic) maternal investment and have relatively small brains, predominantly composed of medulla (a major portion of the hindbrain), whereas matrotrophic chondrichthyans-which provide maternal provisioning beyond the initial yolk sac-found in coastal, reef, or shallow oceanic habitats have relatively large brains, predominantly composed of telencephalon (a major portion of the forebrain). We have demonstrated, for the first time, that both ecological lifestyle and maternal investment are independently associated with brain organization in a lineage with diverse life-history strategies and reproductive modes.
Collapse
|
27
|
Joyce BJ, Brown GE. Rapid plastic changes in brain morphology in response to acute changes in predation pressure in juvenile Atlantic salmon (Salmo salar) and northern redbelly dace (Phoxinus eos). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleosts exhibit inter- and intra-specific variation in the size and shape of their brains. Interpopulation differences in gross brain morphology among numerous teleost fish species have been observed and have been partially attributed to plastic changes in response to their environment, including predation. These differences manifest themselves macroscopically, potentially because teleosts retain the capacity for active neuroproliferation into adulthood. Building on previous work, showing chronic exposure to predation can affect brain morphology, we sought to determine whether these differences manifest themselves on a time scale shown to induce phenotypically plastic behavioural changes. In separate trials, we held northern redbelly dace (Phoxinus eos (Cope, 1861) = Chrosomus eos Cope, 1861) and juvenile Atlantic salmon (Salmo salar Linnaeus, 1758) in semi-natural conditions and exposed them to conspecific skin extract as a proxy for predation risk over 2 weeks. After exposure, their brains were excised, photographed, and analyzed for size (multivariate ANOVA) and shape (Procrustes ANOVA). Despite their brief exposure to simulated predation pressure, subjects from both species developed significantly different brain morphologies. Compared with controls, the Atlantic salmon exhibited a different brain shape and smaller optic tecta, whereas the northern redbelly dace had larger brains with more developed olfactory bulbs and optic tecta. Our results highlight the rapidity with which external environment can alter patterns of growth in the brain.
Collapse
Affiliation(s)
- Brendan J. Joyce
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| | - Grant E. Brown
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| |
Collapse
|
28
|
|
29
|
Kotrschal A, Corral-Lopez A, Kolm N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol Lett 2019; 15:20190137. [PMID: 31088278 PMCID: PMC6548732 DOI: 10.1098/rsbl.2019.0137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The relationship between brain size and ageing is a paradox. The cognitive benefits of large brains should protect from extrinsic mortality and thus indirectly select for slower ageing. However, the substantial energetic cost of neural tissue may also impact the energetic budget of large-brained organisms, causing less investment in somatic maintenance and thereby faster ageing. While the positive association between brain size and survival in the wild is well established, no studies exist on the direct effects of brain size on ageing. Here we test how brain size influences intrinsic ageing in guppy (Poecilia reticulata) brain size selection lines with 12% difference in relative brain size. Measuring survival under benign conditions, we find that large-brained animals live 22% shorter than small-brained animals and the effect is similar in both males and females. Our results suggest a trade-off between investment into brain size and somatic maintenance. This implies that the link between brain size and ageing is contingent on the mechanism of mortality, and selection for positive correlations between brain size and ageing should occur mainly under cognition-driven survival benefits from increased brain size. We show that accelerated ageing can be a cost of evolving a larger brain.
