1
|
Baliga VB, Dakin R, Wylie DR, Altshuler DL. Hummingbirds use distinct control strategies for forward and hovering flight. Proc Biol Sci 2024; 291:20232155. [PMID: 38196357 PMCID: PMC10777153 DOI: 10.1098/rspb.2023.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The detection of optic flow is important for generating optomotor responses to mediate retinal image stabilization, and it can also be used during ongoing locomotion for centring and velocity control. Previous work in hummingbirds has separately examined the roles of optic flow during hovering and when centring through a narrow passage during forward flight. To develop a hypothesis for the visual control of forward flight velocity, we examined the behaviour of hummingbirds in a flight tunnel where optic flow could be systematically manipulated. In all treatments, the animals exhibited periods of forward flight interspersed with bouts of spontaneous hovering. Hummingbirds flew fastest when they had a reliable signal of optic flow. All optic flow manipulations caused slower flight, suggesting that hummingbirds had an expected optic flow magnitude that was disrupted. In addition, upward and downward optic flow drove optomotor responses for maintaining altitude during forward flight. When hummingbirds made voluntary transitions to hovering, optomotor responses were observed to all directions. Collectively, these results are consistent with hummingbirds controlling flight speed via mechanisms that use an internal forward model to predict expected optic flow whereas flight altitude and hovering position are controlled more directly by sensory feedback from the environment.
Collapse
Affiliation(s)
- Vikram B. Baliga
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Roslyn Dakin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Douglas R. Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Douglas L. Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
2
|
Extractive foraging behaviour in woodpeckers evolves in species that retain a large ancestral brain. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Eliason CM, Cooper JC, Hackett SJ, Zahnle E, Pequeño Saco TZ, Maddox JD, Hains T, Hauber ME, Bates JM. Interspecific hybridization explains rapid gorget colour divergence in Heliodoxa hummingbirds (Aves: Trochilidae). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221603. [PMID: 36866078 PMCID: PMC9974296 DOI: 10.1098/rsos.221603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hybridization is a known source of morphological, functional and communicative signal novelty in many organisms. Although diverse mechanisms of established novel ornamentation have been identified in natural populations, we lack an understanding of hybridization effects across levels of biological scales and upon phylogenies. Hummingbirds display diverse structural colours resulting from coherent light scattering by feather nanostructures. Given the complex relationship between feather nanostructures and the colours they produce, intermediate coloration does not necessarily imply intermediate nanostructures. Here, we characterize nanostructural, ecological and genetic inputs in a distinctive Heliodoxa hummingbird from the foothills of eastern Peru. Genetically, this individual is closely allied with Heliodoxa branickii and Heliodoxa gularis, but it is not identical to either when nuclear data are assessed. Elevated interspecific heterozygosity further suggests it is a hybrid backcross to H. branickii. Electron microscopy and spectrophotometry of this unique individual reveal key nanostructural differences underlying its distinct gorget colour, confirmed by optical modelling. Phylogenetic comparative analysis suggests that the observed gorget coloration divergence from both parentals to this individual would take 6.6-10 My to evolve at the current rate within a single hummingbird lineage. These results emphasize the mosaic nature of hybridization and suggest that hybridization may contribute to the structural colour diversity found across hummingbirds.
Collapse
Affiliation(s)
- Chad M. Eliason
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Grainger Bioinformatics Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Jacob C. Cooper
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
- Directora de Monitoreo y Evaluacion de Recursos Naturales del Territorio, Plataforma digital única del Estado Peruano, Iquitos, Perú
| | - Shannon J. Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Erica Zahnle
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
| | - Tatiana Z. Pequeño Saco
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Joseph Dylan Maddox
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Taylor Hains
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Mark E. Hauber
- Department of Evolution, Ecology, and Behaviour, School at Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - John M. Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
4
|
Hasegawa M. Macroevolutionary analysis of swallows revives the sight-line hypothesis. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Clark CJ, Hutchinson JR, Garland T. The Inverse Krogh Principle: All Organisms Are Worthy of Study. Physiol Biochem Zool 2023; 96:1-16. [PMID: 36626844 DOI: 10.1086/721620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractKrogh's principle states, "For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." The downside of picking a question first and then finding an ideal organism on which to study it is that it will inevitably leave many organisms neglected. Here, we promote the inverse Krogh principle: all organisms are worthy of study. The inverse Krogh principle and the Krogh principle are not opposites. Rather, the inverse Krogh principle emphasizes a different starting point for research: start with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable research questions. Even the hardest-to-study species have research questions that can be asked of them: Where does it fall within the tree of life? What resources does it need to survive and reproduce? How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse Krogh approaches are complementary, and many research programs naturally include both. Other considerations for picking a study species include extreme species, species informative for phylogenetic analyses, and the creation of models when a suitable species does not exist. The inverse Krogh principle also has pitfalls. A scientist that picks the organism first might choose a research question not really suited to the organism, and funding agencies rarely fund organism-centered grant proposals. The inverse Krogh principle does not call for all organisms to receive the same amount of research attention. As knowledge continues to accumulate, some organisms-models-will inevitably have more known about them than others. Rather, it urges a broader search across organismal diversity to find sources of inspiration for research questions and the motivation needed to pursue them.
