1
|
Bodensteiner B, Burress ED, Muñoz MM. Adaptive Radiation Without Independent Stages of Trait Evolution in a Group of Caribbean Anoles. Syst Biol 2024; 73:743-757. [PMID: 39093688 DOI: 10.1093/sysbio/syae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a "stages" model, with some traits saturating early in a lineage's history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island's adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation.
Collapse
Affiliation(s)
- Brooke Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL 35401, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| |
Collapse
|
2
|
Cabon V, Pincebourde S, Colinet H, Dubreuil V, Georges R, Launoy M, Pétillon J, Quénol H, Bergerot B. Preferred temperature in the warmth of cities: Body size, sex and development stage matter more than urban climate in a ground-dwelling spider. J Therm Biol 2023; 117:103706. [PMID: 37714112 DOI: 10.1016/j.jtherbio.2023.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Most ectotherms rely on behavioural thermoregulation to maintain body temperatures close to their physiological optimum. Hence, ectotherms can drastically limit their exposure to thermal extremes by selecting a narrower range of temperatures, which includes their preferred temperature (Tpref). Despite evidence that behavioural thermoregulation can be adjusted by phenotypic plasticity or constrained by natural selection, intraspecific Tpref variations across environmental gradients remain overlooked as compared to other thermal traits like thermal tolerance. Here, we analyzed Tpref variation of spider populations found along a gradient of urban heat island (UHI) which displays large thermal variations over small distances. We measured two components of the thermal preference, namely the mean Tpref and the Tpref range (i.e., standard deviation) in 557 field-collected individuals of a common ground-dwelling spider (Pardosa saltans, Lycosidae) using a laboratory thermal gradient. We determined if Tpref values differed among ten populations from contrasting thermal zones. We showed that endogenous factors such as body size or sex primarily determine both mean Tpref and Tpref range. The Tpref range was also linked to the UHI intensity to a lesser extent, yet only in juveniles. The absence of relationship between Tpref metrics and UHI in adult spiders suggests a Bogert effect according to which the ability of individuals to detect and exploit optimal microclimates weakens the selection pressure of temperatures (here driven by UHI) on their thermal physiology. Alternatively, this lack of relationship could also indicate that temperature patterns occurring at the scale of the spiders' micro-habitat differ from measured ones. This study shows the importance of considering both inter-individual and inter-population variations of the Tpref range when conducting Tpref experiments, and supports Tpref range as being a relevant measure to inform on the strength of behavioural thermoregulation in a given population.
Collapse
Affiliation(s)
- Valentin Cabon
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France.
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France
| | | | - Romain Georges
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France
| | - Maud Launoy
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France
| | - Julien Pétillon
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Hervé Quénol
- University of Rennes 2, CNRS, LETG, UMR 6554, Rennes, France
| | - Benjamin Bergerot
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France
| |
Collapse
|
3
|
Anderson RO, Tingley R, Hoskin CJ, White CR, Chapple DG. Linking physiology and climate to infer species distributions in Australian skinks. J Anim Ecol 2023; 92:2094-2108. [PMID: 37661659 DOI: 10.1111/1365-2656.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.
Collapse
Affiliation(s)
- Rodolfo O Anderson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Deme GG, Liang X, Okoro JO, Bhattarai P, Sun B, Malann YD, Martin RA. Female lizards ( Eremias argus) reverse Bergmann's rule across altitude. Ecol Evol 2023; 13:e10393. [PMID: 37554397 PMCID: PMC10405246 DOI: 10.1002/ece3.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
The evolution of body size within and among species is predicted to be influenced by multifarious environmental factors. However, the specific drivers of body size variation have remained difficult to understand because of the wide range of proximate factors that covary with ectotherm body sizes across populations with varying local environmental conditions. Here, we used female Eremias argus lizards collected from different populations across their wide range in China, and constructed linear mixed models to assess how climatic conditions and/or available resources at different altitudes shape the geographical patterns of lizard body size across altitude. Lizard populations showed significant differences in body size across altitudes. Furthermore, we found that climatic and seasonal changes along the altitudinal gradient also explained variations in body size among populations. Specifically, body size decreased with colder and drier environmental conditions at high altitudes, reversing Bergmann's rule. Limited resources at high altitudes, measured by the low vegetative index, may also constrain body size. Therefore, our study demonstrates that multifarious environmental factors could strongly influence the intraspecific variation in organisms' body size.
