1
|
Torres-Vanegas F, Temesvári V, Hildesheim LS, Rodríguez-Otero C, Müller V, Aukema E, Friberg M, Opedal ØH. Linking divergence in phenotypic selection on floral traits to divergence in local pollinator assemblages in a pollination-generalized plant. J Evol Biol 2024; 37:1312-1328. [PMID: 39288276 DOI: 10.1093/jeb/voae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Divergent patterns of phenotypic selection on floral traits can arise in response to interactions with functionally distinct pollinators. However, there are a limited number of studies that relate patterns of phenotypic selection on floral traits to variation in local pollinator assemblages in pollination-generalized plant species. We studied phenotypic selection on floral traits of Viscaria vulgaris, a plant that interacts with a broad range of diurnal and nocturnal pollinators, and related divergence in phenotypic selection on floral traits to the expected level of divergence in local pollinator assemblages. We detected phenotypic selection on floral traits involved in the attraction of pollinators and the mechanics of pollen removal and deposition, and demonstrated that floral traits are subject to spatiotemporal variation in the strength and direction of phenotypic selection. We revealed that diurnal and nocturnal pollinators, when considered in isolation, mediated divergent patterns of phenotypic selection on floral traits. Consistent with the Grant-Stebbins model, we observed that divergence in phenotypic selection on floral traits increased with the expected level of divergence in local pollinator assemblages. Thus, generalized plant-pollinator interactions can mediate phenotypic selection on floral traits, and distinct local pollinator assemblages can generate a geographic mosaic of divergent patterns of phenotypic selection. We underscore that these outcomes are not exclusive to specialized plant-pollinator interactions and can emerge at a local geographic scale.
Collapse
Affiliation(s)
- Felipe Torres-Vanegas
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Vanda Temesvári
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Laura S Hildesheim
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Vilhelmina Müller
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Easger Aukema
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Magne Friberg
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Øystein H Opedal
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Maguiña‐Conde R, Zuñiga‐Rivas D, Kay KM. An elevational gradient in floral traits and pollinator assemblages in the Neotropical species Costus guanaiensis var. tarmicus in Peru. Ecol Evol 2023; 13:e10314. [PMID: 37529588 PMCID: PMC10375365 DOI: 10.1002/ece3.10314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator-driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator-driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee-pollinated taxon Costus guanaiensis var. tarmicus across four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation of C. guanaiensis var. tarmicus to the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee-to-hummingbird pollination shift in the highest-studied site. Our study is one of the few geographic-scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant-pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species.
Collapse
Affiliation(s)
- Rossana Maguiña‐Conde
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Dorali Zuñiga‐Rivas
- Laboratorio de EntomologíaUniversidad Nacional San Antonio Abad del CuscoCuscoPeru
| | - Kathleen M. Kay
- Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzCaliforniaUSA
| |
Collapse
|
3
|
van der Niet T, Egan PA, Schlüter PM. Evolutionarily inspired solutions to the crop pollination crisis. Trends Ecol Evol 2023; 38:435-445. [PMID: 36737302 DOI: 10.1016/j.tree.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The global decline in insect diversity threatens pollination services, potentially impacting crop production and food security. Here, we argue that this looming pollination crisis is generally approached from an ecological standpoint, and that consideration of evolutionary principles offers a novel perspective. First, we outline that wild plant species have overcome 'pollination crises' throughout evolutionary history, and show how associated principles can be applied to crop pollination. We then highlight technological advances that can be used to adapt crop flowers for optimal pollination by local wild pollinators, especially by increasing generalization in pollination systems. Thus, synergies among fundamental evolutionary research, genetic engineering, and agro-ecological science provide a promising template for addressing a potential pollination crisis, complementing much-needed strategies focused on pollinator conservation.
Collapse
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, 3209, Scottsville, Pietermaritzburg, South Africa.
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Simón‐Porcar VI, Muñoz‐Pajares AJ, de Castro A, Arroyo J. Direct evidence supporting Darwin's hypothesis of cross-pollination promoted by sex organ reciprocity. THE NEW PHYTOLOGIST 2022; 235:2099-2110. [PMID: 35596603 PMCID: PMC9546006 DOI: 10.1111/nph.18266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The floral phenotype plays a main role in the attraction and fit of pollinators. Both perianth traits and the positioning of sex organs can be subjected to natural selection and determine nonrandom mating patterns in populations. In stylar-polymorphic species, the Darwinian hypothesis predicts increased mating success between individuals with sex organs at equivalent heights (i.e. with higher reciprocity). We used paternity analyses in experimental populations of a stylar-dimorphic species. By comparing the observed mating patterns with those expected under random mating, we tested the effects of sex organ reciprocity and perianth traits on mating success. We also analysed phenotypic selection on perianth traits through female and male functions. The (dis)similarity of parental perianth traits had no direct effects on the mating patterns. Sex organ reciprocity had a positive effect on mating success. Narrow floral tubes increased this effect in upper sex organs. Perianth traits showed little signs of phenotypic selection. Female and absolute fitness measures resulted in different patterns of phenotypic selection. We provide precise empirical evidence of the Darwinian hypothesis about the functioning of stylar polymorphisms, demonstrating that mating patterns are determined by sex organ reciprocity and only those perianth traits which are critical to pollinator fit.
Collapse
Affiliation(s)
| | - A. Jesús Muñoz‐Pajares
- Department of GeneticsUniversity of GranadaE‐18071GranadaSpain
- Research Centre in Biodiversity and Genetic Resources (CIBIO)Campus Agrário de Vairão4485‐661VairãoPortugal
| | - Alejandra de Castro
- Department of Plant Biology and EcologyUniversity of SevilleE‐41080SevilleSpain
| | - Juan Arroyo
- Department of Plant Biology and EcologyUniversity of SevilleE‐41080SevilleSpain
| |
Collapse
|
5
|
Are some species ‘robust’ to exploitation? Explaining persistence in deceptive relationships. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAnimals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such asymmetric relationships often relies on these costs being mitigated through counter-adaptations, low encounter rates, or indirect fitness benefits. However, these mechanisms do not always explain the evolutionary persistence of some classic deceptive interactions.Sexually deceptive pollination (in which plants trick male pollinators into mating with their flowers) has evolved multiple times independently, mainly in the southern hemisphere and especially in Australasia and Central and South America. This trickery imposes considerable costs on the males: they miss out on mating opportunities, and in some cases, waste their limited sperm on the flower. These relationships appear stable, yet in some cases there is little evidence suggesting that their persistence relies on counter-adaptations, low encounter rates, or indirect fitness benefits. So, how might these relationships persist?Here, we introduce and explore an additional hypothesis from systems biology: that some species are robust to exploitation. Robustness arises from a species’ innate traits and means they are robust against costs of exploitation. This allows species to persist where a population without those traits would not, making them ideal candidates for exploitation. We propose that this mechanism may help inform new research approaches and provide insight into how exploited species might persist.
