1
|
Guo L, Deng M, Li X, Schmid B, Huang J, Wu Y, Peng Z, Yang L, Liu L. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol Lett 2024; 27:e14330. [PMID: 37866881 DOI: 10.1111/ele.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The associations of arbuscular mycorrhizal (AM) or ectomycorrhiza (EcM) fungi with plants have sequentially evolved and significantly contributed to enhancing plant nutrition. Nonetheless, how evolutionary and ecological forces drive nutrient acquisition strategies of AM and EcM woody plants remains poorly understood. Our global analysis of woody species revealed that, over divergence time, AM woody plants evolved faster nitrogen mineralization rates without changes in nitrogen resorption. However, EcM woody plants exhibited an increase in nitrogen mineralization but a decrease in nitrogen resorption, indicating a shift towards a more inorganic nutrient economy. Despite this alteration, when evaluating present-day woody species, AM woody plants still display faster nitrogen mineralization and lower nitrogen resorption than EcM woody plants. This inorganic nutrient economy allows AM woody plants to thrive in warm environments with a faster litter decomposition rate. Our findings indicate that the global pattern of nutrient acquisition strategies in mycorrhizal plants is shaped by the interplay between phylogeny and climate.
Collapse
Affiliation(s)
- Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meifeng Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Xuefei Li
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, Finland
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zürich, Switzerland
| | - Junsheng Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Gómez-Robles A, Nicolaou C, Smaers JB, Sherwood CC. The evolution of human altriciality and brain development in comparative context. Nat Ecol Evol 2024; 8:133-146. [PMID: 38049480 PMCID: PMC10781642 DOI: 10.1038/s41559-023-02253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
Human newborns are considered altricial compared with other primates because they are relatively underdeveloped at birth. However, in a broader comparative context, other mammals are more altricial than humans. It has been proposed that altricial development evolved secondarily in humans due to obstetrical or metabolic constraints, and in association with increased brain plasticity. To explore this association, we used comparative data from 140 placental mammals to measure how altriciality evolved in humans and other species. We also estimated how changes in brain size and gestation length influenced the timing of neurodevelopment during hominin evolution. Based on our data, humans show the highest evolutionary rate to become more altricial (measured as the proportion of adult brain size at birth) across all placental mammals, but this results primarily from the pronounced postnatal enlargement of brain size rather than neonatal changes. In addition, we show that only a small number of neurodevelopmental events were shifted to the postnatal period during hominin evolution, and that they were primarily related to the myelination of certain brain pathways. These results indicate that the perception of human altriciality is mostly driven by postnatal changes, and they point to a possible association between the timing of myelination and human neuroplasticity.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Jarvis GC, Marshall DJ. Fertilization Mode Covaries with Body Size. Am Nat 2023; 202:448-457. [PMID: 37792921 DOI: 10.1086/725864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe evolution of internal fertilization has occurred repeatedly and independently across the tree of life. As it has evolved, internal fertilization has reshaped sexual selection and the covariances among sexual traits, such as testes size, and gamete traits. But it is unclear whether fertilization mode also shows evolutionary associations with traits other than primary sex traits. Theory predicts that fertilization mode and body size should covary, but formal tests with phylogenetic control are lacking. We used a phylogenetically controlled approach to test the covariance between fertilization mode and adult body size (while accounting for latitude, offspring size, and offspring developmental mode) among 1,232 species of marine invertebrates from three phyla. Within all phyla, external fertilizers are consistently larger than internal fertilizers: the consequences of fertilization mode extend to traits that are only indirectly related to reproduction. We suspect that other traits may also coevolve with fertilization mode in ways that remain unexplored.
Collapse
|
4
|
Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci U S A 2023; 120:e2311118120. [PMID: 37695892 PMCID: PMC10515152 DOI: 10.1073/pnas.2311118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Elaine N. Miller
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - Danielle N. Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Heather N. Smith
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio, TX78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX78245
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX78602
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| |
Collapse
|
5
|
Köhler M, Nacarino-Meneses C, Cardona JQ, Arnold W, Stalder G, Suchentrunk F, Moyà-Solà S. Insular giant leporid matured later than predicted by scaling. iScience 2023; 26:107654. [PMID: 37694152 PMCID: PMC10485033 DOI: 10.1016/j.isci.2023.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
The island syndrome describes morphological, behavioral, and life history traits that evolve in parallel in endemic insular organisms. A basic axiom of the island syndrome is that insular endemics slow down their pace of life. Although this is already confirmed for insular dwarfs, a slow life history in giants may not be adaptive, but merely a consequence of increasing body size. We tested this question in the fossil insular giant leporid Nuralagus rex. Using bone histology, we constructed both a continental extant taxon model derived from experimentally fluorochrome-labeled Lepus europaeus to calibrate life history events, and a growth model for the insular taxon. N. rex grew extremely slowly and delayed maturity well beyond predictions from continental phylogenetically corrected scaling models. Our results support the life history axiom of the island syndrome as generality for insular mammals, regardless of whether they have evolved into dwarfs or giants.
Collapse
Affiliation(s)
- Meike Köhler
- ICREA Pg. Lluís Companys 23, 08010 Barcelona, Spain
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
- BABVE (Departament de Biologia Animal i d’Ecologia) Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Carmen Nacarino-Meneses
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
| | - Josep Quintana Cardona
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Salvador Moyà-Solà
- ICREA Pg. Lluís Companys 23, 08010 Barcelona, Spain
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
- BABVE (Departament de Biologia Animal i d’Ecologia) Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| |
Collapse
|
6
|
García-Rodríguez J, Cunha AF, Morales-Guerrero A, González-Chaves A, Camacho A, Miranda LS, Serrano FC, Jaimes-Becerra A, Marques AC. Reproductive and environmental traits explain the variation in egg size among Medusozoa (Cnidaria). Proc Biol Sci 2023; 290:20230543. [PMID: 37528708 PMCID: PMC10394409 DOI: 10.1098/rspb.2023.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Medusozoa (Cnidaria) are characterized by diverse life cycles, with different semaphoronts (medusa, medusoid, fixed gonophore, polyp) representing the sexual phase and carrying the gametes. Although egg size is often considered a proxy to understand reproductive and developmental traits of medusozoans, understanding of the processes influencing egg size variation in the group under an evolutionary context is still limited. We carried out a comprehensive review of the variation of egg size in Medusozoa to test whether this variation is related to biological/sexual or environmental traits. Egg size presents a strong phylogenetic signal (λ = 0.79, K = 0.67), explaining why closely related species with different reproductive strategies and different individual sizes have similar egg sizes. However, variation in egg size is influenced by the number of eggs, depth and temperature, with larger eggs frequently present in species with few eggs (1-15), in deep-sea species and in cold-water species. Conversely, the production of small eggs among cold-water species of Staurozoa might be associated with the development of a small benthic larvae in this group. Our study reinforces that egg sizes respond to reproductive and environmental traits, although egg size is highly conserved within medusa classes.
Collapse
Affiliation(s)
- Jimena García-Rodríguez
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Amanda Ferreira Cunha
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Departamento de Biologia Animal, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, 36570-900 Viçosa, Brazil
| | - Adriana Morales-Guerrero
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian González-Chaves
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Lucília Souza Miranda
- Department of Zoology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Filipe C. Serrano
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian Jaimes-Becerra
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Antonio Carlos Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| |
Collapse
|
7
|
Tada S, Tsuihiji T, Matsumoto R, Hanai T, Iwami Y, Tomita N, Sato H, Tsogtbaatar K. Evolutionary process toward avian-like cephalic thermoregulation system in Theropoda elucidated based on nasal structures. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220997. [PMID: 37063996 PMCID: PMC10090882 DOI: 10.1098/rsos.220997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
It has long been discussed whether non-avian dinosaurs were physiologically closer to ectotherms or endotherms, with the internal nasal structure called the respiratory turbinate present in extant endotherms having been regarded as an important clue for this conundrum. However, the physiological function and relevance of this structure for dinosaur physiology are still controversial. Here, we found that the size of the nasal cavity relative to the head size of extant endotherms is larger than those of extant ectotherms, with that of the dromaeosaurid Velociraptor being below the extant endotherms level. The result suggests that a large nasal cavity accommodating a well-developed respiratory turbinate is primarily important as a thermoregulation apparatus for large brains characteristic of endothermic birds and mammals, and the nasal cavity of Velociraptor was apparently not large enough to carry out this role required for an endothermic-sized brain. In addition, a hypothesis that the enlargement of the nasal cavity for brain cooling has been associated with the skull modification in the theropod lineage toward modern birds is proposed herein. In particular, the reduction of the maxilla in derived avialans may have coincided with acquisition of the avian-like cephalic thermoregulation system.