Collapse
Affiliation(s)
- Gideon Gywa Deme
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | | | - Prakash Bhattarai
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yoila David Malann
- Department of Biological SciencesUniversity of Abuja, Federal Capital TerritoryAbujaNigeria
| | - Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
6
|
Araspin L, Wagener C, Padilla P, Herrel A, Measey J. Shifts in the thermal dependence of locomotor performance across an altitudinal gradient in native populations of Xenopus laevis. Physiol Biochem Zool 2023. [DOI: 10.1086/725237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
de Jong MJ, White CR, Wong BBM, Chapple DG. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard. J Exp Biol 2022; 225:281298. [PMID: 36354342 PMCID: PMC10112869 DOI: 10.1242/jeb.244352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
Environments, particularly developmental environments, can generate a considerable amount of phenotypic variation through phenotypic plasticity. Plasticity in response to incubation temperature is well characterised in egg-laying reptiles. However, traits do not always vary independently of one another, and studies encompassing a broad range of traits spanning multiple categories are relatively rare but crucial to better understand whole-organism responses to environmental change, particularly if covariation among traits may constrain plasticity. In this study, we investigated multivariate plasticity in response to incubation across three temperatures in the delicate skink, Lampropholis delicata, and whether this was affected by covariation among traits. At approximately 1 month of age, a suite of growth, locomotor performance, thermal physiology and behavioural traits were measured. Plasticity in the multivariate phenotype of delicate skinks was distinct for different incubation temperatures. Cool temperatures drove shifts in growth, locomotor performance and thermal physiology, while hot temperatures primarily caused changes in locomotor performance and behaviour. These differences are likely due to variation in thermal reaction norms, as there was little evidence that covariation among traits or phenotypic integration influenced plasticity, and there was no effect of incubation temperature on the direction or strength of covariation. While there were broad themes in terms of which trait categories were affected by different incubation treatments, traits appeared to be affected independently by developmental temperature. Comparing reaction norms of a greater range of traits and temperatures will enable better insight into these patterns among trait categories, as well as the impacts of environmental change.
Collapse
Affiliation(s)
- Madeleine J de Jong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| |
Collapse
|
8
|
Burton T, Ratikainen II, Einum S. Environmental change and the rate of phenotypic plasticity. GLOBAL CHANGE BIOLOGY 2022; 28:5337-5345. [PMID: 35729070 PMCID: PMC9541213 DOI: 10.1111/gcb.16291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/20/2022] [Indexed: 05/31/2023]
Abstract
With rapid and less predictable environmental change emerging as the 'new norm', understanding how individuals tolerate environmental stress via plastic, often reversible changes to the phenotype (i.e., reversible phenotypic plasticity, RPP), remains a key issue in ecology. Here, we examine the potential for better understanding how organisms overcome environmental challenges within their own lifetimes by scrutinizing a somewhat overlooked aspect of RPP, namely the rate at which it can occur. Although recent advances in the field provide indication of the aspects of environmental change where RPP rates may be of particular ecological relevance, we observe that current theoretical models do not consider the evolutionary potential of the rate of RPP. Whilst recent theory underscores the importance of environmental predictability in determining the slope of the evolved reaction norm for a given trait (i.e., how much plasticity can occur), a hitherto neglected possibility is that the rate of plasticity might be a more dynamic component of this relationship than previously assumed. If the rate of plasticity itself can evolve, as empirical evidence foreshadows, rates of plasticity may have the potential to alter the level predictability in the environment as perceived by the organism and thus influence the slope of the evolved reaction norm. However, optimality in the rate of phenotypic plasticity, its evolutionary dynamics in different environments and influence of constraints imposed by associated costs remain unexplored and may represent fruitful avenues of exploration in future theoretical and empirical treatments of the topic. We conclude by reviewing published studies of RPP rates, providing suggestions for improving the measurement of RPP rates, both in terms of experimental design and in the statistical quantification of this component of plasticity.
Collapse
Affiliation(s)
- Tim Burton
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
| | - Irja Ida Ratikainen
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
9
|
Lopera D, Guo KC, Putman BJ, Swierk L. Keeping it cool to take the heat: tropical lizards have greater thermal tolerance in less disturbed habitats. Oecologia 2022; 199:819-829. [PMID: 35948691 DOI: 10.1007/s00442-022-05235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Global climate change has profound effects on species, especially those in habitats already altered by humans. Tropical ectotherms are predicted to be at high risk from global temperature increases, particularly those adapted to cooler temperatures at higher altitudes. We investigated how one such species, the water anole (Anolis aquaticus), is affected by temperature stress similar to that of a warming climate across a gradient of human-altered habitats at high elevation sites. We conducted a field survey on thermal traits and measured lizard critical thermal maxima across the sites. From the field survey, we found that (1) lizards from the least disturbed site and (2) operative temperature models of lizards placed in the least disturbed site had lower temperatures than those from sites with histories of human disturbance. Individuals from the least disturbed site also demonstrated greater tolerance to high temperatures than those from the more disturbed sites, in both their critical thermal maxima and the time spent at high temperatures prior to reaching critical thermal maxima. Our results demonstrate within-species variability in responses to high temperatures, depending on habitat type, and provide insight into how tropical reptiles may fare in a warming world.