Collapse
|
6
|
Joffard N, Olofsson C, Friberg M, Sletvold N. Extensive pollinator sharing does not promote character displacement in two orchid congeners. Evolution 2022; 76:749-764. [PMID: 35188979 DOI: 10.1111/evo.14446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Pollinator sharing between close relatives can be costly and can promote pollination niche partitioning and floral divergence. This should be reflected by a higher species divergence in sympatry than in allopatry. We tested this hypothesis in two orchid congeners with overlapping distributions and flowering times. We characterized floral traits and pollination niches and quantified pollen limitation in 15 pure and mixed populations, and we measured phenotypic selection on floral traits and performed controlled crosses in one mixed site. Most floral traits differed between species, yet pollinator sharing was extensive. Only the timing of scent emission diverged more in mixed sites than in pure sites, and this was not mirrored by the timing of pollinator visitation. We did not detect divergent selection on floral traits. Seed production was pollen limited in most populations but not more severely in mixed sites than in pure sites. Interspecific crosses produced the same or a higher proportion of viable seeds than intraspecific crosses. The two orchid species attract the same pollinator species despite showing divergent floral traits. However, this does not promote character displacement, implying a low cost of pollinator sharing. Our results highlight the importance of characterizing both traits and ecological niches in character displacement studies.
Collapse
Affiliation(s)
- Nina Joffard
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.,University of Lille, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, F-59655, France
| | - Caroliné Olofsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Nina Sletvold
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| |
Collapse
|
7
|
Laina D, Gfrerer E, Scheurecker V, Fuchs R, Schleifer M, Zittra C, Wagner R, Gibernau M, Comes HP, Hörger AC, Dötterl S. Local Insect Availability Partly Explains Geographical Differences in Floral Visitor Assemblages of Arum maculatum L. (Araceae). FRONTIERS IN PLANT SCIENCE 2022; 13:838391. [PMID: 35350299 PMCID: PMC8957888 DOI: 10.3389/fpls.2022.838391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Geographical variation in abundance and composition of pollinator assemblages may result in variable selection pressures among plant populations and drive plant diversification. However, there is limited knowledge on whether differences in local visitor and pollinator assemblages are the result of site-specific strategies of plants to interact with their pollinators and/or merely reflect the pollinator availability at a given locality. To address this question, we compared locally available insect communities obtained by light-trapping with assemblages of floral visitors in populations of Arum maculatum (Araceae) from north vs. south of the Alps. We further investigated whether and how the abundance of different visitors affects plants' female reproductive success and examined the pollen loads of abundant visitors. Local insect availability explained inter-regional differences in total visitor abundance, but only partly the composition of visitor assemblages. Northern populations predominantly attracted females of Psychoda phalaenoides (Psychodidae, Diptera), reflecting the high availability of this moth fly in this region. More generalized visitor assemblages, including other psychodid and non-psychodid groups, were observed in the south, where the availability of P. phalaenoides/Psychodidae was limited. Fruit set was higher in the north than in the south but correlated positively in both regions with the abundance of total visitors and psychodids; in the north, however, this relationship disappeared when visitor abundances were too high. High pollen loads were recorded on both psychodids and other Diptera. We demonstrate for the first time that the quantitative assessment of floral visitor assemblages in relation to locally available insect communities is helpful to understand patterns of geographical variation in plant-pollinator interactions. This combined approach revealed that geographical differences in floral visitors of A. maculatum are only partly shaped by the local insect availability. Potential other factors that may contribute to the geographical pattern of visitor assemblages include the region-specific attractiveness of this plant species to flower visitors and the population-specific behavior of pollinators.
Collapse
Affiliation(s)
- Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Valerie Scheurecker
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Roman Fuchs
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Marielle Schleifer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Carina Zittra
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Rüdiger Wagner
- Department of Limnology, University of Kassel, Kassel, Germany
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, CNRS – University of Corsica, Ajaccio, France
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Anja C. Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Toji T, Hirota SK, Ishimoto N, Suyama Y, Itino T. Intraspecific independent evolution of floral spur length in response to local flower visitor size in Japanese Aquilegia in different mountain regions. Ecol Evol 2022; 12:e8668. [PMID: 35261751 PMCID: PMC8888250 DOI: 10.1002/ece3.8668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic differences in floral traits may reflect geographic differences in effective pollinator assemblages. Independent local adaptation to pollinator assemblages in multiple regions would be expected to cause parallel floral trait evolution, although sufficient evidence for this is still lacking. Knowing the intraspecific evolutionary history of floral traits will reveal events that occur in the early stages of trait diversification. In this study, we investigated the relationship between flower spur length and pollinator size in 16 populations of Aquilegia buergeriana var. buergeriana distributed in four mountain regions in the Japanese Alps. We also examined the genetic relationship between yellow- and red-flowered individuals, to see if color differences caused genetic differentiation by pollinator isolation. Genetic relationships among 16 populations were analyzed based on genome-wide single-nucleotide polymorphisms. Even among populations within the same mountain region, pollinator size varied widely, and the average spur length of A. buergeriana var. buergeriana in each population was strongly related to the average visitor size of that population. Genetic relatedness between populations was not related to the similarity of spur length between populations; rather, it was related to the geographic proximity of populations in each mountain region. Our results indicate that spur length in each population evolved independently of the population genetic structure but in parallel in response to local flower visitor size in different mountain regions. Further, yellow- and red-flowered individuals of A. buergeriana var. buergeriana were not genetically differentiated. Unlike other Aquilegia species in Europe and America visited by hummingbirds and hawkmoths, the Japanese Aquilegia species is consistently visited by bumblebees. As a result, genetic isolation by flower color may not have occurred.