Collapse
Affiliation(s)
| | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University , Stockholm , Sweden
| |
Collapse
|
30
|
Tsuboi M. Biological interpretations of the biphasic model of ontogenetic brain–body allometry: a reply to Packard. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Allometry is a description of organismal growth. Historically, a simple power law has been used most widely to describe the rate of growth in phenotypic traits relative to the rate of growth in overall size. However, the validity of this standard practice has repeatedly been criticized. In an accompanying opinion piece, Packard reanalysed data from a recent study on brain–body ontogenetic allometry and claimed that the biphasic growth model suggested in that study was an artefact of logarithmic transformation. Based on the model selection, Packard proposed alternative hypotheses for brain–body ontogenetic allometry. Here, I examine the validity of these models by comparing empirical data on body sizes at two critical neurodevelopmental events in mammals, i.e. at birth and at the time of the peak rate of brain growth, with statistically inferred body sizes that are supposed to characterize neurodevelopmental processes. These analyses support the existence of two distinct phases of brain growth and provide weak support for Packard's uniphasic model of brain growth. This study demonstrates the importance of considering alternative models in studies of allometry, but also highlights that such models need to respect the biological theoretical context of allometry.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Relative Mass of Brain- and Intestinal Tissue in Juvenile Brown Trout: No Long-Term Effects of Compensatory Growth; with Additional Notes on Emerging Sex-Differences. FISHES 2018. [DOI: 10.3390/fishes3040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated whether compensatory growth causes long-term effects in relative brain- or intestine size in a wild, predominantly anadromous, population of brown trout (Salmo trutta). The subject fish belonged to two treatment groups; one group had undergone starvation and subsequent growth compensation, while the other were unrestricted controls. The main hypothesis that compensatory growth would negatively affect brain and intestinal size, as a consequence of growth trade-offs during the compensatory phase, could not be supported as no significant differences were detected between the treatment groups. Further exploratory analyses suggested that males and females started to diverge in both brain and intestine size at around 130 mm fork length, with females developing relatively smaller brains and larger intestines. The size at which the differences appear is a typical size for smoltification (saltwater preadaptation), and females tend to smoltify to a higher proportion than males. Smoltification is known to cause a more elongated morphology and relatively smaller heads in salmonids, and the marine lifestyle is associated with rapid growth, which could require relatively larger intestines. Hence, these emerging sex differences could be a consequence of sex-biased smoltification rates. An investigation of wild smolts of both sexes indicated no differences in brain or intestine mass between male and female smolts.
Collapse
|
32
|
Irisarri I, Singh P, Koblmüller S, Torres-Dowdall J, Henning F, Franchini P, Fischer C, Lemmon AR, Lemmon EM, Thallinger GG, Sturmbauer C, Meyer A. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun 2018; 9:3159. [PMID: 30089797 PMCID: PMC6082878 DOI: 10.1038/s41467-018-05479-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Lake Tanganyika is the oldest and phenotypically most diverse of the three East African cichlid fish adaptive radiations. It is also the cradle for the younger parallel haplochromine cichlid radiations in Lakes Malawi and Victoria. Despite its evolutionary significance, the relationships among the main Lake Tanganyika lineages remained unresolved, as did the general timescale of cichlid evolution. Here, we disentangle the deep phylogenetic structure of the Lake Tanganyika radiation using anchored phylogenomics and uncover hybridization at its base, as well as early in the haplochromine radiation. This suggests that hybridization might have facilitated these speciation bursts. Time-calibrated trees support that the radiation of Tanganyika cichlids coincided with lake formation and that Gondwanan vicariance concurred with the earliest splits in the cichlid family tree. Genes linked to key innovations show signals of introgression or positive selection following colonization of lake habitats and species' dietary adaptations are revealed as major drivers of colour vision evolution. These findings shed light onto the processes shaping the evolution of adaptive radiations.
Collapse
Affiliation(s)
- Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Pooja Singh
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Frederico Henning
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, 21944-970, Brazil
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Christoph Fischer
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, Graz, 8010, Austria
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Biomedical Research Facility, Tallahassee, FL, 32306, USA
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, Graz, 8010, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria.
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany.
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, 02138, MA, USA.
| |
Collapse
|
33
|
Huang CH, Yu X, Liao WB. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review. Int J Mol Sci 2018; 19:E1792. [PMID: 29914188 PMCID: PMC6032294 DOI: 10.3390/ijms19061792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH) that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.
Collapse
Affiliation(s)
- Chun Hua Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| | - Xin Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China.