Collapse
Affiliation(s)
- Seishiro Tada
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takanobu Tsuihiji
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryoko Matsumoto
- Department of Zoology, Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250-0031, Japan
| | - Tomoya Hanai
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Iwami
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Naoki Tomita
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Hideaki Sato
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Khishigjav Tsogtbaatar
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia
| |
Collapse
|
8
|
Akeda T, Fujiwara SI. Coracoid strength as an indicator of wing-beat propulsion in birds. J Anat 2023; 242:436-446. [PMID: 36380603 PMCID: PMC9919476 DOI: 10.1111/joa.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Birds generate a propulsive force by flapping their wings. They use this propulsive force for various locomotion styles, such as aerodynamic flight, wing-paddle swimming and wing-assisted incline running. It is therefore important to reveal the origin of flapping ability in the evolution from theropod dinosaurs to birds. However, there are no quantitative indices to reconstruct the flapping abilities of extinct forms based on their skeletal morphology. This study compares the section modulus of the coracoid relative to body mass among various extant birds to test whether the index is correlated with flapping ability. According to a survey of 220 historical bird specimens representing 209 species, 180 genera, 83 families and 30 orders, the section modulus of the coracoid relative to body mass in non-flapping birds was significantly smaller than that of flapping birds. This indicates that coracoid strength in non-flapping birds is deemphasised, whereas in flapping birds the strength is emphasised to withstand the contractile force produced by powerful flapping muscles, such as the m. pectoralis and m. supracoracoideus. Therefore, the section modulus of the coracoid is expected to be a powerful tool to reveal the origin of powered flight in birds.
Collapse
Affiliation(s)
- Takumi Akeda
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
9
|
Lynch LM, Allen KL. Relative Brain Volume of Carnivorans Has Evolved in Correlation with Environmental and Dietary Variables Differentially among Clades. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:284-297. [PMID: 35235933 DOI: 10.1159/000523787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Carnivorans possess relatively large brains compared to most other mammalian clades. Factors like environmental complexity (Cognitive Buffer Hypothesis) and diet quality (Expensive-Tissue Hypothesis) have been proposed as mechanisms for encephalization in other large-brained clades. We examine whether the Cognitive Buffer and Expensive-Tissue Hypotheses account for brain size variation within Carnivora. Under these hypotheses, we predict a positive correlation between brain size and environmental complexity or protein consumption. Relative endocranial volume (phylogenetic generalized least-squares residual from species' mean body mass) and 9 environmental and dietary variables were collected from the literature for 148 species of terrestrial and marine carnivorans. We found that the correlation between relative brain volume and environment and diet differed among clades, a trend consistent with other larger brained vertebrates (i.e., Primates, Aves). Mustelidae and Procyonidae demonstrate larger brains in species with higher-quality diets, consistent with the Expensive-Tissue Hypothesis, while in Herpestidae, correlations between relative brain size and environment are consistent with the Cognitive Buffer Hypothesis. Our results indicate that carnivorans may have evolved relatively larger brains under similar selective pressures as primates despite the considerable differences in life history and behavior between these two clades.
Collapse
Affiliation(s)
- Leigha M Lynch
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Midwestern University, Glendale, Arizona, USA
| | - Kari L Allen
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Maher AE, Burin G, Cox PG, Maddox TW, Maidment SCR, Cooper N, Schachner ER, Bates KT. Body size, shape and ecology in tetrapods. Nat Commun 2022; 13:4340. [PMID: 35896591 PMCID: PMC9329317 DOI: 10.1038/s41467-022-32028-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods. Here, the authors examine how body size, shape, and segment proportions correspond to ecology in models of 410 tetrapods. They find variable allometric relationships, differential scaling in small and large animals, and body proportions as a potential niche occupation mechanism.
Collapse
Affiliation(s)
- Alice E Maher
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gustavo Burin
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Philip G Cox
- Department of Archaeology and Hull York Medical School, University of York, PalaeoHub, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Thomas W Maddox
- School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Small Animal Teaching Hospital, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Natalie Cooper
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
11
|
Lapsansky AB, Warrick DR, Tobalske BW. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy. Integr Comp Biol 2022; 62:878-889. [PMID: 35810134 DOI: 10.1093/icb/icac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
Diving birds are regarded as a classic example of morphological convergence (Darwin 1859). Divers tend to have small wings extending from rotund bodies, requiring many volant species to fly with rapid wingbeats, and rendering others flightless (Darwin 1839; Simpson 1946). The high wing-loading of diving birds is frequently associated with the challenge of using forelimbs adapted for flight for locomotion in a "draggier" fluid, but this does not explain why species that rely exclusively on their feet to dive should have relatively small wings, as well. Therefore, others have hypothesized that ecological factors shared by wing-propelled and foot-propelled diving birds drive the evolution of high wing-loading. Following a reexamination of the aquatic habits of birds, we tested between hypotheses seeking to explain high wing-loading in divers using new comparative data and phylogenetically informed analyses. We found little evidence that wing-propelled diving selects for small wings, as wing-propelled and foot-propelled species share similar wing-loadings. Instead, our results suggest that selection to reduce buoyancy has driven high wing-loading in divers, offering insights for the development of bird-like aquatic robots.
Collapse
Affiliation(s)
- Anthony B Lapsansky
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, MT, USA.,Department of Zoology, University of British Columbia, BC, Canada
| | | | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, MT, USA
| |
Collapse
|
12
|
Medeiros APM, Santos BA, Betancur-R R. Does genome size increase with water depth in marine fishes? Evolution 2022; 76:1578-1589. [PMID: 35585426 DOI: 10.1111/evo.14510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023]
Abstract
A growing body of research suggests that genome size in animals can be affected by ecological factors. Half a century ago, Ebeling et al. proposed that genome size increases with depth in some teleost fish groups and discussed a number of biological mechanisms that may explain this pattern (e.g., passive accumulation, adaptive acclimation). Using phylogenetic comparative approaches, we revisit this hypothesis based on genome size and ecological data from up to 708 marine fish species in combination with a set of large-scale phylogenies, including a newly inferred tree. We also conduct modeling approaches of trait evolution and implement a variety of regression analyses to assess the relationship between genome size and depth. Our reanalysis of Ebeling et al.'s dataset shows a weak association between these variables, but the overall pattern in their data is driven by a single clade. Although new analyses based on our "all-species" dataset resulted in positive correlations, providing some evidence that genome size evolves as a function of depth, only one subclade consistently yielded statistically significant correlations. By contrast, negative correlations are rare and nonsignificant. All in all, we find modest evidence for an increase in genome size along the depth axis in marine fishes. We discuss some mechanistic explanations for the observed trends.
Collapse
Affiliation(s)
- Aline P M Medeiros
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil.,Department of Biology, The University of Oklahoma, Norman, Oklahoma, 73019
| | - Bráulio A Santos
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil
| | - Ricardo Betancur-R
- Department of Biology, The University of Oklahoma, Norman, Oklahoma, 73019
| |
Collapse
|
13
|
Garin CM, Garin M, Silenzi L, Jaffe R, Constantinidis C. Multilevel atlas comparisons reveal divergent evolution of the primate brain. Proc Natl Acad Sci U S A 2022; 119:e2202491119. [PMID: 35700361 PMCID: PMC9231627 DOI: 10.1073/pnas.2202491119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
Whether the size of the prefrontal cortex (PFC) in humans is disproportionate when compared to other species is a persistent debate in evolutionary neuroscience. This question has left the study of over/under-expansion in other structures relatively unexplored. We therefore sought to address this gap by adapting anatomical areas from the digital atlases of 18 mammalian species, to create a common interspecies classification. Our approach used data-driven analysis based on phylogenetic generalized least squares to evaluate anatomical expansion covering the whole brain. Our main finding suggests a divergence in primate evolution, orienting the stereotypical mammalian cerebral proportion toward a frontal and parietal lobe expansion in catarrhini (primate parvorder comprising old world monkeys, apes, and humans). Cerebral lobe volumes slopes plotted for catarrhini species were ranked as parietal∼frontal > temporal > occipital, contrasting with the ranking of other mammalian species (occipital > temporal > frontal∼parietal). Frontal and parietal slopes were statistically different in catarrhini when compared to other species through bootstrap analysis. Within the catarrhini's frontal lobe, the prefrontal cortex was the principal driver of frontal expansion. Across all species, expansion of the frontal lobe appeared to be systematically linked to the parietal lobe. Our findings suggest that the human frontal and parietal lobes are not disproportionately enlarged when compared to other catarrhini. Nevertheless, humans remain unique in carrying the most relatively enlarged frontal and parietal lobes in an infraorder exhibiting a disproportionate expansion of these areas.