Collapse
Affiliation(s)
- Tsubasa Toji
- Graduate School of Medicine, Science and TechnologyShinshu UniversityMatsumotoJapan
| | - Shun K. Hirota
- Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | | | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiJapan
| | - Takao Itino
- Faculty of ScienceShinshu UniversityMatsumotoJapan
- Department of Biology and Institute of Mountain ScienceShinshu UniversityMatsumotoJapan
| |
Collapse
|
9
|
Hollens-Kuhr H, van der Niet T, Cozien R, Kuhlmann M. Pollinator Community Predicts Trait Matching between Oil-Producing Flowers and a Guild of Oil-Collecting Bees. Am Nat 2021; 198:750-758. [PMID: 34762568 DOI: 10.1086/717050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe impact of pollinator community diversity on trait matching in plant-pollinator interactions is poorly studied, even though many mutualisms involve multiple interaction partners. We studied 10 communities in which one to three species of oil-collecting Rediviva bees pollinate the long-spurred, oil-producing flowers of Diascia "floribunda" to examine how pollinator diversity affects covariation of functional traits across sites and trait matching within sites. Floral spur length was significantly correlated with weighted grand mean foreleg length of the local bee community but not with foreleg length of individual bee species. The closeness of trait matching varied among populations and was inversely related to pollinator community diversity. For all bee species, trait matching was closest at sites characterized by exclusive pairwise interactions. Reduced trait matching associated with increased community diversity for individual pollinator species but close matching at the community level supports the importance of community context for shaping interacting traits of flowers and pollinators.
Collapse
|
10
|
Garcia JE, Dyer AG, Burd M, Shrestha M. Flower colour and size signals differ depending on geographical location and altitude region. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:905-914. [PMID: 34546624 DOI: 10.1111/plb.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Bees are major pollinators of angiosperms and have phylogenetically conserved colour vision but differ in how various key species use achromatic information that is vital for both flower detection and size processing. We modelled green contrast and colour contrast signals from flowers of different countries where there are well established differences in availability of model bee species along altitudinal gradients. We tested for consistency in visual signals as expected from generalization in pollination principles using phylogenetically informed linear models. Patterns of chromatic contrast, achromatic green contrast and flower size differed among the three floras we examined. In Nepal there is a significant positive correlation between flower size and colour contrast in the subalpine region, but a negative correlation at the lower altitudes. At high elevations in Norway, where pollinators other than bees are common, flower size was positively correlated with colour contrast. At low and medium altitudes in Norway and in Australia, we did not observe a significant relationship between size and colour contrast. We thus find that the relationship between size, green and colour contrast cannot be generalized across communities, thus suggesting that flower visual signal adaptations to local pollinators are not limited to chromatic contrast.
Collapse
Affiliation(s)
- J E Garcia
- Bio-Inspired Digital Sensing (BIDs Lab), School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - A G Dyer
- Bio-Inspired Digital Sensing (BIDs Lab), School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - M Burd
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - M Shrestha
- Bio-Inspired Digital Sensing (BIDs Lab), School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
11
|
Kuppler J, Kotowska MM. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. GLOBAL CHANGE BIOLOGY 2021; 27:3095-3108. [PMID: 33774883 DOI: 10.1111/gcb.15621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.
Collapse
Affiliation(s)
- Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Toji T, Ishimoto N, Egawa S, Nakase Y, Hattori M, Itino T. Intraspecific convergence of floral size correlates with pollinator size on different mountains: a case study of a bumblebee-pollinated Lamium (Lamiaceae) flowers in Japan. BMC Ecol Evol 2021; 21:64. [PMID: 33894742 PMCID: PMC8067403 DOI: 10.1186/s12862-021-01796-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background Geographic differences in floral size sometimes reflect geographic differences in pollinator size. However, we know little about whether this floral size specialization to the regional pollinator size occurred independently at many places or occurred once and then spread across the distribution range of the plant species. Results We investigated the relationship between the local floral size of flowers and local pollinator size in 12 populations of Lamium album var. barbatum on two different mountains in the Japan Alps. Then, using 10 microsatellite markers, we analyzed genetic differentiation among the 12 populations. The results showed that local floral size was correlated with the average size of relevant morphological traits of the local pollinators: floral size was greater in populations visited frequently by the largest flower visitors, Bombus consobrinus queens, than it was in other populations. We also found that the degree of genetic similarity between populations more closely reflected interpopulation geographic proximity than interpopulation similarity in floral size. Conclusions Although genetic similarity of populations was highly associated with geographic proximity, floral size varied independently of geographic proximity and was associated with local pollinator size. These results suggest that in L. album var. barbatum, large floral size evolved independently in populations on different mountains as a convergent adaptation to locally abundant large bumblebee species. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01796-8.
Collapse
Affiliation(s)
- Tsubasa Toji
- Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan.
| | - Natsumi Ishimoto
- Faculty of Science, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan
| | - Shin Egawa
- Faculty of Science, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan
| | - Yuta Nakase
- Faculty of Science, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan
| | - Mitsuru Hattori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takao Itino
- Faculty of Science, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan.,Department of Biology and Institute of Mountain Science, Shinshu University, Matsumoto, 3-1-1 Asahi, Nagano, 390-8621, Japan
| |
Collapse
|
13
|
Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci Rep 2021; 11:5072. [PMID: 33658554 PMCID: PMC7930205 DOI: 10.1038/s41598-021-83867-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
How evolution creates and maintains trait patterns in species-rich communities is still an unsolved topic in evolutionary ecology. One classical example of community-level pattern is the unexpected coexistence of different mimicry rings, each of which is a group of mimetic species with the same warning signal. The coexistence of different mimicry rings in a community seems paradoxical because selection among unpalatable species should favor convergence to a single warning pattern. We combined mathematical modeling based on network theory and numerical simulations to explore how different types of selection, such as mimetic and environmental selections, and habitat use by mimetic species influence the formation of coexisting rings. We show that when habitat and mimicry are strong sources of selection, the formation of multiple rings takes longer due to conflicting selective pressures. Moreover, habitat generalist species decrease the distinctiveness of different mimicry rings’ patterns and a few habitat generalist species can generate a “small-world effect”, preventing the formation of multiple mimicry rings. These results may explain why the coexistence of mimicry rings is more common in groups of animals that tend towards habitat specialism, such as butterflies.