Collapse
|
6
|
Beltrán DF, Araya-Salas M, Parra JL, Stiles FG, Rico-Guevara A. The evolution of sexually dimorphic traits in ecological gradients: an interplay between natural and sexual selection in hummingbirds. Proc Biol Sci 2022; 289:20221783. [PMID: 36515116 PMCID: PMC9748779 DOI: 10.1098/rspb.2022.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Collapse
Affiliation(s)
- Diego F. Beltrán
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marcelo Araya-Salas
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - F. Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Faiß M, Riede T, Goller F. Tonality over a broad frequency range is linked to vocal learning in birds. Proc Biol Sci 2022; 289:20220792. [PMID: 36100028 PMCID: PMC9470270 DOI: 10.1098/rspb.2022.0792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Many birds emit tonal song syllables even though the sound sources generate sound with rich upper harmonic energy content. This tonality is thought to arise in part from dynamically adjusted filtering of harmonic content. Here, we compare tonality of song syllables between vocal learners and non-learners to assess whether this characteristic is linked to the increased neural substrate that evolved with vocal learning. We hypothesize that vocal learning ability is correlated with enhanced ability for generating tonal sounds, because vocal production learners might also have an enhanced ability to articulate their vocal tracts and sound source for producing tonality. To test this hypothesis, we compared vocal learners and non-learners from two groups (186 passerines and 42 hummingbirds) by assessing tonality of song syllables. The data suggest that vocal learners in both clades have evolved to sing songs with higher tonality than the related, non-vocal learning clades, which is consistent with stronger roles for broadband dynamic filtering and adjustments to the sound source. In addition, oscine songs display higher tonality than those of hummingbirds. A complex interplay of vocal tract biomechanics, anatomical differences of the sound source as well as increased motor control through vocal learning facilitates generation of broad tonality.
Collapse
Affiliation(s)
- Marius Faiß
- Institute for Zoophysiology, University of Münster, Münster, Germany
| | - Tobias Riede
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| | - Franz Goller
- Institute for Zoophysiology, University of Münster, Münster, Germany
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Abstract
Abstract
Among size-dimorphic animals, a few clades such as hummingbirds show “reversed” sexual size dimorphism: females tend to be the larger sex. What selects for this pattern? Sexual selection for flight performance could drive the evolution of smaller, more agile males, either for male-male combat or female choice for aerial courtship displays. Alternately, natural selection can select for female fecundity (e.g., egg size influences female body size), or sex differences in foraging niche could favor body size differences. The sexual selection hypotheses predict that dimorphism extends to other aspects of flight morphology (e.g., flight muscle size) whereas the natural selection hypotheses predict that male and female flight morphologies are isometric, and the niche differentiation hypothesis predicts that bill dimorphism is correlated with size dimorphism. We tested these predictions through phylogenetic comparative analyses of flight morphology, wingbeat frequency, and courtship behaviors, focused on 30 species within the “bee” hummingbird clade (tribe Mellisugini). There is no correlation between bill morphology and dimorphism. Relative to females, males tend to be smaller, have proportionately shorter wings and higher hovering wingbeat frequencies, but also longer keels and larger flight muscles. Male wingbeat frequencies are greatly elevated during aerial displays, and the species with the greatest wingbeat frequencies have the greatest dimorphism. Of the four hypotheses for dimorphism, the data best support the hypothesis that female choice for courtship displays has selected for aerial agility and small size in male hummingbirds.
Collapse
Affiliation(s)
- Sean C Wilcox
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
- Biological Sciences Department, Moorpark College , Moorpark, CA 93021 , USA
| | - Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
| |
Collapse
|
9
|
Hasegawa M, Arai E. Extrapair mating opportunity explains the evolutionary transition between the presence and absence of tail ornamentation in swallows. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Venable GX, Gahm K, Prum RO. Hummingbird plumage color diversity exceeds the known gamut of all other birds. Commun Biol 2022; 5:576. [PMID: 35739263 PMCID: PMC9226176 DOI: 10.1038/s42003-022-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
A color gamut quantitatively describes the diversity of a taxon's integumentary coloration as seen by a specific organismal visual system. We estimated the plumage color gamut of hummingbirds (Trochilidae), a family known for its diverse barbule structural coloration, using a tetrahedral avian color stimulus space and spectra from a taxonomically diverse sample of 114 species. The spectra sampled occupied 34.2% of the total diversity of colors perceivable by hummingbirds, which suggests constraints on their plumage color production. However, the size of the hummingbird color gamut is equivalent to, or greater than, the previous estimate of the gamut for all birds. Using the violet cone type visual system, our new data for hummingbirds increases the avian color gamut by 56%. Our results demonstrate that barbule structural color is the most evolvable plumage coloration mechanism, achieving unique, highly saturated colors with multi-reflectance peaks.