Collapse
Affiliation(s)
- Clément M. Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Marie Garin
- Département de Mathématiques, Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, F-91190 France
| | - Leonardo Silenzi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Rye Jaffe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
14
|
Tokunaga S, Watanabe YY, Kawano M, Kawabata Y. Factors affecting gestation periods in elasmobranch fishes. Biol Open 2022; 11:bio059270. [PMID: 35686686 PMCID: PMC9194679 DOI: 10.1242/bio.059270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Gestation periods vary greatly across elasmobranch species. Differences in body size and body temperature (i.e. major determinants of metabolic rates) might explain such variation. Although temperature effects have been demonstrated for captive animals, body size effects remain undocumented. Moreover, whether metabolic rates of mothers or those of embryos affect gestation periods remains unclear. Because biological times generally scale with mass1-β, where β is metabolic scaling exponent (0.8-0.9 in fishes), we hypothesized that elasmobranch gestation periods would scale with mass0.1-0.2. We also hypothesized that regionally endothermic species with elevated metabolic rates should have shorter gestation periods than similar-sized ectothermic species if the metabolic rates of mothers are responsible. We compiled data on gestation periods for 36 elasmobranch species to show that gestation periods scale with M0.11 and m0.17, where M and m are adult female mass and birth mass, respectively. Litter size and body temperature also affected gestation periods. Our findings suggest that the body-mass dependence of metabolic rate explains some variations in elasmobranch gestation periods. Unexpectedly, regionally endothermic sharks did not have shorter gestation periods than their ectothermic counterparts, suggesting that the metabolic rates of embryos, which are likely ectothermic in all elasmobranch species, may be responsible. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Soma Tokunaga
- Faculty of Fisheries, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo 190-8518, Japan
| | - Yuuki Y. Watanabe
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo 190-8518, Japan
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
| | - Mai Kawano
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
| |
Collapse
|
15
|
Keirnan A, Worthy TH, Smaers JB, Mardon K, Iwaniuk AN, Weisbecker V. Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220135. [PMID: 35620001 PMCID: PMC9128852 DOI: 10.1098/rsos.220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Nocturnal birds display diverse adaptations of the visual system to low-light conditions. The skulls of birds reflect many of these and are used increasingly to infer nocturnality in extinct species. However, it is unclear how reliable such assessments are, particularly in cases of recent evolutionary transitions to nocturnality. Here, we investigate a case of recently evolved nocturnality in the world's only nocturnal hawk, the letter-winged kite Elanus scriptus. We employed phylogenetically informed analyses of orbit, optic foramen and endocast measurements from three-dimensional reconstructions of micro-computed tomography scanned skulls of the letter-winged kite, two congeners, and 13 other accipitrid and falconid raptors. Contrary to earlier suggestions, the letter-winged kite was not unique in any of our metrics. However, all species of Elanus have significantly higher ratios of orbit versus optic foramen diameter, suggesting high visual sensitivity at the expense of acuity. In addition, visual system morphology varies greatly across accipitrid species, likely reflecting hunting styles. Overall, our results suggest that the transition to nocturnality can occur rapidly and without changes to key hard-tissue indicators of vision, but also that hard-tissue anatomy of the visual system may provide a means of inferring a range of raptor behaviours, well beyond nocturnality.
Collapse
Affiliation(s)
- Aubrey Keirnan
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Trevor H. Worthy
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Karine Mardon
- Centre of Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew N. Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
16
|
Glazier DS. Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. J Exp Biol 2022; 225:274353. [PMID: 35258614 DOI: 10.1242/jeb.243313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation. Various intrinsic and extrinsic factors may affect not only the variation of a trait, but also its covariation with body size, thus making it difficult to remove completely the effect of body size in comparative studies. These complications are illustrated by several examples of how body size interacts with diverse developmental, physiological, behavioral and ecological factors to affect variation in metabolic rate both within and across species. Such causal interactions are revealed by significant effects of these factors on the body-mass scaling slope of metabolic rate. I discuss five possible major kinds of methods for removing body-size effects that attempt to overcome these complications, at least in part, but I hope that my Review will encourage the development of other, hopefully better methods for doing so.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
17
|
Knaus PL, van Heteren AH, Lungmus JK, Sander PM. High Blood Flow Into the Femur Indicates Elevated Aerobic Capacity in Synapsids Since the Synapsida-Sauropsida Split. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Varanids are the only non-avian sauropsids that are known to approach the warm-blooded mammals in stamina. Furthermore, a much higher maximum metabolic rate (MMR) gives endotherms (including birds) higher stamina than crocodiles, turtles, and non-varanid lepidosaurs. This has led researchers to hypothesize that mammalian endothermy evolved as a second step after the acquisition of elevated MMR in non-mammalian therapsids from a plesiomorphic state of low metabolic rates. In recent amniotes, MMR correlates with the index of blood flow into the femur (Qi), which is calculated from femoral length and the cross-sectional area of the nutrient foramen. Thus, Qi may serve as an indicator of MMR range in extinct animals. Using the Qi proxy and phylogenetic eigenvector maps, here we show that elevated MMRs evolved near the base of Synapsida. Non-mammalian synapsids, including caseids, edaphosaurids, sphenacodontids, dicynodonts, gorgonopsids, and non-mammalian cynodonts, show Qi values in the range of recent endotherms and varanids, suggesting that raised MMRs either evolved in synapsids shortly after the Synapsida-Sauropsida split in the Mississippian or that the low MMR of lepidosaurs and turtles is apomorphic, as has been postulated for crocodiles.
Collapse
|
18
|
Bishop PJ, Wright MA, Pierce SE. Whole-limb scaling of muscle mass and force-generating capacity in amniotes. PeerJ 2021; 9:e12574. [PMID: 34909284 PMCID: PMC8638577 DOI: 10.7717/peerj.12574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians (‘reptiles’) and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Mark A Wright
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
19
|
Cranial Anatomical Integration and Disparity Among Bones Discriminate Between Primates and Non-primate Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe primate skull hosts a unique combination of anatomical features among mammals, such as a short face, wide orbits, and big braincase. Together with a trend to fuse bones in late development, these features define the anatomical organization of the skull of primates—which bones articulate to each other and the pattern this creates. Here, I quantified the anatomical organization of the skull of 17 primates and 15 non-primate mammals using anatomical network analysis to assess how the skulls of primates have diverged from those of other mammals, and whether their anatomical differences coevolved with brain size. Results show that primates have a greater anatomical integration of their skulls and a greater disparity among bones than other non-primate mammals. Brain size seems to contribute in part to this difference, but its true effect could not be conclusively proven. This supports the hypothesis that primates have a distinct anatomical organization of the skull, but whether this is related to their larger brains remains an open question.
Collapse
|
20
|
Gignac PM, Smaers JB, O'Brien HD. Unexpected bite-force conservatism as a stable performance foundation across mesoeucrocodylian historical diversity. Anat Rec (Hoboken) 2021; 305:2823-2837. [PMID: 34555273 DOI: 10.1002/ar.24768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Effective interpretation of historical selective regimes requires comprehensive in vivo performance evaluations and well-constrained ecomorphological proxies. The feeding apparatus is a frequent target of such evolutionary studies due to a direct relationship between feeding and survivorship, and the durability of craniodental elements in the fossil record. Among vertebrates, behaviors such as bite force have been central to evaluation of clade dynamics; yet, in the absence of detailed performance studies, such evaluations can misidentify potential selective factors and their roles. Here, we combine the results of a total-clade performance study with fossil-inclusive, phylogenetically informed methods to assess bite-force proxies throughout mesoeucrocodylian evolution. Although bite-force shifts were previously thought to respond to changing rostrodental selective regimes, we find body-size dependent conservation of performance proxies throughout the history of the clade, indicating stabilizing selection for bite-force potential. Such stasis reveals that mesoeucrocodylians with dietary ecologies as disparate as herbivory and hypercarnivory maintain similar bite-force-to-body-size relationships, a pattern which contrasts the precept that vertebrate bite forces should vary most strongly by diet. Furthermore, it may signal that bite-force conservation supported mesoeucrocodylian craniodental disparity by providing a stable performance foundation for the exploration of novel ecomorphospace.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Circle Road, Social & Behavioral Sciences Building, Stony Brook, New York, USA
| | - Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
21
|
Borries C, Smaers JB, Mongle CS, Koenig A. The effect of data provenance on estimates of gestation length in African and Asian colobines. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:606-613. [PMID: 34289089 DOI: 10.1002/ajpa.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES It seems to be commonly accepted that gestation length within the subfamily Colobinae lasts several weeks longer in the African tribe (Colobini) than in the Asian tribe (Presbytini) even though closely related taxa of similar body mass should have similar life histories. Suspecting problems with data provenance to cause the difference, we revisited the published records expecting similar gestation lengths in both tribes if based on vetted, accurate data. MATERIALS AND METHODS We compiled published gestation length data for Colobini and Presbytini, labeling them as "unspecified" (n = 16) if the primary reference could not be located, methods were not described, and/or conceptions, the beginning of gestation, were determined based on sporadic observations of mating. If conceptions were determined based on changing hormone levels or patterns of daily mating records, we labeled the data as "accurate" (n = 12). We analyzed the ln transformed data in a phylogenetic framework in relation to adult female body mass. RESULTS In the unspecified dataset, gestation length in the two tribes overlapped extensively and did not differ significantly. However, in the accurate dataset, gestation length was significantly shorter in Colobini (not longer, as previously assumed). DISCUSSION Data provenance had a strong impact on the comparison, reversing the relationship in gestation length in the two sister tribes. It remains to be determined why gestation lengths differ, whether, relative to the other primates, Colobini have a shortened gestation or Presbytini a lengthened gestation, and whether similar differences exist in other closely related taxa. Addressing these questions will require additional, broader, comparative analyses.