Collapse
Affiliation(s)
- Diana Lopera
- Global Environmental Science, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Kimberly Chen Guo
- School of the Environment, Yale University, New Haven, CT, 06511, USA.,Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Breanna J Putman
- Department of Biology, California State University, San Bernardino, CA, 92407, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.,Department of Herpetology and Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | - Lindsey Swierk
- School of the Environment, Yale University, New Haven, CT, 06511, USA. .,Department of Biological Sciences, Environmental Studies Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA. .,Amazon Conservatory for Tropical Studies, Iquitos, Loreto, 16001, Perú.
| |
Collapse
|
10
|
Clifton IT, Refsnider JM. Temporal climatic variability predicts thermal tolerance in two sympatric lizard species. J Therm Biol 2022; 108:103291. [DOI: 10.1016/j.jtherbio.2022.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
11
|
Muñoz MM, Feeley KJ, Martin PH, Farallo VR. The multidimensional (and contrasting) effects of environmental warming on a group of montane tropical lizards. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | | | - Patrick H. Martin
- Department of Biological Sciences University of Denver Denver CO USA
| | - Vincent R. Farallo
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Biology Department University of Scranton Scranton PA USA
| |
Collapse
|
12
|
Muñoz MM. The Bogert effect, a factor in evolution. Evolution 2021; 76:49-66. [PMID: 34676550 DOI: 10.1111/evo.14388] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022]
Abstract
Behavior is one of the major architects of evolution: by behaviorally modifying how they interact with their environments, organisms can influence natural selection, amplifying it in some cases and dampening it in others. In one of the earliest issues of Evolution, Charles Bogert proposed that regulatory behaviors (namely thermoregulation) shield organisms from selection and limit physiological evolution. Here, I trace the history surrounding the origin of this concept (now known as the "Bogert effect" or "behavioral inertia"), and its implications for physiological and evolutionary research throughout the 20th century. A key follow-up study in the early 21st century galvanized renewed interest in Bogert's classic ideas, and established a focus on slowdowns in the rate of evolution in response to regulatory behaviors. I illustrate recent progress on the Bogert effect in evolutionary research, and discuss the ecological variables that predict whether and how strongly the phenomenon unfolds. Based on these discoveries, I provide hypotheses for the Bogert effect across several scales: patterns of trait evolution within and among groups of species, spatial effects on the phenomenon, and its importance for speciation. I also discuss the inherent link between behavioral inertia and behavioral drive through an empirical case study linking the phenomena. Modern comparative approaches can help put the macroevolutionary implications of behavioral buffering to the test: I describe progress to date, and areas ripe for future investigation. Despite many advances, bridging microevolutionary processes with macroevolutionary patterns remains a persistent gap in our understanding of the Bogert effect, leaving wide open many avenues for deeper exploration.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06511
| |
Collapse
|
13
|
McGaughran A, Laver R, Fraser C. Evolutionary Responses to Warming. Trends Ecol Evol 2021; 36:591-600. [PMID: 33726946 DOI: 10.1016/j.tree.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Climate change is predicted to dramatically alter biological diversity and distributions, driving extirpations, extinctions, and extensive range shifts across the globe. Warming can also, however, lead to phenotypic or behavioural plasticity, as species adapt to new conditions. Recent genomic research indicates that some species are capable of rapid evolution as selection favours adaptive responses to environmental change and altered or novel niche spaces. New advances are providing mechanistic insights into how temperature might accelerate evolution in the Anthropocene. These discoveries highlight intriguing new research directions - such as using geothermal and polar systems combined with powerful genomic tools - that will help us to understand the processes underpinning adaptive evolution and better project how ecosystems will change in a warming world.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Rebecca Laver
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ceridwen Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
14
|
Huey RB, Ma L, Levy O, Kearney MR. Three questions about the eco-physiology of overwintering underground. Ecol Lett 2020; 24:170-185. [PMID: 33289263 DOI: 10.1111/ele.13636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
In cold environments ectotherms can be dormant underground for long periods. In 1941 Cowles proposed an ecological trade-off involving the depth at which ectotherms overwintered: on warm days, only shallow reptiles could detect warming soils and become active; but on cold days, they risked freezing. Cowles discovered that most reptiles at a desert site overwintered at shallow depths. To extend his study, we compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and physiological data, and simulated consequences of overwintering at fixed depths. In warm localities shallow ectotherms have lowest energy costs and largest reserves in spring, but in cold localities, they risk freezing. Ectotherms shifting hourly to the coldest depth potentially reduce energy expenses, but paradoxically sometimes have higher expenses than those at fixed depths. Biophysical simulations for a desert site predict that shallow ectotherms have increased opportunities for mid-winter activity but need to move deep to digest captured food. Our simulations generate testable predictions to eco-physiological questions but rely on physiological responses to acute cold rather than to natural cooling profiles. Furthermore, natural-history data to test most predictions do not exist. Thus, our simulation approach uncovers knowledge gaps and suggests research agendas for studying ectotherms overwintering underground.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Liang Ma