Collapse
Affiliation(s)
- Gabriela X Venable
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Ecology and Evolution, Univeristy of California, Los Angeles, California, CA, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Myers BM, Rankin DT, Burns KJ, Brelsford A, Clark CJ. k-mer analysis shows hybrid hummingbirds perform variable, transgressive courtship sequences. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Duque FG, Carruth LL. Vocal Communication in Hummingbirds. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:241-252. [PMID: 35073546 DOI: 10.1159/000522148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Hummingbirds exhibit complex vocal repertoires that they use in their social interactions. Furthermore, they are capable of vocal production learning, an ability they share with songbirds, parrots, some non-oscine birds, and some mammals including humans. Despite these characteristics, hummingbirds have not received the same attention as other birds, especially songbirds and parrots, in the study of vocal communication. Recent studies are advancing our knowledge of vocal communication in hummingbirds showing that these birds exhibit complex social learning and extraordinary abilities for vocal production. Moreover, vocal production learning in hummingbirds provides opportunities to study the evolution and diversification of vocal signals because of the presence of dialects in some species. In addition, the presence of high-frequency vocalizations in some hummingbirds underscores the relevance of these birds to study the evolution of communication signals and sensory adaptations. Not only do some species vocalize at unusually high frequencies compared to other birds, but evidence also shows that at least one hummingbird species can hear these sounds, defying what we knew about avian hearing capabilities. Detailed descriptions of the hummingbird syrinx have shown that this organ exhibits homologous structures to those found in the syrinx of oscines, showing that vocal complexity in hummingbirds requires complex syringeal musculature. However, more research is needed to determine whether hummingbirds have unique adaptations that confer exceptional vocal and hearing abilities exceeding those found in other groups of birds.
Collapse
Affiliation(s)
- Fernanda G Duque
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
- Biology Department, Hofstra University, Hempstead, New York, USA
| | - Laura L Carruth
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Ter Haar SM, Fernandez AA, Gratier M, Knörnschild M, Levelt C, Moore RK, Vellema M, Wang X, Oller DK. Cross-species parallels in babbling: animals and algorithms. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200239. [PMID: 34482727 PMCID: PMC8419573 DOI: 10.1098/rstb.2020.0239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key feature of vocal ontogeny in a variety of taxa with extensive vocal repertoires is a developmental pattern in which vocal exploration is followed by a period of category formation that results in a mature species-specific repertoire. Vocal development preceding the adult repertoire is often called ‘babbling’, a term used to describe aspects of vocal development in species of vocal-learning birds, some marine mammals, some New World monkeys, some bats and humans. The paper summarizes the results of research on babbling in examples from five taxa and proposes a unifying definition facilitating their comparison. There are notable similarities across these species in the developmental pattern of vocalizations, suggesting that vocal production learning might require babbling. However, the current state of the literature is insufficient to confirm this suggestion. We suggest directions for future research to elucidate this issue, emphasizing the importance of (i) expanding the descriptive data and seeking species with complex mature repertoires where babbling may not occur or may occur only to a minimal extent; (ii) (quasi-)experimental research to tease apart possible mechanisms of acquisition and/or self-organizing development; and (iii) computational modelling as a methodology to test hypotheses about the origins and functions of babbling. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Sita M Ter Haar
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Ahana A Fernandez
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Maya Gratier
- Laboratoire Ethologie, Cognition, Développement, Paris Nanterre University, Nanterre, France
| | - Mirjam Knörnschild
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Animal Behavior Lab, Freie Universität, Berlin, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Claartje Levelt
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roger K Moore
- Department Computer Science, University of Sheffield, Sheffield, UK
| | - Michiel Vellema
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA.,Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
14
|
Broder ED, Elias DO, Rodríguez RL, Rosenthal GG, Seymoure BM, Tinghitella RM. Evolutionary novelty in communication between the sexes. Biol Lett 2021; 17:20200733. [PMID: 33529546 PMCID: PMC8086948 DOI: 10.1098/rsbl.2020.0733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
The diversity of signalling traits within and across taxa is vast and striking, prompting us to consider how novelty evolves in the context of animal communication. Sexual selection contributes to diversification, and here we endeavour to understand the initial conditions that facilitate the maintenance or elimination of new sexual signals and receiver features. New sender and receiver variants can occur through mutation, plasticity, hybridization and cultural innovation, and the initial conditions of the sender, the receiver and the environment then dictate whether a novel cue becomes a signal. New features may arise in the sender, the receiver or both simultaneously. We contend that it may be easier than assumed to evolve new sexual signals because sexual signals may be arbitrary, sexual conflict is common and receivers are capable of perceiving much more of the world than just existing sexual signals. Additionally, changes in the signalling environment can approximate both signal and receiver changes through a change in transmission characteristics of a given environment or the use of new environments. The Anthropocene has led to wide-scale disruption of the environment and may thus generate opportunity to directly observe the evolution of new signals to address questions that are beyond the reach of phylogenetic approaches.