Collapse
Affiliation(s)
- Carola Borries
- Department of Anthropology, Stony Brook University, SUNY, Stony Brook, New York, USA.,Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, SUNY, Stony Brook, New York, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, SUNY, Stony Brook, New York, USA.,Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, SUNY, Stony Brook, New York, USA
| | - Carrie S Mongle
- Division of Anthropology, American Museum of Natural History and Turkana Basin Institute, Stony Brook University, SUNY, Stony Brook, New York, USA
| | - Andreas Koenig
- Department of Anthropology, Stony Brook University, SUNY, Stony Brook, New York, USA.,Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, SUNY, Stony Brook, New York, USA
| |
Collapse
|
22
|
Hirter KN, Miller EN, Stimpson CD, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO, Raghanti MA. The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Struct Funct 2021; 226:1909-1923. [PMID: 34032910 DOI: 10.1007/s00429-021-02300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Recent evidence suggests that increased dopaminergic signaling within the dorsal striatum played a central role in the evolution of the human brain. This increase has been linked to human prosociality and language in what has been described as a dopamine-dominated striatum personality style. Increased striatal dopamine is associated with an increase in ventral striatal activity and promotes externally driven behaviors, including cooperation and social conformity. In contrast, decreased striatal dopamine is associated with increased dorsal striatal activity and favors internally driven and goal-oriented behaviors. Previous comparative studies have focused on the dorsal striatum, measuring dopaminergic innervation in the dorsal and medial caudate nucleus and putamen. Here, we add to this knowledge by examining regions of the ventral striatum. We quantified the density of tyrosine hydroxylase-immunoreactive axons, as a measure of dopaminergic innervation, in the nucleus accumbens and ventral pallidum of humans, great apes, platyrrhine and cercopithecid monkeys. Our data show that humans have a significantly greater dopaminergic innervation in both structures, supporting the hypothesis that selection for a prosocial neurochemistry in the human basal ganglia may have contributed to the evolution of our uniquely social behavior profile.
Collapse
Affiliation(s)
- Kristen N Hirter
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Elaine N Miller
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Cheryl D Stimpson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - C Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
23
|
Legendre LJ, Clarke JA. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution 2021; 75:1415-1430. [PMID: 33913155 DOI: 10.1111/evo.14245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Birds share an array of unique characteristics among extant land vertebrates. Among these, external and microstructural characteristics of extant bird eggs have been linked to changes in reproductive strategy that arose among non-avian theropod dinosaurs. More recently, differences in egg proportions recovered in crown birds relative to other dinosaurs were suggested as possibly linked to avian flight, but dense sampling close to its proposed origin was lacking. Here we assess the evolution of eggshell thickness in a targeted sample of 114 dinosaurs including birds, and test the relationship of eggshell thickness with potential life history correlates and locomotor mode using phylogenetic comparative methods. Only egg mass and flight are identified as significant predictors of eggshell thickness. While a high correlation between egg mass and eggshell thickness is expected, that relationship is much stronger in flying taxa, which show a significantly higher slope and lower residual variance than flightless species. This suggests stabilizing selection of eggshell thickness among theropods, as recovered for other traits in extant birds (e.g. genome size, metabolic rate). Within living birds, Eufalconimorphae present an apomorphic increase in relative eggshell thickness which remains unexplained, as few morphological synapomorphies of this clade have been identified.
Collapse
Affiliation(s)
- Lucas J Legendre
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Julia A Clarke
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Schmidt AR, Gariboldi MC, Cortasa SA, Proietto S, Corso MC, Inserra PIF, Jaime VS, Halperin J, Vitullo AD, Dorfman VB. Neocortical Anatomy in the South American Plains Vizcacha, Lagostomus maximus, Reveals Different Strategies in Encephalic Development among Hystricomorpha and Myomorpha Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:318-329. [PMID: 33910193 DOI: 10.1159/000515638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Depending on the presence or absence of sulci and convolutions, the brains of mammals are classified as gyrencephalic or lissencephalic. We analyzed the encephalic anatomy of the hystricomorph rodent Lagostomus maximus in comparison with other evolutionarily related species. The encephalization quotient (EQ), gyrencephaly index (GI), and minimum cortical thickness (MCT) were calculated for the plains vizcacha as well as for other myomorph and hystricomorph rodents. The vizcacha showed a gyrencephalic brain with a sagittal longitudinal fissure that divides both hemispheres, and 3 pairs of sulci with bilateral symmetry; that is, lateral-rostral, intraparietal, and transverse sulci. The EQ had one of the lowest values among Hystricomorpha, while GI was one of the highest. Besides, the MCT was close to the mean value for the suborder. The comparison of EQ, GI, and MCT values between hystricomorph and myomorph species allowed the detection of significant variations. Both EQ and GI showed a significant increase in Hystricomorpha compared to Myomorpha, whereas a Pearson's analysis between EQ and GI depicted an inverse correlation pattern for Hystricomorpha. Furthermore, the ratio between MCT and GI also showed a negative correlation for Hystricomorpha and Myomorpha. Our phylogenetic analyses showed that Hystricomorpha and Myomorpha do not differ in their allometric patterning between the brain and body mass, GI and brain mass, and MCT and GI. In conclusion, gyrencephalic neuroanatomy in the vizcacha could have developed from the balance between the brain size, the presence of invaginations, and the cortical thickness, which resulted in a mixed encephalization strategy for the species. Gyrencephaly in the vizcacha, as well as in other Hystricomorpha, advocates in favor of the proposal that in the more recently evolved Myomorpha lissencephaly would have arisen from a phenotype reversal process.
Collapse
Affiliation(s)
- Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Constanza Gariboldi
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanina Soledad Jaime
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Smaers JB, Rothman RS, Hudson DR, Balanoff AM, Beatty B, Dechmann DKN, de Vries D, Dunn JC, Fleagle JG, Gilbert CC, Goswami A, Iwaniuk AN, Jungers WL, Kerney M, Ksepka DT, Manger PR, Mongle CS, Rohlf FJ, Smith NA, Soligo C, Weisbecker V, Safi K. The evolution of mammalian brain size. SCIENCE ADVANCES 2021; 7:7/18/eabe2101. [PMID: 33910907 PMCID: PMC8081360 DOI: 10.1126/sciadv.abe2101] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
Collapse
Affiliation(s)
- J B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - R S Rothman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - D R Hudson
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A M Balanoff
- Department of Psychological and Brain Sciences Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - B Beatty
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- United States National Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - D K N Dechmann
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - D de Vries
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WX, UK
| | - J C Dunn
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria
| | - J G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - C C Gilbert
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Department of Anthropology, Hunter College, New York, NY 10065, USA
- PhD Program in Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - A Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - A N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K-3M4, Canada
| | - W L Jungers
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - M Kerney
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - D T Ksepka
- Bruce Museum, Greenwich, CT 06830, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
| | - P R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C S Mongle
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - F J Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - N A Smith
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Campbell Geology Museum, Clemson University, Clemson, SC 29634, USA
| | - C Soligo
- Department of Anthropology, University College London, London WC1H 0BW, UK
| | - V Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - K Safi
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
26
|
Eliason CM, McCullough JM, Andersen MJ, Hackett SJ. Accelerated Brain Shape Evolution Is Associated with Rapid Diversification in an Avian Radiation. Am Nat 2021; 197:576-591. [PMID: 33908824 DOI: 10.1086/713664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNiche expansion is a critical step in the speciation process. Large brains linked to improved cognitive ability may enable species to expand their niches and forage in new ways, thereby promoting speciation. Despite considerable work on ecological divergence in brain size and its importance in speciation, relatively little is known about how brain shape relates to behavioral, ecological, and taxonomic diversity at macroevolutionary scales. This is due in part to inherent challenges with quantifying brain shape across many species. Here we present a novel, semiautomated approach for rapidly phenotyping brain shape using semilandmarks derived from X-ray computed microtomography scans. We then test its utility by parsing evolutionary trends within a diverse radiation of birds: kingfishers (Aves: Alcedinidae). Multivariate comparative analyses reveal that rates of brain shape evolution (but not beak shape) are positively correlated with lineage diversification rates. Distinct brain shapes are further associated with changes in body size and foraging behavior, suggesting both allometric and ecological constraints on brain shape evolution. These results are in line with the idea of brains acting as a "master regulator" of critical processes governing speciation, such as dispersal, foraging behavior, and dietary niche.