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
| | - Ofir Levy
- School of Zoology, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| |
Collapse
|
15
|
Herrando-Pérez S, Belliure J, Ferri-Yáñez F, van den Burg MP, Beukema W, Araújo MB, Terblanche JS, Vieites DR. Water deprivation drives intraspecific variability in lizard heat tolerance. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
17
|
Domínguez‐Guerrero SF, Bodensteiner BL, Pardo‐Ramírez A, Aguillón‐Gutierrez DR, Méndez‐de la Cruz FR, Muñoz MM. Thermal physiology responds to interannual temperature shifts in a montane horned lizard,
Phrynosoma orbiculare. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:136-145. [DOI: 10.1002/jez.2403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Saúl F. Domínguez‐Guerrero
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut
- Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Posgrado en Ciencias Biológicas, Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
| | | | - Alexis Pardo‐Ramírez
- Facultad de Ciencias Biológicas Universidad Juárez del Estado de Durango Gómez Palacio Durango México
| | | | - Fausto R. Méndez‐de la Cruz
- Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut
| |
Collapse
|
18
|
Qu YF, Wiens JJ. Higher temperatures lower rates of physiological and niche evolution. Proc Biol Sci 2020; 287:20200823. [PMID: 32673554 DOI: 10.1098/rspb.2020.0823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding rates and patterns of change in physiological and climatic-niche variables is of urgent importance as many species are increasingly threatened by rising global temperatures. Here, we broadly test several fundamental hypotheses about physiological and niche evolution for the first time (with appropriate phylogenetic methods), using published data from 2059 vertebrate species. Our main results show that: (i) physiological tolerances to heat evolve more slowly than those to cold, (ii) the hottest climatic-niche temperatures change more slowly than the coldest climatic-niche temperatures, and (iii) physiological tolerances to heat and cold evolve more slowly than the corresponding climatic-niche variables. Physiological tolerances are significantly and positively related to the corresponding climatic-niche variables, but species often occur in climates outside the range of these tolerances. However, mismatches between climate and physiology do not necessarily mean that the climatic-niche data are misleading. Instead, some standard physiological variables used in vertebrates (i.e. critical thermal maxima and minima) may reflect when species are active (daily, seasonally) and their local-scale microhabitats (sun versus shade), rather than their large-scale climatic distributions.
Collapse
Affiliation(s)
- Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Aparicio Ramirez A, Perez K, Telemeco RS. Thermoregulation and thermal performance of crested geckos (
Correlophus ciliatus
) suggest an extended optimality hypothesis for the evolution of thermoregulatory set‐points. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:86-95. [DOI: 10.1002/jez.2388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Karina Perez
- Department of Biology California State University Fresno Fresno California
| | - Rory S. Telemeco
- Department of Biology California State University Fresno Fresno California
| |
Collapse
|
20
|
Brandt EE, Roberts KT, Williams CM, Elias DO. Low temperatures impact species distributions of jumping spiders across a desert elevational cline. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104037. [PMID: 32087221 DOI: 10.1016/j.jinsphys.2020.104037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Temperature is known to influence many aspects of organisms and is frequently linked to geographical species distributions. Despite the importance of a broad understanding of an animal's thermal biology, few studies incorporate more than one metric of thermal biology. Here we examined an elevational assemblage of Habronattus jumping spiders to measure different aspects of their thermal biology including thermal limits (CTmin, CTmax), thermal preference, V̇CO2 as proxy for metabolic rate, locomotor behavior and warming tolerance. We used these data to test whether thermal biology helped explain how species were distributed across elevation. Habronattus had high CTmax values, which did not differ among species across the elevational gradient. The highest-elevation species had a lower CTmin than any other species. All species had a strong thermal preference around 37 °C. With respect to performance, one of the middle elevation species was significantly less temperature-sensitive in metabolic rate. Differences between species with respect to locomotion (jump distance) were likely driven by differences in mass, with no differences in thermal performance across elevation. We suggest that Habronattus distributions follow Brett's rule, a rule that predicts more geographical variation in cold tolerance than heat. Additionally, we suggest that physiological tolerances interact with biotic factors, particularly those related to courtship and mate choice to influence species distributions. Habronattus also had very high warming tolerance values (> 20 °C, on average). Taken together, these data suggest that Habronattus are resilient in the face of climate-change related shifts in temperature.