| |
Collapse
|
34
|
Dornburg A, Warren DL, Zapfe KL, Morris R, Iglesias TL, Lamb A, Hogue G, Lukas L, Wong R. Testing ontogenetic patterns of sexual size dimorphism against expectations of the expensive tissue hypothesis, an intraspecific example using oyster toadfish ( Opsanus tau). Ecol Evol 2018; 8:3609-3616. [PMID: 29686842 PMCID: PMC5901164 DOI: 10.1002/ece3.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Trade‐offs associated with sexual size dimorphism (SSD) are well documented across the Tree of Life. However, studies of SSD often do not consider potential investment trade‐offs between metabolically expensive structures under sexual selection and other morphological modules. Based on the expectations of the expensive tissue hypothesis, investment in one metabolically expensive structure should come at the direct cost of investment in another. Here, we examine allometric trends in the ontogeny of oyster toadfish (Opsanus tau) to test whether investment in structures known to have been influenced by strong sexual selection conform to these expectations. Despite recovering clear changes in the ontogeny of a sexually selected trait between males and females, we find no evidence for predicted ontogenetic trade‐offs with metabolically expensive organs. Our results are part of a growing body of work demonstrating that increased investment in one structure does not necessarily drive a wholesale loss of mass in one or more organs.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Dan L Warren
- Senckenberg Institute for Biodiversity and Climate Frankfurt am Main Germany
| | | | - Richard Morris
- North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Teresa L Iglesias
- Physics and Biology Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan
| | - April Lamb
- North Carolina Museum of Natural Sciences Raleigh NC USA.,Department of Applied Ecology North Carolina State University Raleigh NC USA
| | - Gabriela Hogue
- North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Laura Lukas
- North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Richard Wong
- Delaware Division of Fish and Wildlife Dover DE USA
| |
Collapse
|
35
|
Yu X, Zhong MJ, Li DY, Jin L, Liao WB, Kotrschal A. Large-brained frogs mature later and live longer. Evolution 2018; 72:1174-1183. [PMID: 29611630 DOI: 10.1111/evo.13478] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong Sichuan 637009 China
- Institute of Eco-Adaptation in Amphibians and Reptiles; China West Normal University; Nanchong Sichuan 637009 China
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong Sichuan 637009 China
- Institute of Eco-Adaptation in Amphibians and Reptiles; China West Normal University; Nanchong Sichuan 637009 China
| | - Da Yong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong Sichuan 637009 China
- Institute of Eco-Adaptation in Amphibians and Reptiles; China West Normal University; Nanchong Sichuan 637009 China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong Sichuan 637009 China
- Institute of Eco-Adaptation in Amphibians and Reptiles; China West Normal University; Nanchong Sichuan 637009 China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong Sichuan 637009 China
- Institute of Eco-Adaptation in Amphibians and Reptiles; China West Normal University; Nanchong Sichuan 637009 China
| | | |
Collapse
|
36
|
Corral-López A, Kotrschal A, Kolm N. Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol 2018; 221:jeb.175240. [DOI: 10.1242/jeb.175240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Understanding what drives animal decisions is fundamental in evolutionary biology, and mate choice decisions are arguably some of the most important decisions in any individual's life. As cognitive ability can impact decision-making, elucidating the link between mate choice and cognitive ability is necessary to fully understand mate choice. To experimentally study this link, we used guppies (Poecilia reticulata) artificially selected for divergence in relative brain size and with previously demonstrated differences in cognitive ability. A previous test in our female guppy selection lines demonstrated the impact of brain size and cognitive ability on information processing during female mate choice decisions. Here we evaluated the effect of brain size and cognitive ability on male mate choice decisions. Specifically, we investigated the preferences of large-brained, small-brained, and non-selected guppy males for female body size, a key indicator of female fecundity in this species. For this, male preferences were quantified in dichotomous choice tests when presented to dyads of females with small, medium and large body size differences. All types of males showed preference for larger females but no effect of brain size was found in the ability to discriminate between differently sized females. However, we found that non-selected and large-brained males, but not small-brained males, showed context-dependent preferences for larger females depending on the difference in female size. Our results have two important implications. First, they provide further evidence that male mate choice occurs also in a species in which secondary sexual ornamentation occurs only in males. Second, they show that brain size and cognitive ability have important effects on individual variation in mating preferences and sexually selected traits.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| |
Collapse
|
37
|
Yang SN, Feng H, Jin L, Zhou ZM, Liao WB. No evidence for the expensive-tissue hypothesis in Fejervarya limnocharis. ANIM BIOL 2018. [DOI: 10.1163/15707563-17000094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Because the brain is one of the energetically most expensive organs of animals, trade-offs have been hypothesized to exert constraints on brain size evolution. The expensive-tissue hypothesis predicts that the cost of a large brain should be compensated by decreasing size of other metabolically costly tissues, such as the gut. Here, we analyzed the relationships between relative brain size and the size of other metabolically costly tissues (i.e., gut, heart, lung, kidney, liver, spleen or limb muscles) among four Fejervarya limnocharis populations to test the predictions of the expensive-tissue hypothesis. We did not find that relative brain size was negatively correlated with relative gut length after controlling for body size, which was inconsistent with the prediction of the expensive-tissue hypothesis. We also did not find negative correlations between relative brain mass and relative size of the other energetically expensive organs. Our findings suggest that the cost of large brains in F. limnocharis cannot be compensated by decreasing size in other metabolically costly tissues.