Collapse
|
14
|
Ellis AG, Anderson B, Kemp JE. Geographic Mosaics of Fly Pollinators With Divergent Color Preferences Drive Landscape-Scale Structuring of Flower Color in Daisy Communities. FRONTIERS IN PLANT SCIENCE 2021; 12:617761. [PMID: 33597961 PMCID: PMC7882612 DOI: 10.3389/fpls.2021.617761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 05/10/2023]
Abstract
The striking variation in flower color across and within Angiosperm species is often attributed to divergent selection resulting from geographic mosaics of pollinators with different color preferences. Despite the importance of pollinator mosaics in driving floral divergence, the distributions of pollinators and their color preferences are seldom quantified. The extensive mass-flowering displays of annual daisy species in Namaqualand, South Africa, are characterized by striking color convergence within communities, but also color turnover within species and genera across large geographic scales. We aimed to determine whether shifts between orange and white-flowered daisy communities are driven by the innate color preferences of different pollinators or by soil color, which can potentially affect the detectability of different colored flowers. Different bee-fly pollinators dominated in both community types so that largely non-overlapping pollinator distributions were strongly associated with different flower colors. Visual modeling demonstrated that orange and white-flowered species are distinguishable in fly vision, and choice experiments demonstrated strongly divergent color preferences. We found that the dominant pollinator in orange communities has a strong spontaneous preference for orange flowers, which was not altered by conditioning. Similarly, the dominant pollinator in white communities exhibited an innate preference for white flowers. Although detectability of white flowers varied across soil types, background contrast did not alter color preferences. These findings demonstrate that landscape-level flower color turnover across Namaqua daisy communities is likely shaped by a strong qualitative geographic mosaic of bee-fly pollinators with divergent color preferences. This is an unexpected result given the classically generalist pollination phenotype of daisies. However, because of the dominance of single fly pollinator species within communities, and the virtual absence of bees as pollinators, we suggest that Namaqua daisies function as pollination specialists despite their generalist phenotypes, thus facilitating differentiation of flower color by pollinator shifts across the fly pollinator mosaic.
Collapse
Affiliation(s)
- Allan G. Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | | | | |
Collapse
|
15
|
Weber UK, Nuismer SL, Espíndola A. Patterns of floral morphology in relation to climate and floral visitors. ANNALS OF BOTANY 2020; 125:433-445. [PMID: 31650169 PMCID: PMC7061174 DOI: 10.1093/aob/mcz172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS The diversity of floral morphology among plant species has long captured the interest of biologists and led to the development of a number of explanatory theories. Floral morphology varies substantially within species, and the mechanisms maintaining this diversity are diverse. One possibility is that spatial variation in the pollinator fauna drives the evolution of spatially divergent floral ecotypes adapted to the local suite of pollinators. Another possibility is that geographic variation in the abiotic environment and local climatic conditions favours different floral morphologies in different regions. Although both possibilities have been shown to explain floral variation in some cases, they have rarely been competed against one another using data collected from large spatial scales. In this study, we assess floral variation in relation to climate and floral visitors in four oil-reward-specialized pollination interactions. METHODS We used a combination of large-scale plant and pollinator samplings, morphological measures and climatic data. We analysed the data using spatial approaches, as well as traditional multivariate and structural equation modelling approaches. KEY RESULTS Our results indicate that the four species have different levels of specialization, and that this can be explained by their climatic niche breadth. In addition, our results show that, at least for some species, floral morphology can be explained by the identity of floral visitors, with climate having only an indirect effect. CONCLUSIONS Our results demonstrate that, even in very specialized interactions, both biotic and abiotic variables can explain a substantial amount of intraspecific variation in floral morphology.
Collapse
Affiliation(s)
- Urs K Weber
- Department of Entomology, Plant Sciences Building 3138, 4291 Fieldhouse Dr., University of Maryland, College Park, MD, USA
| | - Scott L Nuismer
- Department of Biological Sciences, 875 Perimeter Dr. MS 3051, University of Idaho, Moscow, ID, USA
| | - Anahí Espíndola
- Department of Entomology, Plant Sciences Building 3138, 4291 Fieldhouse Dr., University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Newman E, Anderson B. Character displacement drives floral variation in Pelargonium (Geraniaceae) communities. Evolution 2020; 74:283-296. [PMID: 31883274 DOI: 10.1111/evo.13908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
Interactions between plant community members are an underexplored driver of angiosperm floral variation. We investigate character displacement as a potential contributor to floral variation in Pelargonium communities. Pelargoniums all place pollen on the ventral sides of their pollinators, potentially leading to interspecific pollen transfer (IPT) in sympatry. We show that the positions of pollen placement and receipt are determined by anther and style exsertion lengths. Using field experiments, we demonstrate that heterospecific species experience higher IPT if they have similar style lengths than when they have greater style length differences. Using crosses, we show that IPT has negative consequences on seed set. In combination, these results suggest that character displacement in style length is likely to reduce IPT and increase female fitness in sympatry. Patterns of style length variation across 29 different Pelargonium communities suggest that character displacement has occurred in multiple communities. Furthermore, analyses using a wide-ranging species pair show that style lengths are more different between sympatric populations than they are between allopatric populations. In addition to pollinators as agents of floral divergence, this study suggests that variation in Pelargonium community structure has driven style length variation through character displacement.
Collapse
Affiliation(s)
- Ethan Newman
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, 7602, South Africa
| |
Collapse
|
17
|
Moreira-Hernández JI, Muchhala N. Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024804] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding how pollen moves between species is critical to understanding speciation, diversification, and evolution of flowering plants. For co-flowering species that share pollinators, competition through interspecific pollen transfer (IPT) can profoundly impact floral evolution, decreasing female fitness via heterospecific pollen deposition on stigmas and male fitness via pollen misplacement during visits to heterospecific flowers. The pollination literature demonstrates that such reproductive interference frequently selects for reproductive character displacement in floral traits linked to pollinator attraction, pollen placement, and mating systems and has also revealed that IPT between given pairs of species is typically asymmetric. More recent work is starting to elucidate its importance to the speciation process, clarifying the link between IPT and current and historical patterns of hybridization, the evolution of phenotypic novelty through adaptive introgression, and the rise of reproductive isolation. Our review aims to stimulate further research on IPT as a ubiquitous mechanism that plays a central role in angiosperm diversification.
Collapse
Affiliation(s)
- Juan Isaac Moreira-Hernández
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| | - Nathan Muchhala
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| |
Collapse
|
18
|
Minnaar C, de Jager ML, Anderson B. Intraspecific divergence in floral-tube length promotes asymmetric pollen movement and reproductive isolation. THE NEW PHYTOLOGIST 2019; 224:1160-1170. [PMID: 31148172 DOI: 10.1111/nph.15971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The causative link between phenotypic divergence and reproductive isolation is an important but poorly understood part of ecological speciation. We studied the effects of floral-tube length variation on pollen placement/receipt positions and reproductive isolation. In a population of Lapeirousia anceps (Iridaceae) with bimodal floral-tube lengths, we labelled pollen of short- and long-tubed flowers with different colour fluorescent nanoparticles (quantum dots). This enabled us to map pollen placement by long- and short-tubed flowers on the only floral visitor, a long-proboscid fly. Furthermore, it allowed us to quantify pollen movement within and between short- and long-tubed flowers. Short- and long-tubed flowers placed pollen on different parts of the pollinator, and long-tubed flowers placed more pollen per visit than short-tubed flowers. This resulted in assortative pollen receipt (most pollen received comes from the same phenotype) and strong but asymmetric reproductive isolation, where short-tubed plants are more reproductively isolated than long-tubed plants. These results suggest that floral-tube length divergence can promote mechanical isolation in plants through divergence in pollen placement sites on pollinators. Consequently, in concert with other reproductive isolation mechanisms, selection for differences in floral-tube length can play an important role in ecological speciation of plants.