Collapse
|
27
|
Rollot Y, Evers SW, Joyce WG. A review of the carotid artery and facial nerve canal systems in extant turtles. PeerJ 2021; 8:e10475. [PMID: 33552706 PMCID: PMC7839387 DOI: 10.7717/peerj.10475] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
The cranial circulation and innervation systems of turtles have been studied for more than two centuries and extensively used to understand turtle systematics. Although a significant number of studies related to these structures exists, a broader comprehension of variation across the tree has been hindered by poor sampling and a lack of synthetic studies that addressed both systems together. We here provide new insights regarding the carotid circulation and facial nerve innervation systems in a broad set of extant turtles using CT (computed tomography) scans, which allow us to trace the canals these structures form in bone and understand the interaction between both systems. We document that the palatine artery, including the lateral carotid canal, is absent in all pleurodires and carettochelyids and was likely reduced or lost several times independently within Testudinoidea. We also highlight osteological correlates for the location of the mandibular artery. We finally summarize variation regarding the placement of the mandibular artery, location of the geniculate ganglion, placement of the hyomandibular and vidian nerves, and situations where we recommend caution when assessing canals in fossils. A morphometric study confirms that the relative sizes of the carotid canals are correlated with one another. Our results have the potential for building new phylogenetic characters and investigating the circulation systems of fossil taxa, which are expected to shed light on the evolution of the circulation system of turtles and clarify some unresolved relationships between fossil turtle clades.
Collapse
Affiliation(s)
- Yann Rollot
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
28
|
Newham E, Gill PG, Brewer P, Benton MJ, Fernandez V, Gostling NJ, Haberthür D, Jernvall J, Kankaanpää T, Kallonen A, Navarro C, Pacureanu A, Richards K, Brown KR, Schneider P, Suhonen H, Tafforeau P, Williams KA, Zeller-Plumhoff B, Corfe IJ. Reptile-like physiology in Early Jurassic stem-mammals. Nat Commun 2020; 11:5121. [PMID: 33046697 PMCID: PMC7550344 DOI: 10.1038/s41467-020-18898-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Despite considerable advances in knowledge of the anatomy, ecology and evolution of early mammals, far less is known about their physiology. Evidence is contradictory concerning the timing and fossil groups in which mammalian endothermy arose. To determine the state of metabolic evolution in two of the earliest stem-mammals, the Early Jurassic Morganucodon and Kuehneotherium, we use separate proxies for basal and maximum metabolic rate. Here we report, using synchrotron X-ray tomographic imaging of incremental tooth cementum, that they had maximum lifespans considerably longer than comparably sized living mammals, but similar to those of reptiles, and so they likely had reptilian-level basal metabolic rates. Measurements of femoral nutrient foramina show Morganucodon had blood flow rates intermediate between living mammals and reptiles, suggesting maximum metabolic rates increased evolutionarily before basal metabolic rates. Stem mammals lacked the elevated endothermic metabolism of living mammals, highlighting the mosaic nature of mammalian physiological evolution.
Collapse
Affiliation(s)
- Elis Newham
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK. .,Earth Sciences Department, The Natural History Museum, London, UK.
| | - Philippa Brewer
- Earth Sciences Department, The Natural History Museum, London, UK
| | | | - Vincent Fernandez
- Core Research Laboratories, The Natural History Museum, London, UK.,ESRF, The European Synchrotron, Grenoble, France
| | - Neil J Gostling
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - David Haberthür
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuomas Kankaanpää
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Charles Navarro
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | | - Kate Robson Brown
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Katherine A Williams
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Berit Zeller-Plumhoff
- Institute for Materials Research, Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Geesthacht, Germany
| | - Ian J Corfe
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland. .,Geomaterials and Applied Mineralogy group, Geological Survey of Finland, Espoo, Finland.
| |
Collapse
|
29
|
Chen SC, Wu LM, Wang B, Dickie JB. Macroevolutionary patterns in seed component mass and different evolutionary trajectories across seed desiccation responses. THE NEW PHYTOLOGIST 2020; 228:770-777. [PMID: 32463920 DOI: 10.1111/nph.16706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Seed coat and seed reserve show substantial mass variation, play different roles in plant life strategies and are shaped by different selective forces. However, remarkably little is known about the macroevolution of the relative allocation in seed components and its influence on important ecophysiological processes. Using phylogenetic comparative methods and evolutionary modelling approaches, we modelled mass changes in seed components along individual lineages for 940 species and compared the patterns across seed desiccation responses. Seed component allocation was driven primarily by changes in reserve mass rather than coat mass, as evolutionary rates in reserve mass significantly outpaced those in coat mass. Although the scaling patterns between reserve mass and coat mass were similar across desiccation responses, desiccation-sensitive seeds allocated more and evolved faster in reserve compared to desiccation-tolerant seeds. The findings emphasize the relative importance of reserve to coat in the evolution of plant reproductive strategies, revealing potential ecological advantages gained by enlarged reserve. As the first quantification of the evolutionary tempo and mode of seed component mass, our study allows a detailed interpretation of evolutionary pathways underlying seed storage behaviours and advances the understanding of the evolution of desiccation sensitivity in seeds.
Collapse
Affiliation(s)
- Si-Chong Chen
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex, RH17 6TN, UK
| | - La-Mei Wu
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Wang
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - John B Dickie
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex, RH17 6TN, UK
| |
Collapse
|
30
|
Chengetanai S, Tenley JD, Bertelsen MF, Hård T, Bhagwandin A, Haagensen M, Tang CY, Wang VX, Wicinski B, Hof PR, Manger PR, Spocter MA. Brain of the African wild dog. I. Anatomy, architecture, and volumetrics. J Comp Neurol 2020; 528:3245-3261. [PMID: 32720707 DOI: 10.1002/cne.24999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023]
Abstract
The African wild dog is endemic to sub-Saharan Africa and belongs to the family Canidae which includes domestic dogs and their closest relatives (i.e., wolves, coyotes, jackals, dingoes, and foxes). The African wild dog is known for its highly social behavior, co-ordinated pack predation, and striking vocal repertoire, but little is known about its brain and whether it differs in any significant way from that of other canids. We employed gross anatomical observation, magnetic resonance imaging, and classical neuroanatomical staining to provide a broad overview of the structure of the African wild dog brain. Our results reveal a mean brain mass of 154.08 g, with an encephalization quotient of 1.73, indicating that the African wild dog has a relatively large brain size. Analysis of the various structures that comprise their brains and their topological inter-relationships, as well as the areas and volumes of the corpus callosum, ventricular system, hippocampus, amygdala, cerebellum and the gyrification index, all reveal that the African wild dog brain is, in general, similar to that of other mammals, and very similar to that of other carnivorans. While at this level of analysis we do not find any striking specializations within the brain of the African wild dog, apart from a relatively large brain size, the observations made indicate that more detailed analyses of specific neural systems, particularly those involved in sensorimotor processing, sociality or cognition, may reveal features that are either unique to this species or shared among the Canidae to the exclusion of other Carnivora.
Collapse
Affiliation(s)
- Samson Chengetanai
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | | | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Haagensen
- Department of Radiology, University of Witwatersrand-Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Cheuk Y Tang
- Department of Psychiatry, and BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria X Wang
- Department of Psychiatry, and BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA.,College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
Bowling DL, Dunn JC, Smaers JB, Garcia M, Sato A, Hantke G, Handschuh S, Dengg S, Kerney M, Kitchener AC, Gumpenberger M, Fitch WT. Rapid evolution of the primate larynx? PLoS Biol 2020; 18:e3000764. [PMID: 32780733 PMCID: PMC7418954 DOI: 10.1371/journal.pbio.3000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
Tissue vibrations in the larynx produce most sounds that comprise vocal communication in mammals. Larynx morphology is thus predicted to be a key target for selection, particularly in species with highly developed vocal communication systems. Here, we present a novel database of digitally modeled scanned larynges from 55 different mammalian species, representing a wide range of body sizes in the primate and carnivoran orders. Using phylogenetic comparative methods, we demonstrate that the primate larynx has evolved more rapidly than the carnivoran larynx, resulting in a pattern of larger size and increased deviation from expected allometry with body size. These results imply fundamental differences between primates and carnivorans in the balance of selective forces that constrain larynx size and highlight an evolutionary flexibility in primates that may help explain why we have developed complex and diverse uses of the vocal organ for communication.