Collapse
Affiliation(s)
- Erin E Brandt
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, Berkeley, United States.
| | - Kevin T Roberts
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Damian O Elias
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
21
|
Rubalcaba JG, Olalla-Tárraga MÁ. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. J Anim Ecol 2020; 89:1277-1285. [PMID: 31990044 DOI: 10.1111/1365-2656.13181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Many organisms are shrinking in size in response to global warming. However, we still lack a comprehensive understanding of the mechanisms linking body size and temperature of organisms across their geographical ranges. Here we investigate the biophysical mechanisms determining the scaling of body temperature with size across latitudes in terrestrial ectotherms. Using biophysical models, we simulated operative temperatures experienced by lizard-like ectotherms as a function of microclimatic variables, body mass and latitude and used them to generate null predictions for the effect of size on temperature across geographical gradients. We then compared model predictions against empirical data on lizards' field body temperature (Tb ) and thermal tolerance limits (CTmax and CTmin ). Our biophysical models predict that the allometric scaling of operative temperatures with body size varies with latitude, with a positive relationship at low latitudes that vanishes with increasing latitude. The analyses of thermal traits of lizards show a significant interaction of body size and latitude on Tb and CTmax and no effect of body mass on CTmin , consistent with model's predictions. The estimated scaling coefficients are within the ranges predicted by the biophysical model. The effect of body mass, however, becomes non-significant after controlling for the phylogenetic relatedness between species. We propose that large-bodied terrestrial ectotherms exhibit higher risk of overheating at low latitudes, while size differences in thermal sensitivity vanish towards higher latitudes. Our work highlights the potential of combining mechanistic models with empirical data to investigate the mechanisms underpinning broad-scale patterns and ultimately provide a null model to develop baseline expectations for further empirical research.
Collapse
Affiliation(s)
- Juan G Rubalcaba
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Miguel Á Olalla-Tárraga
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| |
Collapse
|
22
|
Guerra-Correa ES, Merino-Viteri A, Andrango MB, Torres-Carvajal O. Thermal biology of two tropical lizards from the Ecuadorian Andes and their vulnerability to climate change. PLoS One 2020; 15:e0228043. [PMID: 31978205 PMCID: PMC6980609 DOI: 10.1371/journal.pone.0228043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
This study aims to analyze the thermal biology and climatic vulnerability of two closely related lizard species (Stenocercus festae and S. guentheri) inhabiting the Ecuadorian Andes at high altitudes. Four physiological parameters—body temperature (Tb), preferred temperature (Tpref), critical thermal maximum (CTmax), and critical thermal minimum (CTmin)—were evaluated to analyze the variation of thermophysiological traits among these populations that inhabit different environmental and altitudinal conditions. We also evaluate the availability of operative temperatures, warming tolerance, and thermal safety margin of each population to estimate their possible risks in the face of future raising temperatures. Similar to previous studies, our results suggest that some physiological traits (CTmax and Tb) are influenced by environmental heterogeneity, which brings changes on the thermoregulatory behavior. Other parameters (Tpref and CTmin), may be also influenced by phylogenetic constraints. Moreover, the fluctuating air temperature (Tair) as well as the operative temperatures (Te) showed that these lizards exploit a variety of thermal microenvironments, which may facilitate behavioral thermoregulation. Warming tolerance and thermal safety margin analyses suggest that both species find thermal refugia and remain active without reducing their performance or undergoing thermal stress within their habitats. We suggest that studies on the thermal biology of tropical Andean lizards living at high altitudes are extremely important as these environments exhibit a unique diversity of microclimates, which consequently result on particular thermophysiological adaptations.
Collapse
Affiliation(s)
- Estefany S. Guerra-Correa
- Escuela de Ciencias Biológicas, Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
- * E-mail:
| | - Andrés Merino-Viteri
- Escuela de Ciencias Biológicas, Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
- Escuela de Ciencias Biológicas Laboratorio de Ecofisiología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - María Belén Andrango
- Escuela de Ciencias Biológicas, Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Omar Torres-Carvajal
- Escuela de Ciencias Biológicas, Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| |
Collapse
|
23
|
Herrando‐Pérez S, Monasterio C, Beukema W, Gomes V, Ferri‐Yáñez F, Vieites DR, Buckley LB, Araújo MB. Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Salvador Herrando‐Pérez
- Australian Centre for Ancient DNA School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | - Camila Monasterio
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | - Wouter Beukema
- Wildlife Health Ghent Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Verónica Gomes
- Research Center in Biodiversity and Genetic Resources (CIBIO) Research Network in Biodiversity and Evolutionary Biology (lnBIO) Universidade do Porto Vairão Portugal
| | - Francisco Ferri‐Yáñez
- Department of Community Ecology Helmholtz Centre for Environmental Research (UFZ) Halle (Saale) Germany
| | - David R. Vieites
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
| | | | - Miguel B. Araújo
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Spanish National Research Council (CSIC) Madrid Spain
- Rui Nabeiro Biodiversity Chair MED Institute Universidade de ÉvoraLargo dos Colegiais Évora Portugal
- The Globe Institute University of Copenhagen Copenhagen Denmark
| |
Collapse
|
24
|
MARTIN CHRISTOPHERH, RICHARDS EMILIEJ. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:569-593. [PMID: 36237480 PMCID: PMC9555815 DOI: 10.1146/annurev-ecolsys-110617-062443] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes - species richness, phenotypic disparity, and ecological diversity - with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the 'transporter' hypothesis: introgression and the ancient origins of adaptive alleles, 2) the 'signal complexity' hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) 'diversity begets diversity', and 5) flexible stem/'plasticity first'. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.