Collapse
Affiliation(s)
- Corneile Minnaar
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Marinus L de Jager
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Bruce Anderson
- Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
19
|
Theron GL, de Waal C, Barrett SCH, Anderson B. Geographic variation of reproductive traits and competition for pollinators in a bird-pollinated plant. Ecol Evol 2019; 9:10122-10134. [PMID: 31673331 PMCID: PMC6816071 DOI: 10.1002/ece3.5457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Abstract
Geographic variation in the reproductive traits of animal-pollinated plants can be shaped by spatially variable selection imposed by differences in the local pollination environment. We investigated this process in Babiana ringens (Iridaceae), an enigmatic species from the Western Cape region of South Africa. B. ringens has evolved a specialized perch facilitating cross-pollination by sunbirds and displays striking geographic variation in perch size and floral traits. Here, we investigate whether this variation can be explained by geographic differences in the pollinator communities. We measured floral and inflorescence traits, and abiotic variables (N, P, C, and rainfall) and made observations of sunbirds in populations spanning the range of B. ringens. In each population, we recorded sunbird species identity and measured visitation rates, interfloral pollen transfer, and whether the seed set of flowers was pollen limited. To evaluate whether competition from co-occurring sunbird-pollinated species might reduce visitation, we quantified nectar rewards in B. ringens and of other co-flowering bird-pollinated species in local communities in which populations occurred. Variation in abiotic variables was not associated with geographical variation of traits in B. ringens. Malachite sunbirds were the dominant visitor (97% of visits) and populations with larger-sized traits exhibited higher visitation rates, more between-flower pollen transfer and set more seed. No sunbirds were observed in four populations, all with smaller-sized traits. Sunbird visitation to B. ringens was not associated with local sunbird activity in communities, but sunbird visitation was negatively associated with the amount of B. ringens sugar relative to the availability of alternative nectar sources. Our study provides evidence that B. ringens populations with larger floral traits are visited more frequently by sunbirds, and we propose that visitation rates to B. ringens may be influenced, in part, by competition with other sunbird-pollinated species.
Collapse
Affiliation(s)
- Genevieve L. Theron
- Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
| | - Caroli de Waal
- Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
| | | | - Bruce Anderson
- Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
20
|
Mazer SJ, Chellew JP, Peach K. Floral traits influence the opportunity for selection among male gametophytes: independent and combined effects of style length and petal area. AMERICAN JOURNAL OF BOTANY 2019; 106:744-753. [PMID: 31022312 DOI: 10.1002/ajb2.1274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Strong correlations between traits can obscure their independent effects on components of reproduction. Style length (SL) and petal area (PA) vary within species, for example, but their independent effects on the opportunity for selection among pollen genotypes are poorly understood. Previous work in Clarkia detected a positive effect of SL on pollen receipt, potentially intensifying selection. However, this apparent effect of SL may be influenced by a correlated trait, such as PA. Here, we examine the independent effects of these two traits on pollen receipt and performance. METHODS We collected petals and styles from wild populations of two insect-pollinated Clarkia taxa and estimated the independent and combined effects of SL and PA on pollen receipt and performance. RESULTS In both taxa, SL and PA are positively correlated. In C. unguiculata, both traits positively and independently affect pollen receipt, but in C. xantiana ssp. xantiana, the two traits act only in combination to affect pollen receipt. In both taxa, pollen receipt positively affects the numbers of pollen tubes entering and penetrating the style, as well as pollen tube attrition. CONCLUSIONS The effects of SL and PA on pollen receipt and performance are taxon specific. In C. unguiculata, both traits may be independent targets of selection due to their effects on pollen receipt. In C. xantiana ssp. xantiana, by contrast, the combined (but not independent) effects of SL and PA influence pollen receipt. Ecological differences between these taxa require exploration to understand the mechanisms by which these traits affect pollinator behavior.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| | - Joseph P Chellew
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| | - Kristen Peach
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
21
|
Trunschke J, Sletvold N, Ågren J. The independent and combined effects of floral traits distinguishing two pollination ecotypes of a moth-pollinated orchid. Ecol Evol 2019; 9:1191-1201. [PMID: 30805152 PMCID: PMC6374684 DOI: 10.1002/ece3.4808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 11/26/2022] Open
Abstract
Identifying traits and agents of selection involved in local adaptation is important for understanding population divergence. In southern Sweden, the moth-pollinated orchid Platanthera bifolia occurs as a woodland and a grassland ecotype that differ in dominating pollinators. The woodland ecotype is taller (expected to influence pollinator attraction) and produces flowers with longer spurs (expected to influence efficiency of pollen transfer) compared to the grassland ecotype. We examined whether plant height and spur length affect pollination and reproductive success in a woodland population, and whether effects are non-additive, as expected for traits influencing two multiplicative components of pollen transfer. We reduced plant height and spur length to match trait values observed in the grassland ecotype and determined the effects on pollen removal, pollen receipt, and fruit production. In addition, to examine the effects of naturally occurring variation, we quantified pollinator-mediated selection through pollen removal and seed production in the same population. Reductions of plant height and spur length decreased pollen removal, number of flowers receiving pollen, mean pollen receipt per pollinated flower, and fruit production per plant, but no significant interaction effect was detected. The selection analysis demonstrated pollinator-mediated selection for taller plants via female fitness. However, there was no current selection mediated by pollinators on spur length, and pollen removal was not related to plant height or spur length. The results show that, although both traits are important for pollination success and female fitness in the woodland habitat, only plant height was sufficiently variable in the study population for current pollinator-mediated selection to be detected. More generally, the results illustrate how a combination of experimental approaches can be used to identify both traits and agents of selection.