Collapse
Affiliation(s)
- Daniel L. Bowling
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| | - Jacob C. Dunn
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
- Behavioural Ecology Research Group, Anglia Ruskin University, Cambridge, United Kingdom
- Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Jeroen B. Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Anthropology, American Museum of Natural History, New York City, New York, United States of America
| | - Maxime Garcia
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
- Animal Behaviour, Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
| | - Asha Sato
- Center for Language Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Georg Hantke
- Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
| | - Stephan Handschuh
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Dengg
- Klinische Abteilung für Bildgebende Diagnostik, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Max Kerney
- Behavioural Ecology Research Group, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
| | - Michaela Gumpenberger
- Klinische Abteilung für Bildgebende Diagnostik, University of Veterinary Medicine Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB. Invariant Synapse Density and Neuronal Connectivity Scaling in Primate Neocortical Evolution. Cereb Cortex 2020; 30:5604-5615. [PMID: 32488266 DOI: 10.1093/cercor/bhaa149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II-III and infragranular layers V-VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans. We found that synapse densities were relatively constant across these levels of the cortical visual processing hierarchy and did not significantly differ with brain mass, varying by only 1.9-fold across species. We also found that neuron densities decreased in relation to brain enlargement. Consequently, these data show that the number of synapses per neuron significantly rises as a function of brain expansion in these neocortical areas of primates. Humans displayed the highest number of synapses per neuron, but these values were generally within expectations based on brain size. The metabolic and biophysical constraints that regulate uniformity of synapse density, therefore, likely underlie a key principle of neuronal connectivity scaling in primate neocortical evolution.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Sarah B Miller
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Molly Karl
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Cheryl D Stimpson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | | | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO 80946, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.,Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
33
|
Ksepka DT, Balanoff AM, Smith NA, Bever GS, Bhullar BAS, Bourdon E, Braun EL, Burleigh JG, Clarke JA, Colbert MW, Corfield JR, Degrange FJ, De Pietri VL, Early CM, Field DJ, Gignac PM, Gold MEL, Kimball RT, Kawabe S, Lefebvre L, Marugán-Lobón J, Mongle CS, Morhardt A, Norell MA, Ridgely RC, Rothman RS, Scofield RP, Tambussi CP, Torres CR, van Tuinen M, Walsh SA, Watanabe A, Witmer LM, Wright AK, Zanno LE, Jarvis ED, Smaers JB. Tempo and Pattern of Avian Brain Size Evolution. Curr Biol 2020; 30:2026-2036.e3. [DOI: 10.1016/j.cub.2020.03.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
|
34
|
Tonini JFR, Provete DB, Maciel NM, Morais AR, Goutte S, Toledo LF, Pyron RA. Allometric escape from acoustic constraints is rare for frog calls. Ecol Evol 2020; 10:3686-3695. [PMID: 32313627 PMCID: PMC7160179 DOI: 10.1002/ece3.6155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
Allometric constraint is a product of natural selection and physical laws, particularly with respect to body size and traits constrained by properties thereof, such as metabolism, longevity, and vocal frequency. Allometric relationships are often conserved across lineages, indicating that physical constraints dictate scaling patterns in deep time, despite substantial genetic and ecological divergence among organisms. In particular, acoustic allometry (sound frequency ~ body size) is conserved across frogs, in defiance of massive variation in both body size and frequency. Here, we ask how many instances of allometric escape have occurred across the frog tree of life using a Bayesian framework that estimates the location, number, and magnitude of shifts in the adaptive landscape of acoustic allometry. Moreover, we test whether ecology in terms of calling site could affect these relationships. We find that calling site has a major influence on acoustic allometry. Despite this, we identify only four major instances of allometric escape, potentially deriving from ecomorphological adaptations to new signal modalities. In these instances of allometric escape, the optima and strength of the scaling relationship are different than expected for most other frog species, representing new adaptive regimes of body size ~ call frequency. Allometric constraints on frog calls are highly conserved and have rarely allowed escape, despite frequent invasions of new adaptive regimes and dramatic ecomorphological divergence. Our results highlight the rare instances in which natural and sexual selection combined can overcome physical constraints on sound production.
Collapse
Affiliation(s)
- João Filipe Riva Tonini
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
- Museum of Comparative ZoologyDepartment of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Diogo B. Provete
- Setor de EcologiaInstituto de BiociênciasUniversidade Federal de Mato Grosso do SulMato Grosso do SulCampo GrandeBrazil
- Gothenburg Global Biodiversity CentreGöteborgSweden
| | - Natan M. Maciel
- Departamento de EcologiaInstituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
| | | | - Sandra Goutte
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
- New York University Abu DhabiAbu DhabiUAE
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
| | | |
Collapse
|
35
|
Thonis A, Ceballos RM, Tuen AA, Lovegrove BG, Levesque DL. Small Tropical Mammals Can Take the Heat: High Upper Limits of Thermoneutrality in a Bornean Treeshrew. Physiol Biochem Zool 2020; 93:199-209. [PMID: 32196407 DOI: 10.1086/708467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tropical ectotherms are generally believed to be more vulnerable to global heating than temperate species. Currently, however, we have insufficient knowledge of the thermoregulatory physiology of equatorial tropical mammals, particularly of small diurnal mammals, to enable similar predictions. In this study, we measured the resting metabolic rates (via oxygen consumption) of wild-caught lesser treeshrews (Tupaia minor, order Scandentia) over a range of ambient temperatures. We predicted that, similar to other treeshrews, T. minor would exhibit more flexibility in body temperature regulation and a wider thermoneutral zone compared with other small mammals because these thermoregulatory traits provide both energy and water savings at high ambient temperatures. Basal metabolic rate was on average 1.03±0.10 mL O2 h-1 g-1, which is within the range predicted for a 65-g mammal. We calculated the lower critical temperature of the thermoneutral zone at 31.0°C (95% confidence interval: 29.3°-32.7°C), but using metabolic rates alone, we could not determine the upper critical temperature at ambient temperatures as high as 36°C. The thermoregulatory characteristics of lesser treeshrews provide a means of saving energy and water at temperatures well in excess of their current environmental temperatures. Our research highlights the knowledge gaps in our understanding of the energetics of mammals living in high-temperature environments, specifically in the equatorial tropics, and questions the purported lack of variance in the upper critical temperatures of the thermoneutral zone in mammals, emphasizing the importance of further research in the tropics.
Collapse
|
36
|
Mincer ST, Russo GA. Substrate use drives the macroevolution of mammalian tail length diversity. Proc Biol Sci 2020; 287:20192885. [PMID: 32019445 PMCID: PMC7031669 DOI: 10.1098/rspb.2019.2885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
External length is one of the most conspicuous aspects of mammalian tail morphological diversity. Factors that influence the evolution of tail length diversity have been proposed for particular taxa, including habitat, diet, locomotion and climate. However, no study to date has investigated such factors at a large phylogenetic scale to elucidate what drives tail length evolution in and across mammalian lineages. We use phylogenetic comparative methods to test a priori hypotheses regarding proposed factors influencing tail length, explore possible interactions between factors using evolutionary best-fit models, and map evolutionary patterns of tail length for specific mammalian lineages. Across mammals, substrate use is a significant factor influencing tail length, with arboreal species maintaining selection for longer tails. Non-arboreal species instead exhibit a wider range of tail lengths, secondarily influenced by differences in locomotion, diet and climate. Tail loss events are revealed to occur in the context of both long and short tails and influential factors are clade dependent. Some mammalian groups (e.g. Macaca; primates) exhibit elevated rates of tail length evolution, indicating that morphological evolution may be accelerated in groups characterized by diverse substrate use, locomotor modes and climate.
Collapse
Affiliation(s)
- Sarah T. Mincer
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gabrielle A. Russo
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
37
|
Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shape of the brain influences skull morphology in birds, and both traits are driven by phylogenetic and functional constraints. Studies on avian cranial and neuroanatomical evolution are strengthened by data on extinct birds, but complete, 3D-preserved vertebrate brains are not known from the fossil record, so brain endocasts often serve as proxies. Recent work on extant birds shows that the Wulst and optic lobe faithfully represent the size of their underlying brain structures, both of which are involved in avian visual pathways. The endocasts of seven extinct birds were generated from microCT scans of their skulls to add to an existing sample of endocasts of extant birds, and the surface areas of their Wulsts and optic lobes were measured. A phylogenetic prediction method based on Bayesian inference was used to calculate the volumes of the brain structures of these extinct birds based on the surface areas of their overlying endocast structures. This analysis resulted in hyperpallium volumes of five of these extinct birds and optic tectum volumes of all seven extinct birds. Phylogenetic ANCOVA (phyANCOVA) were performed on regressions of the brain-structure volumes and endocast structure surface areas on various brain size metrics to determine if the relative sizes of these structures in any extinct birds were significantly different from those of the extant birds in the sample. Phylogenetic ANCOVA indicated that no extinct birds studied had relative hyperpallial volumes that were significantly different from the extant sample, nor were any of their optic tecta relatively hypertrophied. The optic tectum of Dinornis robustus was significantly smaller relative to brain size than any of the extant birds in our sample. This study provides an analytical framework for testing the hypotheses of potential functional behavioral capabilities of other extinct birds based on their endocasts.