Collapse
Affiliation(s)
- Sheng Nan Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Hao Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zhao Min Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| |
Collapse
|
38
|
Wiper ML, Lehnert SJ, Heath DD, Higgs DM. Neutral genetic variation in adult Chinook salmon ( Oncorhynchus tshawytscha) affects brain-to-body trade-off and brain laterality. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170989. [PMID: 29308240 PMCID: PMC5750007 DOI: 10.1098/rsos.170989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/03/2017] [Indexed: 05/15/2023]
Abstract
Low levels of heterozygosity can have detrimental effects on life history and growth characteristics of organisms but more subtle effects such as those on trade-offs of expensive tissues and morphological laterality, especially of the brain, have not been explicitly tested. The objective of the current study was to investigate how estimated differences in heterozygosity may potentially affect brain-to-body trade-offs and to explore how these heterozygosity differences may affect differential brain growth, focusing on directional asymmetry in adult Chinook salmon (Oncorhynchus tshawytscha) using the laterality and absolute laterality indices. Level of inbreeding was estimated as mean microsatellite heterozygosity resulting in four 'inbreeding level groups' (Very High, High, Medium, Low). A higher inbreeding level corresponded with a decreased brain-to-body ratio, thus a decrease in investment in brain tissue, and also showed a decrease in the laterality index for the cerebellum, where the left hemisphere was larger than the right across all groups. These results begin to show the role that differences in heterozygosity may play in differential tissue investment and in morphological laterality, and may be useful in two ways. Firstly, the results may be valuable for restocking programmes that wish to emphasize brain or body growth when crossing adults to generate individuals for release, as we show that genetic variation does affect these trade-offs. Secondly, this study is one of the first examinations to test the hypothesized relationship between genetic variation and laterality, finding that in Chinook salmon there is potential for an effect of inbreeding on lateralized morphology, but not in the expected direction.
Collapse
Affiliation(s)
- Mallory L. Wiper
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
- Author for correspondence: Mallory L. Wiper e-mail:
| | - Sarah J. Lehnert
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
| | - Daniel D. Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
| | - Dennis M. Higgs
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, CanadaN9B 3P4
| |
Collapse
|
39
|
McCue MD, Terblanche JS, Benoit JB. Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 2017; 220:4330-4338. [DOI: 10.1242/jeb.157867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon – some seem to ‘get better’ at starving following exposure to one or more starvation events – by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.
Collapse
Affiliation(s)
- Marshall D. McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
40
|
Luo Y, Zhong MJ, Huang Y, Li F, Liao WB, Kotrschal A. Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Sci Rep 2017; 7:16629. [PMID: 29192284 PMCID: PMC5709389 DOI: 10.1038/s41598-017-16921-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The challenges of seasonal environments are thought to contribute to brain evolution, but in which way is debated. According to the Cognitive Buffer Hypothesis (CBH) brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for instance, increased behavioral flexibility. However, in line with the Expensive Brain Framework (EBF) brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Empirical evidence is inconclusive and mostly limited to homoeothermic animals. Here we used phylogenetic comparative analyses to test the impact of seasonality on brain evolution across 30 species of anurans (frogs) experiencing a wide range of temperature and precipitation. Our results support the EBF because relative brain size and the size of the optic tectum were negatively correlated with variability in temperature. In contrast, we found no association between the variability in precipitation and the length of the dry season with either brain size or the sizes of other major brain regions. We suggest that seasonality-induced food scarcity resulting from higher variability in temperature constrains brain size evolution in anurans. Less seasonal environments may therefore facilitate the evolution of larger brains in poikilothermic animals.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Yan Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China.
- Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China.
| | | |
Collapse
|
41
|
Passow CN, Arias-Rodriguez L, Tobler M. Convergent evolution of reduced energy demands in extremophile fish. PLoS One 2017; 12:e0186935. [PMID: 29077740 PMCID: PMC5659789 DOI: 10.1371/journal.pone.0186935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Convergent evolution in organismal function can arise from nonconvergent changes in traits that contribute to that function. Theory predicts that low resource availability and high maintenance costs in extreme environments select for reductions in organismal energy demands, which could be attained through modifications of body size or metabolic rate. We tested for convergence in energy demands and underlying traits by investigating livebearing fish (genus Poecilia) that have repeatedly colonized toxic, hydrogen sulphide-rich springs. We quantified variation in body size and routine metabolism across replicated sulphidic and non-sulphidic populations in nature, modelled total organismal energy demands, and conducted a common-garden experiment to test whether population differences had a genetic basis. Sulphidic populations generally exhibited smaller body sizes and lower routine metabolic rates compared to non-sulphidic populations, which together caused significant reductions in total organismal energy demands in extremophile populations. Although both mechanisms contributed to variation in organismal energy demands, variance partitioning indicated reductions of body size overall had a greater effect than reductions of routine metabolism. Finally, population differences in routine metabolism documented in natural populations were maintained in common-garden reared individuals, indicating evolved differences. In combination with other studies, these results suggest that reductions in energy demands may represent a common theme in adaptation to physiochemical stressors. Selection for reduced energy demand may particularly affect body size, which has implications for life history evolution in extreme environments.
Collapse
Affiliation(s)
- Courtney N. Passow
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
42
|
Hayward A, Tsuboi M, Owusu C, Kotrschal A, Buechel SD, Zidar J, Cornwallis CK, Løvlie H, Kolm N. Evolutionary associations between host traits and parasite load: insights from Lake Tanganyika cichlids. J Evol Biol 2017; 30:1056-1067. [DOI: 10.1111/jeb.13053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- A. Hayward
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - M. Tsuboi
- Department of Animal Ecology; Uppsala University; Uppsala Sweden
| | - C. Owusu
- Department of Animal Ecology; Uppsala University; Uppsala Sweden
| | - A. Kotrschal
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - S. D. Buechel
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - J. Zidar
- IFM Biology; Linköping University; Linköping Sweden
| | | | - H. Løvlie
- IFM Biology; Linköping University; Linköping Sweden
| | - N. Kolm
- Department of Zoology; Stockholm University; Stockholm Sweden
| |
Collapse
|
43
|
Corral-López A, Bloch NI, Kotrschal A, van der Bijl W, Buechel SD, Mank JE, Kolm N. Female brain size affects the assessment of male attractiveness during mate choice. SCIENCE ADVANCES 2017; 3:e1601990. [PMID: 28345039 PMCID: PMC5362185 DOI: 10.1126/sciadv.1601990] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 05/23/2023]
Abstract
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Natasha I. Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Severine D. Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| |
Collapse
|
44
|
Wiper ML. Evolutionary and mechanistic drivers of laterality: A review and new synthesis. Laterality 2017; 22:740-770. [DOI: 10.1080/1357650x.2017.1291658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mallory L. Wiper
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| |
Collapse
|
45
|
Parolini M, Romano A, Possenti CD, Caprioli M, Rubolini D, Saino N. Contrasting effects of increased yolk testosterone content on development and oxidative status in gull embryos. J Exp Biol 2017; 220:625-633. [DOI: 10.1242/jeb.145235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Hormone-mediated maternal effects generate variation in offspring phenotype. In birds, maternal egg testosterone (T) exerts differential effects on offspring traits after hatching, suggesting that mothers experience a trade-off between contrasting T effects. However, there is very little information on T pre-natal effects. In the yellow-legged gull (Larus michahellis), we increased yolk T concentration within physiological limits and measured the effects on development and oxidative status of late-stage embryos. T-treated embryos had a larger body size but a smaller brain than controls. Males had a larger brain than females, controlling for overall size. T treatment differentially affected brain mass and total amount of pro-oxidants in the brain depending on laying order. T-treatment effects were not sex dependent. For the first time in the wild, we show contrasting T pre-natal effects on body mass and brain size. Hence, T may enforce trade-offs between different embryonic traits, but also within the same trait during different developmental periods.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Andrea Romano
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | | | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| |
Collapse
|
46
|
Beston SM, Broyles W, Walsh MR. Increased juvenile predation is not associated with evolved differences in adult brain size in Trinidadian killifish ( Rivulus hartii). Ecol Evol 2017; 7:884-894. [PMID: 28168025 PMCID: PMC5288286 DOI: 10.1002/ece3.2668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/12/2022] Open
Abstract
Vertebrates exhibit extensive variation in brain size. The long-standing assumption is that this variation is driven by ecologically mediated selection. Recent work has shown that an increase in predator-induced mortality is associated with evolved increases and decreases in brain size. Thus, the manner in which predators induce shifts in brain size remains unclear. Increased predation early in life is a key driver of many adult traits, including life-history and behavioral traits. Such results foreshadow a connection between age-specific mortality and selection on adult brain size. Trinidadian killifish, Rivulus hartii, are found in sites with and without guppies, Poecilia reticulata. The densities of Rivulus drop dramatically in sites with guppies because guppies prey upon juvenile Rivulus. Previous work has shown that guppy predation is associated with the evolution of adult life-history traits in Rivulus. In this study, we compared second-generation laboratory-born Rivulus from sites with and without guppies for differences in brain size and associated trade-offs between brain size and other components of fitness. Despite the large amount of existing research on the importance of early-life events on the evolution of adult traits, and the role of predation on both behavior and brain size, we did not find an association between the presence of guppies and evolutionary shifts in Rivulus brain size. Such results argue that increased rates of juvenile mortality may not alter selection on adult brain size.