Collapse
Affiliation(s)
- Judith Trunschke
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
22
|
Kay KM, Zepeda AM, Raguso RA. Experimental sympatry reveals geographic variation in floral isolation by hawkmoths. ANNALS OF BOTANY 2019; 123:405-413. [PMID: 30032166 PMCID: PMC6344223 DOI: 10.1093/aob/mcy143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Under a widely accepted model of pollinator-driven speciation, geographic variation in pollinator assemblage drives floral divergence and automatically causes reproductive isolation. Yet it is unclear whether divergent floral adaptation initially confers strong reproductive isolation, or whether that comes at later stages of speciation and requires other forms of reproductive isolation. This study uses a pair of recently diverged, interfertile and parapatric species in the genus Clarkia to determine whether adaptation to hawkmoths, a novel pollinator functional group, would automatically confer floral isolation upon sympatric contact. METHODS First, genetically based differences in floral traits between C. breweri and C. concinna that would be maintained upon migration are quantified. Then scenarios of experimental sympatry are constructed in which arrays of flowers are exposed to the novel pollinator, the hawkmoth Hyles lineata, and pollinator preference and heterospecific pollen transfer are assessed. Source populations from across the ranges of each species are used to understand how geographic variation in floral traits within species may affect floral isolation. KEY RESULTS Although H. lineata has never been observed visiting C. concinna in the wild, it regularly moves between species in experimental floral arrays. Hawkmoth preference and heterospecific pollen transfer vary both among moths and among geographic source locations of C. concinna. The strength of floral isolation in this system is related to variation in flower size, especially hypanthium tube width, and nectar reward among C. concinna forms. CONCLUSIONS Although C. breweri has adopted a novel hawkmoth pollination system, both ethological and mechanical floral isolation by hawkmoths are incomplete and vary according to the specific phenotype of the C. concinna source population. The results suggest that strong floral isolation is not automatically conferred by a pollinator shift and may require additional evolution of deterrent floral traits and habitat isolation that reduces the immediate spatial co-occurrence of young species.
Collapse
Affiliation(s)
- Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Aubrey M Zepeda
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Minnaar C, Anderson B, de Jager ML, Karron JD. Plant-pollinator interactions along the pathway to paternity. ANNALS OF BOTANY 2019; 123:225-245. [PMID: 30535041 PMCID: PMC6344347 DOI: 10.1093/aob/mcy167] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Background The male fitness pathway, from pollen production to ovule fertilization, is thought to strongly influence reproductive trait evolution in animal-pollinated plants. This pathway is characterized by multiple avenues of pollen loss which may lead to reductions in male fitness. However, empirical data on the mechanistic processes leading to pollen loss during transport are limited, and we therefore lack a comprehensive understanding of how male fitness is influenced by each step in the pollination process. Scope This review assesses the history of studying male function in plants and identifies critical gaps in our understanding of the ecology and evolution of pollen transport. We explore male reproductive function along the steps of the pathway to paternity and discuss evolutionary options to overcome barriers to siring success. In particular, we present a newly emerging idea that bodies of pollinators function as a dynamic arena facilitating intense male-male competition, where pollen of rival males is constantly covered or displaced by competitors. This perspective extends the pollen-competitive arena beyond the confines of the stigma and style, and highlights the opportunity for important new breakthroughs in the study of male reproductive strategies and floral evolution.
Collapse
Affiliation(s)
- Corneile Minnaar
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Marinus L de Jager
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
24
|
de Jager ML, Peakall R. Experimental examination of pollinator-mediated selection in a sexually deceptive orchid. ANNALS OF BOTANY 2019; 123:347-354. [PMID: 29878057 PMCID: PMC6344214 DOI: 10.1093/aob/mcy083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Selection exerted by pollinators on flowers is predicted to occur along two distinct axes. While pollinator attraction to flowers is governed by pollinator preferences, pollen transfer efficiency is mediated by the mechanical fit of pollinators to flower morphology. Although pollinator attraction in sexually deceptive orchids is typically underpinned by floral odour, morphological traits are expected to play a vital role in mechanical fit during floral contact with pollinators. METHODS Here we utilize a comprehensive and novel procedure to test for pollinator-mediated selection through mechanical fit with the flower labellum in the orchid Chiloglottis trapeziformis. This approach combines detailed pollinator observations related to plant reproductive fitness with complementary experimental manipulation and phenotypic selection analysis. KEY RESULTS Experiments with virgin flowers revealed that pollen removal occurs only during vigorous pseudocopulation. This behaviour involves male wasps that grasp the insectiform callus structure on the labellum while probing the labellum tip in a forward orientation. Both orientation and duration of pseudocopulation were significant predictors of pollen removal, confirming a direct relationship between pollinator behaviour and plant fitness. Controlled floral manipulation that either shortened or elongated the distance between the callus and the labellum tip detected no change in pollinator attraction. The duration of pseudocopulation, however, was significantly reduced on flowers with shortened or elongated callus-tip distances, consistent with stabilizing selection. Phenotypic selection analysis confirmed this prediction in natural populations by uncovering evidence for stabilizing selection on the distance between the callus and the labellum tip. CONCLUSIONS Our experimental manipulations and selection analysis in natural populations thus demonstrate stabilizing selection on the distance from the callus to the labellum tip, and illustrate the utility of employing multiple approaches to confirm selection exerted by pollinators on floral form.
Collapse
Affiliation(s)
- Marinus L de Jager
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- For correspondence. E-mail
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
25
|
Caruso CM, Eisen KE, Martin RA, Sletvold N. A meta-analysis of the agents of selection on floral traits. Evolution 2018; 73:4-14. [PMID: 30411337 DOI: 10.1111/evo.13639] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/03/2023]
Abstract
Floral traits are hypothesized to evolve primarily in response to selection by pollinators. However, selection can also be mediated by other environmental factors. To understand the relative importance of pollinator-mediated selection and its variation among trait and pollinator types, we analyzed directional selection gradients on floral traits from experiments that manipulated the environment to identify agents of selection. Pollinator-mediated selection was stronger than selection by other biotic factors (e.g., herbivores), but similar in strength to selection by abiotic factors (e.g., soil water), providing partial support for the hypothesis that floral traits evolve primarily in response to pollinators. Pollinator-mediated selection was stronger on pollination efficiency traits than on other trait types, as expected if efficiency traits affect fitness via interactions with pollinators, but other trait types also affect fitness via other environmental factors. In addition to varying among trait types, pollinator-mediated selection varied among pollinator taxa: selection was stronger when bees, long-tongued flies, or birds were the primary visitors than when the primary visitors were Lepidoptera or multiple animal taxa. Finally, reducing pollinator access to flowers had a relatively small effect on selection on floral traits, suggesting that anthropogenic declines in pollinator populations would initially have modest effects on floral evolution.