Collapse
Affiliation(s)
- CHRISTOPHER H. MARTIN
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - EMILIE J. RICHARDS
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
25
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Pregnancy reduces critical thermal maximum, but not voluntary thermal maximum, in a viviparous skink. J Comp Physiol B 2019; 189:611-621. [DOI: 10.1007/s00360-019-01230-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
27
|
von May R, Catenazzi A, Santa-Cruz R, Gutierrez AS, Moritz C, Rabosky DL. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. PLoS One 2019; 14:e0219759. [PMID: 31369565 PMCID: PMC6675106 DOI: 10.1371/journal.pone.0219759] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Climate change is affecting biodiversity and ecosystem function worldwide, and the lowland tropics are of special concern because organisms living in this region experience temperatures that are close to their upper thermal limits. However, it remains unclear how and whether tropical lowland species will be able to cope with the predicted pace of climate warming. Additionally, there is growing interest in examining how quickly thermal physiological traits have evolved across taxa, and whether thermal physiological traits are evolutionarily conserved or labile. We measured critical thermal maximum (CTmax) and minimum (CTmin) in 56 species of lowland Amazonian frogs to determine the extent of phylogenetic conservatism in tolerance to heat and cold, and to predict species' vulnerability to climate change. The species we studied live in sympatry and represent ~65% of the known alpha diversity at our study site. Given that critical thermal limits may have evolved differently in response to different temperature constraints, we tested whether CTmax and CTmin exhibit different rates of evolutionary change. Measuring both critical thermal traits allowed us to estimate species' thermal breadth and infer their potential to respond to abrupt changes in temperature (warming and cooling). Additionally, we assessed the contribution of life history traits and found that both critical thermal traits were correlated with species' body size and microhabitat use. Specifically, small direct-developing frogs in the Strabomantidae family appear to be at highest risk of thermal stress while tree frogs (Hylidae) and narrow mouthed frogs (Microhylidae) tolerate higher temperatures. While CTmax and CTmin had considerable variation within and among families, both critical thermal traits exhibited similar rates of evolutionary change. Our results suggest that 4% of lowland rainforest frogs assessed will experience temperatures exceeding their CTmax, 25% might be moderately affected and 70% are unlikely to experience pronounced heat stress under a hypothetical 3°C temperature increase.
Collapse
Affiliation(s)
- Rudolf von May
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
| | - Roy Santa-Cruz
- Área de Herpetología, Museo de Historia Natural de la Universidad Nacional de San Agustín (MUSA), Arequipa, Perú
| | - Andrea S. Gutierrez
- Facultad de Ciencias Biológicas, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Craig Moritz
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australia
| | - Daniel L. Rabosky
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
28
|
Llewelyn J, Macdonald SL, Moritz C, Martins F, Hatcher A, Phillips BL. Adjusting to climate: Acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integr Zool 2019; 13:411-427. [PMID: 29316349 DOI: 10.1111/1749-4877.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialization means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in 7 physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (i) recently field-collected animals; (ii) the same animals following laboratory acclimation; and (iii) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little to no effect on most traits. These results suggest that, while specialized, tropical ectotherms may be capable of rapid shifts in climate-relevant traits.
Collapse
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Stewart L Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Felipe Martins
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia
| | - Ben L Phillips
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Salazar JC, del Rosario Castañeda M, Londoño GA, Bodensteiner BL, Muñoz MM. Physiological evolution during adaptive radiation: A test of the island effect in Anolis lizards. Evolution 2019; 73:1241-1252. [PMID: 30989637 PMCID: PMC6593988 DOI: 10.1111/evo.13741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
Abstract
Phenotypic evolution is often exceptionally rapid on islands, resulting in numerous, ecologically diverse species. Although adaptive radiation proceeds along various phenotypic axes, the island effect of faster evolution has been mostly tested with regard to morphology. Here, we leveraged the physiological diversity and species richness of Anolis lizards to examine the evolutionary dynamics of three key traits: heat tolerance, body temperature, and cold tolerance. Contrary to expectation, we discovered slower heat tolerance evolution on islands. Additionally, island species evolve toward higher optimal body temperatures than mainland species. Higher optima and slower evolution in upper physiological limits are consistent with the Bogert effect, or evolutionary inertia due to thermoregulation. Correspondingly, body temperature is higher and more stable on islands than on the American mainland, despite similarity in thermal environments. Greater thermoregulation on islands may occur due to ecological release from competitors and predators compared to mainland environments. By reducing the costs of thermoregulation, ecological opportunity on islands may actually stymie, rather than hasten, physiological evolution. Our results emphasize that physiological diversity is an important axis of ecological differentiation in the adaptive radiation of anoles, and that behavior can impart distinct macroevolutionary footprints on physiological diversity on islands and continents.