Collapse
|
38
|
Fuentes-G JA, Polly PD, Martins EP. A Bayesian extension of phylogenetic generalized least squares: Incorporating uncertainty in the comparative study of trait relationships and evolutionary rates. Evolution 2019; 74:311-325. [PMID: 31849034 DOI: 10.1111/evo.13899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
Phylogenetic comparative methods use tree topology, branch lengths, and models of phenotypic change to take into account nonindependence in statistical analysis. However, these methods normally assume that trees and models are known without error. Approaches relying on evolutionary regimes also assume specific distributions of character states across a tree, which often result from ancestral state reconstructions that are subject to uncertainty. Several methods have been proposed to deal with some of these sources of uncertainty, but approaches accounting for all of them are less common. Here, we show how Bayesian statistics facilitates this task while relaxing the homogeneous rate assumption of the well-known phylogenetic generalized least squares (PGLS) framework. This Bayesian formulation allows uncertainty about phylogeny, evolutionary regimes, or other statistical parameters to be taken into account for studies as simple as testing for coevolution in two traits or as complex as testing whether bursts of phenotypic change are associated with evolutionary shifts in intertrait correlations. A mixture of validation approaches indicates that the approach has good inferential properties and predictive performance. We provide suggestions for implementation and show its usefulness by exploring the coevolution of ankle posture and forefoot proportions in Carnivora.
Collapse
Affiliation(s)
- Jesualdo A Fuentes-G
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Paul David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
39
|
Schilder BM, Petry HM, Hof PR. Evolutionary shifts dramatically reorganized the human hippocampal complex. J Comp Neurol 2019; 528:3143-3170. [DOI: 10.1002/cne.24822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Brian M. Schilder
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai New York New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai New York New York
| | - Heywood M. Petry
- Department of Psychological and Brain Sciences, University of Louisville Louisville Kentucky
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai New York New York
| |
Collapse
|
40
|
Palma Liberona JA, Soto-Acuña S, Mendez MA, Vargas AO. Assesment and interpretation of negative forelimb allometry in the evolution of non-avian Theropoda. Front Zool 2019; 16:44. [PMID: 31827570 PMCID: PMC6889632 DOI: 10.1186/s12983-019-0342-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Background The origin of birds is marked by a significant decrease in body size along with an increase in relative forelimb size. However, before the evolution of flight, both traits may have already been related: It has been proposed that an evolutionary trend of negative forelimb allometry existed in non-avian Theropoda, such that larger species often have relatively shorter forelimbs. Nevertheless, several exceptions exist, calling for rigorous phylogenetic statistical testing. Results Here, we re-assessed allometric patterns in the evolution of non-avian theropods, for the first time taking into account the non-independence among related species due to shared evolutionary history.We confirmed a main evolutionary trend of negative forelimb allometry for non-avian Theropoda, but also found support that some specific subclades (Coelophysoidea, Ornithomimosauria, and Oviraptorosauria) exhibit allometric trends that are closer to isometry, losing the ancestral negative forelimb allometry present in Theropoda as a whole. Conclusions Explanations for negative forelimb allometry in the evolution of non-avian theropods have not been discussed, yet evolutionary allometric trends often reflect ontogenetic allometries, which suggests negative allometry of the forelimb in the ontogeny of most non-avian theropods. In modern birds, allometric growth of the limbs is related to locomotor and behavioral changes along ontogeny. After reviewing the evidence for such changes during the ontogeny of non-avian dinosaurs, we propose that proportionally longer arms of juveniles became adult traits in the small-sized and paedomorphic Aves.
Collapse
Affiliation(s)
- José A Palma Liberona
- 1Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile., Las Palmeras 3425, Santiago, Chile
| | - Sergio Soto-Acuña
- 1Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile., Las Palmeras 3425, Santiago, Chile
| | - Marco A Mendez
- 2Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile., Las Palmeras 3425, Santiago, Chile
| | - Alexander O Vargas
- 1Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile., Las Palmeras 3425, Santiago, Chile
| |
Collapse
|
41
|
|
42
|
Hecht EE, Smaers JB, Dunn WD, Kent M, Preuss TM, Gutman DA. Significant Neuroanatomical Variation Among Domestic Dog Breeds. J Neurosci 2019; 39:7748-7758. [PMID: 31477568 PMCID: PMC6764193 DOI: 10.1523/jneurosci.0303-19.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Humans have bred different lineages of domestic dogs for different tasks such as hunting, herding, guarding, or companionship. These behavioral differences must be the result of underlying neural differences, but surprisingly, this topic has gone largely unexplored. The current study examined whether and how selective breeding by humans has altered the gross organization of the brain in dogs. We assessed regional volumetric variation in MRI studies of 62 male and female dogs of 33 breeds. Neuroanatomical variation is plainly visible across breeds. This variation is distributed nonrandomly across the brain. A whole-brain, data-driven independent components analysis established that specific regional subnetworks covary significantly with each other. Variation in these networks is not simply the result of variation in total brain size, total body size, or skull shape. Furthermore, the anatomy of these networks correlates significantly with different behavioral specialization(s) such as sight hunting, scent hunting, guarding, and companionship. Importantly, a phylogenetic analysis revealed that most change has occurred in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. Together, these results establish that brain anatomy varies significantly in dogs, likely due to human-applied selection for behavior.SIGNIFICANCE STATEMENT Dog breeds are known to vary in cognition, temperament, and behavior, but the neural origins of this variation are unknown. In an MRI-based analysis, we found that brain anatomy covaries significantly with behavioral specializations such as sight hunting, scent hunting, guarding, and companionship. Neuroanatomical variation is not simply driven by brain size, body size, or skull shape, and is focused in specific networks of regions. Nearly all of the identified variation occurs in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. These results indicate that through selective breeding, humans have significantly altered the brains of different lineages of domestic dogs in different ways.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138,
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York 11794
| | - William D Dunn
- Departmentt of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329
| | - Marc Kent
- Department of Small Animal Medicine and Surgery, The University of Georgia at Athens, Athens, Georgia 30602
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases and Center for Translational Social Neuroscience, Yerkes National Primate Research Institute, Emory University, Atlanta, Georgia 30329
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia 30329, and
| | - David A Gutman
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
43
|
Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 2019; 118:292-305. [DOI: 10.1016/j.cortex.2019.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/26/2018] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
|
44
|
Font E, García-Roa R, Pincheira-Donoso D, Carazo P. Rethinking the Effects of Body Size on the Study of Brain Size Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:182-195. [DOI: 10.1159/000501161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/22/2019] [Indexed: 11/19/2022]
Abstract
Body size correlates with most structural and functional components of an organism’s phenotype – brain size being a prime example of allometric scaling with animal size. Therefore, comparative studies of brain evolution in vertebrates rely on controlling for the scaling effects of body size variation on brain size variation by calculating brain weight/body weight ratios. Differences in the brain size-body size relationship between taxa are usually interpreted as differences in selection acting on the brain or its components, while selection pressures acting on body size, which are among the most prevalent in nature, are rarely acknowledged, leading to conflicting and confusing conclusions. We address these problems by comparing brain-body relationships from across >1,000 species of birds and non-avian reptiles. Relative brain size in birds is often assumed to be 10 times larger than in reptiles of similar body size. We examine how differences in the specific gravity of body tissues and in body design (e.g., presence/absence of a tail or a dense shell) between these two groups can affect estimates of relative brain size. Using phylogenetic comparative analyses, we show that the gap in relative brain size between birds and reptiles has been grossly exaggerated. Our results highlight the need to take into account differences between taxa arising from selection pressures affecting body size and design, and call into question the widespread misconception that reptile brains are small and incapable of supporting sophisticated behavior and cognition.
Collapse
|
45
|
Vanier D, Sherwood C, Smaers J. Distinct Patterns of Hippocampal and Neocortical Evolution in Primates. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:171-181. [DOI: 10.1159/000500625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Because of the central role of the hippocampus in representing spatial and temporal details of experience, comparative studies of its volume and structure are relevant to understanding the evolution of representational memory across species. The hippocampal formation, however, is organized into separate anatomical subregions with distinct functions, and little is known about the evolutionary diversification of these subregions. We investigate relative volumetric changes in hippocampal subregions across a large sample of primate species. We then compare the evolution of the hippocampal formation to the neocortex. Results across hippocampal subregions indicate that, compared to strepsirrhines, the anthropoid lineage displays a decrease in relative CA3, fascia dentata, subiculum, and rhinal cortex volume in tandem with an increase in relative neocortical volume. These findings indicate that hippocampal function in anthropoids might be substantially augmented by the executive decision-making functions of the neocortex. Humans are found to have a unique cerebral organization combining increased relative CA3, subiculum, and rhinal cortex with increased relative neocortical volumes, suggesting that these regions may play a role in behaviors that are uniquely specialized in humans.