Collapse
Affiliation(s)
- Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Katherine E Eisen
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Current Address: Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Nina Sletvold
- Department of Ecology and Genetics, Uppsala University, Uppsala, 751 05, Sweden
| |
Collapse
|
26
|
Klecka J, Hadrava J, Koloušková P. Vertical stratification of plant-pollinator interactions in a temperate grassland. PeerJ 2018; 6:e4998. [PMID: 29942686 PMCID: PMC6016531 DOI: 10.7717/peerj.4998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/28/2018] [Indexed: 12/02/2022] Open
Abstract
Visitation of plants by different pollinators depends on individual plant traits, spatial context, and other factors. A neglected aspect of small-scale variation of plant–pollinator interactions is the role of vertical position of flowers. We conducted a series of experiments to study vertical stratification of plant–pollinator interactions in a dry grassland. We observed flower visitors on cut inflorescences of Centaurea scabiosa and Inula salicina placed at different heights above ground in two types of surrounding vegetation: short and tall. Even at such a small-scale, we detected significant shift in total visitation rate of inflorescences in response to their vertical position. In short vegetation, inflorescences close to the ground were visited more frequently, while in tall vegetation, inflorescences placed higher received more visits. Moreover, we found major differences in the composition of the pollinator community on flowers at different heights. In a second experiment, we measured flower visitation rate in inflorescences of Salvia verticillata of variable height. Total flower visitation rate increased markedly with inflorescence height in this case. Data on seed set of individual plants provide evidence for a corresponding positive pollinator-mediated selection on increased inflorescence height. Overall, our results demonstrate strong vertical stratification of plant–pollinator interactions at the scale of mere decimetres. This may have important ecological as well as evolutionary implications.
Collapse
Affiliation(s)
- Jan Klecka
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Jiří Hadrava
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Koloušková
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Pérez-Barrales R, Abarca CA, Santos-Gally R, Schiestl FP, Arroyo J. The function of the floral corona in the pollination of a Mediterranean style dimorphic daffodil. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:118-127. [PMID: 29105981 DOI: 10.1111/plb.12657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Narcissus papyraceus is a style dimorphic species with two floral forms, with anthers at similar height and stigmas above (long-styled L) and below (short-styled S) the anther level. The species is self-incompatible, but intra- and inter-morph compatible. Populations are either dimorphic (including both morphs) in the region of the Strait of Gibraltar, or L-monomorphic (with only L plants) in the inland of the Iberian Peninsula. This variation correlates with the most common floral visitors, being primarily long-tongued and short-tongued pollinators, respectively, a rare condition in Mediterranean plants. The maintenance of S-flowers relies on long-tongued insects, as only those deliver pollen to short-styled stigmas. Narcissus flowers present a long and narrow tube, at the bottom of which nectar accumulates, and a floral corona, which has been proposed as an important trait for the attraction of pollinators. Here we tested the importance of the corona on pollination of L and S flowers. We described UV reflectance patterns of the corona and tepals, and characterised VOCs in intact flowers and flowers with trimmed coronas. We also conducted a field experiment in the dimorphic and monomorphic region to estimate the importance of corona removal on seed production in stands with solitary plants and in groups to control for compatible pollen limitation. Reflectance was higher in the tepals than the corona, although both traits presented a reflectance peak around 450 nm wavelength. L- and S-flowers produced similar volatiles, regardless of the manipulation of the corona. Across dimorphic and monomorphic regions, S-flowers with the corona removed suffered a reduction in seed production of ca. 50%, while seed production remained similar in L flowers both with the corona intact and removed. Plants in solitary stands suffered a strong reduction in seed production, which was more pronounced in the monomorphic region. Our results suggest that the corona in Narcissus is more important for the pollination of S-flowers, which generally have lower seed production compared to L-flowers. Taken together, these results suggest that the floral corona indirectly plays an important role for maintenance of the polymorphism.
Collapse
Affiliation(s)
- R Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - C A Abarca
- Unidad Lerma Departamento de Ecología Evolutiva, Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Mexico City, México
| | - R Santos-Gally
- CONACYT-Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Mexico City, México
| | - F P Schiestl
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - J Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
28
|
Harrison TL, Wood CW, Heath KD, Stinchcombe JR. Geographically structured genetic variation in the
Medicago lupulina
–
Ensifer
mutualism. Evolution 2017; 71:1787-1801. [DOI: 10.1111/evo.13268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Tia L. Harrison
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| | - Corlett W. Wood
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois 505 S. Goodwin Avenue Urbana Illinois 61801
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
- Centre for Genome Evolution and FunctionUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| |
Collapse
|
29
|
Lemos-Costa P, Martins AB, Thompson JN, de Aguiar MAM. Gene flow and metacommunity arrangement affects coevolutionary dynamics at the mutualism-antagonism interface. J R Soc Interface 2017; 14:rsif.2016.0989. [PMID: 28566509 DOI: 10.1098/rsif.2016.0989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 11/12/2022] Open
Abstract
Interspecific interactions are affected by community context and, as a consequence, show spatial variation in magnitude and sign. The selective forces imposed by interactions at the mutualism-antagonism interface are a consequence of the traits involved and their matching between species. If mutualistic and antagonistic communities are linked by gene flow, coevolution between a pair of interacting species is influenced by how selection varies in space. Here we investigate the effects of metacommunity arrangement, i.e. patterns of connection between communities and the number of communities, on the coevolutionary dynamics between two species for which the sign and magnitude of the interaction varies across the landscape. We quantify coevolutionary outcome as an index that can be decomposed into the contribution of intraspecific genetic diversity and interspecific interaction. We show that polymorphisms and mismatches are an expected outcome, which is influenced by spatial structure, interaction strength and the degree of gene flow. The index describes how variation is distributed within and between species, and provides information on the directionality of the mismatches and polymorphisms. Finally, we argue that depending on metacommunity arrangement, some communities have disproportionate roles in maintaining genetic diversity, with implications for the coevolution of interacting species in a fragmented landscape.
Collapse
Affiliation(s)
- Paula Lemos-Costa
- Programa de pós-graduação em Ecologia-Instituto de Biologia, Universidade Estadual de Campinas, Unicamp, 13083-865, Campinas/SP, Brazil
| | - Ayana B Martins
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-859, Campinas/SP, Brazil.,Department of Fish Ecology and Evolution, Center of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - John N Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Unicamp, 13083-859, Campinas/SP, Brazil
| |
Collapse
|
30
|
Harrison TL, Wood CW, Borges IL, Stinchcombe JR. No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina. Ecol Evol 2017; 7:4367-4376. [PMID: 28649348 PMCID: PMC5478075 DOI: 10.1002/ece3.3012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume Medicago lupulina is adapted to the locally abundant species of mutualistic nitrogen-fixing rhizobial bacteria that vary in frequency across its eastern North American range. We reciprocally inoculated northern and southern M. lupulina genotypes with the northern (Ensifer medicae) or southern bacterium (E. meliloti) in a greenhouse experiment. Despite producing different numbers of root nodules (the structures in which the plants house the bacteria), neither northern nor southern plants produced more seeds, flowered earlier, or were more likely to flower when inoculated with their local rhizobia. We then used a pre-existing dataset to perform a genome scan for loci that showed elevated differentiation between field-collected plants that hosted different bacteria. None of the loci we identified belonged to the well-characterized suite of legume-rhizobia symbiosis genes, suggesting that the rhizobia do not drive genetic divergence between M. lupulina populations. Our results demonstrate that symbiont local adaptation has not evolved in this mutualism despite large-scale geographic variation in the identity of the interacting species.