Collapse
Affiliation(s)
- Jhan C. Salazar
- Facultad de Ciencias BiológicasDepartamento de Ciencias NaturalesUniversidad IcesiCaliValle del CaucaColombia
- Department of Biological SciencesVirginia TechBlacksburgVirginia24061
| | - María del Rosario Castañeda
- Facultad de Ciencias BiológicasDepartamento de Ciencias NaturalesUniversidad del ValleCaliValle del CaucaColombia
| | - Gustavo A. Londoño
- Facultad de Ciencias BiológicasDepartamento de Ciencias NaturalesUniversidad IcesiCaliValle del CaucaColombia
| | | | - Martha M. Muñoz
- Department of Biological SciencesVirginia TechBlacksburgVirginia24061
| |
Collapse
|
30
|
Muñoz MM, Bodensteiner BL. Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution. Integr Org Biol 2019; 1:oby002. [PMID: 33791511 PMCID: PMC7671085 DOI: 10.1093/iob/oby002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution.
Collapse
Affiliation(s)
- M M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| | - B L Bodensteiner
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
31
|
Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population. J Therm Biol 2019; 79:135-143. [DOI: 10.1016/j.jtherbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 11/22/2022]
|
32
|
Farallo VR, Wier R, Miles DB. The Bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecol Evol 2018; 8:11522-11532. [PMID: 30598753 PMCID: PMC6303756 DOI: 10.1002/ece3.4590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/10/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023] Open
Abstract
The use of behavior to buffer extreme environmental variation is expected to enable species to (a) extend the breadth of environments they inhabit beyond that predicted from climatic data and (b) diminish the negative effects of broad scale and chronic disturbances such as climate change. The term Bogert effect refers to behavioral compensation entailing microhabitat selection to maintain performance across a gradient of environmental conditions resulting in evolutionary inertia of physiological traits. Here, we compare microhabitats used by plethodontid salamanders distributed along an elevational gradient to determine whether there is behavioral compensation that buffers them from deleterious temperatures and moisture levels. Overall, salamanders preferred cooler and more mesic environments and occupied microhabitats that maintained constant moisture conditions at both high- and low-elevation sites. Our results suggest that salamanders use microhabitats to regulate temperature and moisture levels, which is consistent with the Bogert effect. Maintenance of more moist conditions may help buffer these species from rising temperatures but only in suitable high-elevation environments that are likely to disappear over the next century. We conclude that behavioral regulation of temperature and moisture is a potential mechanism for the Bogert effect in plethodontid salamanders.
Collapse
Affiliation(s)
- Vincent R. Farallo
- Department of Biological SciencesOhio UniversityAthensOhio
- Department of Biological SciencesVirginia TechBlacksburgVirginia
| | - Rebecca Wier
- San Juan College, College BoulevardFarmingtonNew Mexico
| | | |
Collapse
|
33
|
Diele-Viegas LM, Rocha CFD. Unraveling the influences of climate change in Lepidosauria (Reptilia). J Therm Biol 2018; 78:401-414. [PMID: 30509664 DOI: 10.1016/j.jtherbio.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.
Collapse
|
34
|
Herrando-Pérez S, Ferri-Yáñez F, Monasterio C, Beukema W, Gomes V, Belliure J, Chown SL, Vieites DR, Araújo MB. Intraspecific variation in lizard heat tolerance alters estimates of climate impact. J Anim Ecol 2018; 88:247-257. [PMID: 30303530 DOI: 10.1111/1365-2656.12914] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/15/2018] [Indexed: 11/30/2022]
Abstract
Research addressing the effects of global warming on the distribution and persistence of species generally assumes that population variation in thermal tolerance is spatially constant or overridden by interspecific variation. Typically, this rationale is implicit in sourcing one critical thermal maximum (CTmax ) population estimate per species to model spatiotemporal cross-taxa variation in heat tolerance. Theory suggests that such an approach could result in biased or imprecise estimates and forecasts of impact from climate warming, but limited empirical evidence in support of those expectations exists. We experimentally quantify the magnitude of intraspecific variation in CTmax among lizard populations, and the extent to which incorporating such variability can alter estimates of climate impact through a biophysical model. To do so, we measured CTmax from 59 populations of 15 Iberian lizard species (304 individuals). The overall median CTmax across all individuals from all species was 42.8°C and ranged from 40.5 to 48.3°C, with species medians decreasing through xeric, climate-generalist and mesic taxa. We found strong statistical support for intraspecific differentiation in CTmax by up to a median of 3°C among populations. We show that annual restricted activity (operative temperature > CTmax ) over the Iberian distribution of our study species differs by a median of >80 hr per 25-km2 grid cell based on different population-level CTmax estimates. This discrepancy leads to predictions of spatial variation in annual restricted activity to change by more than 20 days for six of the study species. Considering that during restriction periods, reptiles should be unable to feed and reproduce, current projections of climate-change impacts on the fitness of ectotherm fauna could be under- or over-estimated depending on which population is chosen to represent the physiological spectra of the species in question. Mapping heat tolerance over the full geographical ranges of single species is thus critical to address cross-taxa patterns and drivers of heat tolerance in a biologically comprehensive way.