Collapse
|
46
|
Louzada NSV, Nogueira MR, Pessôa LM. Comparative morphology and scaling of the femur in yangochiropteran bats. J Anat 2019; 235:124-150. [PMID: 31155714 DOI: 10.1111/joa.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Better known by their remarkable forelimb morphology, bats are also unique among mammals with respect to their hindlimbs. Their legs are rotated through 180°, generally reduced in size, and in some extant taxa particular bones (e.g. fibula) can even be absent. The femur is the main leg bone, but to date few bat studies have considered its morphology in detail, none in a wide-scale comparative study. Yangochiroptera is the largest bat taxon, spans nearly three orders of magnitude in body mass, and is highly diverse both in ecology and behavior, representing a good model for comparative analyses. Here, we describe the anatomy of the femur in a large sample of yangochiropteran bats (125 species, 70 genera, and 12 families), and explore major trends of morphological variation and scaling patterns in this bone. We used 13 categorical characters in the anatomical description and five linear dimensions in the quantitative analyses. Based on the categorical data, each family studied here was diagnosed, and those from the Neotropical region were included in an identification key. From the phylogenetic principal component analysis (pPCA) we showed that, in addition to size, major axes of variation in bat femur are related to robusticity and head morphology, features that are clearly distinct among some families. We also generated a phylomorphospace based on pPCA scores, highlighting convergences in femur shape. Molossidae, Mystacinidae, and Desmodontinae were grouped based on their greater robusticity, a pattern that was also recovered from categorical data. In these families, we found anatomical features (e.g. presence of tubercles and posterior ridges on the greater trochanter, long or medially/distally displaced lateral ridges on the shaft) that are well-known from their functional link with quadrupedal locomotion. Using phylogenetic regressions, we found out that compared with body mass, femur length scaled with negative allometry, as expected, but that femur width scaled isometrically, counter to expectations. As a result, robusticity index (the ratio of width to length), scaled with positive allometry - larger bats tended to have more robust hindlimbs. At species level, our most remarkable finding was related to Myotis simus, which presented the most robust femur (for its size) among yangochiropterans. Our results reinforce the informative potential of the chiropteran femur from both taxonomic and functional perspectives. Furthermore, the allometric trends seen in this bone may help understand the strategies adopted by flying vertebrates to deal with the high energetic cost of flight and, at the same time, evolve diversified foraging behaviors.
Collapse
Affiliation(s)
- Nathália Siqueira Veríssimo Louzada
- Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Rodrigues Nogueira
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Leila Maria Pessôa
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
O’Brien HD, Lynch LM, Vliet KA, Brueggen J, Erickson GM, Gignac PM. Crocodylian Head Width Allometry and Phylogenetic Prediction of Body Size in Extinct Crocodyliforms. Integr Org Biol 2019; 1:obz006. [PMID: 33791523 PMCID: PMC7671145 DOI: 10.1093/iob/obz006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Body size and body-size shifts broadly impact life-history parameters of all animals, which has made accurate body-size estimates for extinct taxa an important component of understanding their paleobiology. Among extinct crocodylians and their precursors (e.g., suchians), several methods have been developed to predict body size from suites of hard-tissue proxies. Nevertheless, many have limited applications due to the disparity of some major suchian groups and biases in the fossil record. Here, we test the utility of head width (HW) as a broadly applicable body-size estimator in living and fossil suchians. We use a dataset of sexually mature male and female individuals (n = 76) from a comprehensive sample of extant suchian species encompassing nearly all known taxa (n = 22) to develop a Bayesian phylogenetic model for predicting three conventional metrics for size: body mass, snout-vent length, and total length. We then use the model to estimate size parameters for a select series of extinct suchians with known phylogenetic affinity (Montsechosuchus, Diplocynodon, and Sarcosuchus). We then compare our results to sizes reported in the literature to exemplify the utility of our approach for a broad array of fossil suchians. Our results show that HW is highly correlated with all other metrics (all R 2≥0.85) and is commensurate with femoral dimensions for its reliably as a body-size predictor. We provide the R code in order to enable other researchers to employ the model in their own research.
Collapse
Affiliation(s)
- Haley D O’Brien
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Leigha M Lynch
- Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - John Brueggen
- St. Augustine Alligator Farm Zoological Park, 999 Anastasia Blvd, St. Augustine, FL 32080, USA
| | - Gregory M Erickson
- Department of Biological Sciences, Florida State University, 600 West College Avenue, Tallahassee, FL 32306, USA
| | - Paul M Gignac
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| |
Collapse
|
48
|
Climate and symbioses with ants modulate leaf/stem scaling in epiphytes. Sci Rep 2019; 9:2624. [PMID: 30796304 PMCID: PMC6385368 DOI: 10.1038/s41598-019-39853-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
In most seed plants, leaf size is isometrically related to stem cross-sectional area, a relationship referred to as Corner's rule. When stems or leaves acquire a new function, for instance in ant-plant species with hollow stems occupied by ants, their scaling is expected to change. Here we use a lineage of epiphytic ant-plants to test how the evolution of ant-nesting structures in species with different levels of symbiotic dependence has impacted leaf/stem scaling. We expected that leaf size would correlate mostly with climate, while stem diameter would change with domatium evolution. Using a trait dataset from 286 herbarium specimens, field and greenhouse observations, climatic data, and a range of phylogenetic-comparative analyses, we detected significant shifts in leaf/stem scaling, mirroring the evolution of specialized symbioses. Our analyses support both predictions, namely that stem diameter change is tied to symbiosis evolution (ant-nesting structures), while leaf size is independently correlated with rainfall variables. Our study highlights how independent and divergent selective pressures can alter allometry. Because shifts in scaling relationships can impact the costs and benefits of mutualisms, studying allometry in mutualistic interactions may shed unexpected light on the stability of cooperation among species.
Collapse
|
49
|
Snively E, O'Brien H, Henderson DM, Mallison H, Surring LA, Burns ME, Holtz TR, Russell AP, Witmer LM, Currie PJ, Hartman SA, Cotton JR. Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods. PeerJ 2019; 7:e6432. [PMID: 30809441 PMCID: PMC6387760 DOI: 10.7717/peerj.6432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/10/2019] [Indexed: 01/25/2023] Open
Abstract
Synopsis Tyrannosaurid dinosaurs had large preserved leg muscle attachments and low rotational inertia relative to their body mass, indicating that they could turn more quickly than other large theropods. Methods To compare turning capability in theropods, we regressed agility estimates against body mass, incorporating superellipse-based modeled mass, centers of mass, and rotational inertia (mass moment of inertia). Muscle force relative to body mass is a direct correlate of agility in humans, and torque gives potential angular acceleration. Agility scores therefore include rotational inertia values divided by proxies for (1) muscle force (ilium area and estimates of m. caudofemoralis longus cross-section), and (2) musculoskeletal torque. Phylogenetic ANCOVA (phylANCOVA) allow assessment of differences in agility between tyrannosaurids and non-tyrannosaurid theropods (accounting for both ontogeny and phylogeny). We applied conditional error probabilities a(p) to stringently test the null hypothesis of equal agility. Results Tyrannosaurids consistently have agility index magnitudes twice those of allosauroids and some other theropods of equivalent mass, turning the body with both legs planted or pivoting over a stance leg. PhylANCOVA demonstrates definitively greater agilities in tyrannosaurids, and phylogeny explains nearly all covariance. Mass property results are consistent with those of other studies based on skeletal mounts, and between different figure-based methods (our main mathematical slicing procedures, lofted 3D computer models, and simplified graphical double integration). Implications The capacity for relatively rapid turns in tyrannosaurids is ecologically intriguing in light of their monopolization of large (>400 kg), toothed dinosaurian predator niches in their habitats.
Collapse
Affiliation(s)
- Eric Snively
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Haley O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | | | - Lara A Surring
- Royal Tyrrell Museum of Palaeontology, Drumheller, AB, Canada
| | - Michael E Burns
- Department of Biology, Jacksonville State University, Jacksonville, AL, USA
| | - Thomas R Holtz
- Department of Geology, University of Maryland, College Park, MD, USA.,Department of Paleobiology, National Museum of Natural History, Washington, D.C., USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, AL, Canada
| | | | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AL, Canada
| | - Scott A Hartman
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA
| | - John R Cotton
- Department of Mechanical Engineering, Ohio University, Athens, OH, USA
| |
Collapse
|
50
|
Pimiento C, Cantalapiedra JL, Shimada K, Field DJ, Smaers JB. Evolutionary pathways toward gigantism in sharks and rays. Evolution 2019; 73:588-599. [DOI: 10.1111/evo.13680] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Catalina Pimiento
- Department of BiosciencesSwansea University Swansea SA28PP United Kingdom
- Museum für NaturkundeLeibniz Institute for Evolution and Biodiversity Science Berlin 10115 Germany
- Smithsonian Tropical Research Institute Balboa Panama
| | - Juan L. Cantalapiedra
- Museum für NaturkundeLeibniz Institute for Evolution and Biodiversity Science Berlin 10115 Germany
- Departamento Ciencias de la VidaUniversidad de Alcalá Madrid Spain
| | - Kenshu Shimada
- Department of Environmental Science and Studies and Department of Biological SciencesDePaul University Chicago IL 60614
| | - Daniel J. Field
- Department of Earth SciencesUniversity of Cambridge Cambridge Cambridgeshire CB2 3EQ UK
| | - Jeroen B. Smaers
- Department of AnthropologyStony Brook University New York NY 11794
| |
Collapse
|