Collapse
Affiliation(s)
| | - Whitnee Broyles
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Matthew R. Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
47
|
Muthukrishna M, Henrich J. Innovation in the collective brain. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0192. [PMID: 26926282 DOI: 10.1098/rstb.2015.0192] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Innovation is often assumed to be the work of a talented few, whose products are passed on to the masses. Here, we argue that innovations are instead an emergent property of our species' cultural learning abilities, applied within our societies and social networks. Our societies and social networks act as collective brains. We outline how many human brains, which evolved primarily for the acquisition of culture, together beget a collective brain. Within these collective brains, the three main sources of innovation are serendipity, recombination and incremental improvement. We argue that rates of innovation are heavily influenced by (i) sociality, (ii) transmission fidelity, and (iii) cultural variance. We discuss some of the forces that affect these factors. These factors can also shape each other. For example, we provide preliminary evidence that transmission efficiency is affected by sociality--languages with more speakers are more efficient. We argue that collective brains can make each of their constituent cultural brains more innovative. This perspective sheds light on traits, such as IQ, that have been implicated in innovation. A collective brain perspective can help us understand otherwise puzzling findings in the IQ literature, including group differences, heritability differences and the dramatic increase in IQ test scores over time.
Collapse
Affiliation(s)
- Michael Muthukrishna
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Department of Social Psychology, London School of Economics, London WC2A 3LJ, UK
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Logan CJ, Kruuk LEB, Stanley R, Thompson AM, Clutton-Brock TH. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160622. [PMID: 28083105 PMCID: PMC5210687 DOI: 10.1098/rsos.160622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/17/2016] [Indexed: 05/08/2023]
Abstract
Research on relative brain size in mammals suggests that increases in brain size may generate benefits to survival and costs to fecundity: comparative studies of mammals have shown that interspecific differences in relative brain size are positively correlated with longevity and negatively with fecundity. However, as yet, no studies of mammals have investigated whether similar relationships exist within species, nor whether individual differences in brain size within a wild population are heritable. Here we show that, in a wild population of red deer (Cervus elaphus), relative endocranial volume was heritable (h2 = 63%; 95% credible intervals (CI) = 50-76%). In females, it was positively correlated with longevity and lifetime reproductive success, though there was no evidence that it was associated with fecundity. In males, endocranial volume was not related to longevity, lifetime breeding success or fecundity.
Collapse
Affiliation(s)
- C. J. Logan
- Department of Zoology, University of Cambridge, Cambridge, UK
- Author for correspondence: C. J. Logan e-mail:
| | - L. E. B. Kruuk
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | - R. Stanley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - A. M. Thompson
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
49
|
Liao WB, Lou SL, Zeng Y, Kotrschal A. Large Brains, Small Guts: The Expensive Tissue Hypothesis Supported within Anurans. Am Nat 2016; 188:693-700. [DOI: 10.1086/688894] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Tsuboi M, Lim ACO, Ooi BL, Yip MY, Chong VC, Ahnesjö I, Kolm N. Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection. J Evol Biol 2016; 30:150-160. [PMID: 27748990 DOI: 10.1111/jeb.12995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 09/15/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
Abstract
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
Collapse
Affiliation(s)
- M Tsuboi
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - A C O Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - B L Ooi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - M Y Yip
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Save Our Seahorses Malaysia, Petaling Jaya, Selangor, Malaysia
| | - V C Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - I Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Uppsala, Sweden
| | - N Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|