Collapse
Affiliation(s)
- Salvador Herrando-Pérez
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Francisco Ferri-Yáñez
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Camila Monasterio
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Wouter Beukema
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Verónica Gomes
- Research Center in Biodiversity and Genetic Resources (CIBIO), Research Network in Biodiversity and Evolutionary Biology (lnBIO), Universidade do Porto, Vairão, Portugal
| | - Josabel Belliure
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David R Vieites
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain
| | - Miguel B Araújo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, Spain.,InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Universidade de Évora, Évora, Portugal.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Lockwood BL, Gupta T, Scavotto R. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster. J Evol Biol 2018; 31:323-331. [DOI: 10.1111/jeb.13234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023]
Affiliation(s)
- B. L. Lockwood
- Department of Biology; The University of Vermont; Burlington VT USA
| | - T. Gupta
- Department of Biology; The University of Vermont; Burlington VT USA
| | - R. Scavotto
- Department of Biology; The University of Vermont; Burlington VT USA
| |
Collapse
|
36
|
Muñoz MM, Losos JB. Thermoregulatory Behavior Simultaneously Promotes and Forestalls Evolution in a Tropical Lizard. Am Nat 2017; 191:E15-E26. [PMID: 29244559 DOI: 10.1086/694779] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of behavior in evolution has long been discussed, with some arguing that behavior promotes evolution by exposing organisms to selection (behavioral drive) and others proposing that it inhibits evolution by shielding organisms from environmental variation (behavioral inertia). However, this discussion has generally focused on the effects of behavior along a single axis without considering that behavior simultaneously influences selection in various niche dimensions. By examining evolutionary change along two distinct niche axes-structural and thermal-we propose that behavior simultaneously drives and impedes evolution in a group of Anolis lizards from the Caribbean island of Hispaniola. Specifically, a behavioral shift in microhabitat to boulders at high altitude enables thermoregulation, thus forestalling physiological evolution in spite of colder environments. This same behavioral shift drives skull and limb evolution to boulder use. Our results emphasize the multidimensional effects of behavior in evolution. These findings reveal how, rather than being diametrically opposed, niche conservatism and niche lability can occur simultaneously. Furthermore, patterns of niche evolution may vary at different geographic scales: because of thermoregulatory behavior, lizards at high and low elevation share similar microclimatic niches (consistent with niche conservatism) while inhabiting distinct macroclimatic environments (consistent with niche divergence). Together, our results suggest that behavior can connect patterns of niche divergence and conservatism at different geographic scales and among traits.
Collapse
|
37
|
von May R, Catenazzi A, Corl A, Santa-Cruz R, Carnaval AC, Moritz C. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol Evol 2017; 7:3257-3267. [PMID: 28480023 PMCID: PMC5415528 DOI: 10.1002/ece3.2929] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 01/28/2017] [Indexed: 01/10/2023] Open
Abstract
Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CTmax; n = 22 species) and critical thermal minimum (CTmin; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CTmax and CTmin along the gradient. We also tested whether CTmax and CTmin exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with species’ elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CTmin exhibited relatively faster rates of change than CTmax, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on species’ thermal physiology across elevational gradients.
Collapse
Affiliation(s)
- Rudolf von May
- Department of Ecology and Evolutionary Biology Museum of Zoology University of Michigan Ann Arbor MI USA.,Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA
| | | | - Ammon Corl
- Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA
| | - Roy Santa-Cruz
- Área de Herpetología Museo de Historia Natural de la Universidad Nacional de San Agustín (MUSA) Arequipa Perú
| | | | - Craig Moritz
- Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA.,Centre for Biodiversity Analysis and Research School of Biology The Australian National University Canberra ACT Australia
| |
Collapse
|
38
|
Nowack J. Basking behavior reveals vulnerability to climate change. J Exp Biol 2017. [DOI: 10.1242/jeb.147181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Llewelyn J, Macdonald S, Hatcher A, Moritz C, Phillips BL. Thermoregulatory behaviour explains countergradient variation in the upper thermal limit of a rainforest skink. OIKOS 2016. [DOI: 10.1111/oik.03933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Stewart Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
- Land and Water Flagship, CSIRO Townsville Queensland Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University Townsville Queensland 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University Canberra Australia
| | - Ben L. Phillips
- School of BioSciences, University of Melbourne Melbourne Australia
| |
Collapse
|