Collapse
Affiliation(s)
- Tia L. Harrison
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Corlett W. Wood
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Isabela L. Borges
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Centre for Genome Evolution and FunctionUniversity of TorontoTorontoONCanada
| |
Collapse
|
31
|
Thompson JN, Schwind C, Friberg M. Diversification of Trait Combinations in Coevolving Plant and Insect Lineages. Am Nat 2017; 190:171-184. [PMID: 28731801 DOI: 10.1086/692164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Closely related species often have similar traits and sometimes interact with the same species. A crucial problem in evolutionary ecology is therefore to understand how coevolving species diverge when they interact with a set of closely related species from another lineage rather than with a single species. We evaluated geographic differences in the floral morphology of all woodland star plant species (Lithophragma, Saxifragaceae) that are pollinated by Greya (Prodoxidae) moths. Flowers of each woodland star species differed depending on whether plants interact locally with one, two, or no pollinating moth species. Plants of one species grown in six different environments showed few differences in floral traits, suggesting that the geographic differences are not due significantly to trait plasticity. Greya moth populations also showed significant geographic divergence in morphology, depending on the local host and on whether the moth species co-occurred locally. Divergence in the plants and the moths involved shifts in combinations of partially correlated traits, rather than any one trait. The results indicate that the geographic mosaic of coevolution can be amplified as coevolving lineages diversify into separate species and come together in different combinations in different ecosystems.
Collapse
|
32
|
Real-time divergent evolution in plants driven by pollinators. Nat Commun 2017; 8:14691. [PMID: 28291771 PMCID: PMC5424062 DOI: 10.1038/ncomms14691] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system.
Collapse
|
33
|
Paudel BR, Shrestha M, Burd M, Adhikari S, Sun YS, Li QJ. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas. THE NEW PHYTOLOGIST 2016; 211:1402-11. [PMID: 27112321 DOI: 10.1111/nph.13974] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/17/2016] [Indexed: 05/27/2023]
Abstract
Geographical variation in the interacting traits of plant-pollinator mutualism can lead to local adaptive differentiation. We tested Darwin's hypothesis of reciprocal selection as a key driving force for the evolution of floral traits of an alpine ginger (Roscoea purpurea) and proboscis length of a tabanid fly (Philoliche longirostris). We documented the pattern of trait variation in R. purpurea and P. longirostris across five populations. At each site, we quantified pollinator-mediated selection on floral display area, inflorescence height and corolla length of R. purpurea by comparing selection gradients for flowers exposed to natural pollination and to supplemental hand pollination. Reciprocal selection between plant and fly was examined at two sites via the relationship between proboscis length and nectar consumption (fly benefit) and corolla length and pollen deposition (plant benefit). Local corolla tube length was correlated with local fly proboscis length among the five sites. We found strong linear selection imposed by pollinators on corolla tube length at all sites, but there was no consistent relationship of fitness to inflorescence height or floral display area. Selection between corolla length and proboscis length was reciprocal at the two experimental sites examined. The geographical pattern of trait variation and the evidence of selection is consistent with a mosaic of local, species-specific reciprocal selection acting as the major driving force for the evolution of corolla length of R. purpurea and proboscis length of P. longirostris.
Collapse
Affiliation(s)
- Babu Ram Paudel
- Plant Evolutionary Ecology Research Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Tribhuvan University, Department of Botany, Prithvi Narayan Campus, Pokhara, Nepal
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, Victoria, 3001, Australia
- Faculty of Information Technology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Subodh Adhikari
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59715, USA
| | - Yong-Shuai Sun
- Plant Evolutionary Ecology Research Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan, 666303, China
| | - Qing-Jun Li
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| |
Collapse
|
34
|
Huang SQ, Wang XP, Sun SG. Are long corolla tubes in Pedicularis driven by pollinator selection? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:698-700. [PMID: 26714618 DOI: 10.1111/jipb.12460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
The evolution of long corolla tubes has been hypothesized to be driven by long-tongued pollinators. Corolla tubes in Pedicularis species can be longer than 10 cm which may function as flower stalks to increase visual attractiveness to pollinators because these species provide no nectar and are pollinated by bumblebees. The corolla tube length was manipulated (shorter or longer) in two Pedicularis species in field to examine whether longer tubes are more attractive to pollinators and produce more seeds than short tubes. Our results did not support the pollinator attraction hypothesis, leaving the evolution of long tubes in Pedicularis remains mysterious.
Collapse
Affiliation(s)
- Shuang-Quan Huang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiang-Ping Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi-Guo Sun
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
35
|
Anderson B, Pauw A, Cole WW, Barrett SCH. Pollination, mating and reproductive fitness in a plant population with bimodal floral-tube length. J Evol Biol 2016; 29:1631-42. [PMID: 27206242 DOI: 10.1111/jeb.12899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/19/2023]
Abstract
Mating patterns and natural selection play important roles in determining whether genetic polymorphisms are maintained or lost. Here, we document an atypical population of Lapeirousia anceps (Iridaceae) with a bimodal distribution of floral-tube length and investigate the reproductive mechanisms associated with this pattern of variation. Flowers were visited exclusively by the long-proboscid fly Moegistorhynchus longirostris (Nemestrinidae), which exhibited a unimodal distribution of proboscis length and displayed a preference for long-tubed phenotypes. Despite being visited by a single pollinator species, allozyme markers revealed significant genetic differentiation between open-pollinated progeny of long- and short-tubed phenotypes suggesting mating barriers between them. We obtained direct evidence for mating barriers between the floral-tube phenotypes through observations of pollinator foraging, controlled hand pollinations and measurements of pollen competition and seed set. Intermediate tube-length phenotypes produced fewer seeds in the field than either long- or short-tubed phenotypes. Although floral-tube length bimodality may not be a stable state over long timescales, reproductive barriers to mating and low 'hybrid' fitness have the potential to contribute to the maintenance of this state in the short term.
Collapse
Affiliation(s)
- B Anderson
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - A Pauw
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - W W Cole
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - S C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|