Collapse
Affiliation(s)
- E. Dale Broder
- Department of Biology, St Ambrose University, Davenport, IA 52803, USA
| | - Damian O. Elias
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA 94720, USA
| | - Rafael L. Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Gil G. Rosenthal
- Department of Biology, Texas A&M, College Station, TX 77843, USA
| | - Brett M. Seymoure
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | |
Collapse
|
15
|
Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke SV, Duvall MR, Kellogg EA, Lavergne S, McKain MR, Meunier A, Osborne CP, Traiperm P, Christin PA, Besnard G. Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Syst Biol 2020; 69:445-461. [PMID: 31589325 PMCID: PMC7672695 DOI: 10.1093/sysbio/syz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} lineages is Andropogoneae, a group of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}1200 grass species that includes some of the world’s most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} evolution in the group have compared a few model C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} plants to distantly related C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} species so that changes directly responsible for the transition to C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} origin gave birth to a diversity of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.]
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jan Hackel
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Maria S Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Adriana Alberti
- CEA - Institut de Biologie Francois-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Watchara Arthan
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Sean V Burke
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Melvin R Duvall
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MI 63132, USA
| | - Sébastien Lavergne
- Laboratoire d’Ecologie Alpine, CNRS – Université Grenoble Alpes, UMR 5553, Grenoble, France
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 500 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Alexandre Meunier
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, King Rama VI Road, Bangkok 10400, Thailand
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Correspondence to be sent to: Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France; E-mail:
| |
Collapse
|
16
|
Molecular phylogenetics of Doraditos (Aves,
Pseudocolopteryx
): Evolution of cryptic species, vocal and mechanical sounds. ZOOL SCR 2020. [DOI: 10.1111/zsc.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Gómez-Bahamón V, Tuero DT, Castaño MI, Jahn AE, Bates JM, Clark CJ. Sonations in Migratory and Non-migratory Fork-tailed Flycatchers (Tyrannus savana). Integr Comp Biol 2020; 60:1147-1159. [DOI: 10.1093/icb/icaa115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synopsis
Sonations are sounds that animals produce with structures other than the vocal apparatus for communication. In birds, many sonations are usually produced with modified flight feathers through diverse kinematic mechanisms. For instance, aeroelastic fluttering of feathers produces tonal sound when airflow exceeds a threshold velocity and induces flight feathers to oscillate at a constant frequency. The Fork-tailed flycatcher (Tyrannus savana) is a Neotropical bird with both migratory and year-round resident subspecies that differ in the shape of the outer primary feathers of their wings. By integrating behavioral observations, audio recordings, and high-speed videos, we find that male Fork-tailed flycatchers produce sonations with their outer primary feathers P8-10, and possibly P7. These sounds are produced during different behavioral contexts including: the pre-dawn display, intraspecific territorial disputes, when attacking potential nest predators, and when escaping. By placing feathers in a wind tunnel, we elicited flutter at frequencies that matched the acoustic signature of sounds recorded in the wild, indicating that the kinematic mechanism responsible for sound production is aeroelastic flutter. Video of wild birds indicated that sonations were produced during the downstroke. Finally, the feathers of migratory (T.s.savana) and year-round resident (T.s.monachus) Fork-tailed flycatchers flutter in feather locations that differ in shape between the subspecies, and these shape differences between the subspecies result in sounds produced at different frequencies.
Collapse
Affiliation(s)
- Valentina Gómez-Bahamón
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street (MC066), Chicago, IL 60607, USA
- SELVA: Investigación para la Conservación en el Neotrópico, Diagonal 42a No 20-37, Bogotá, Colombia
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Diego T Tuero
- Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Universitaria- C1428EGA, Buenos Aires, 2160, Argentina
| | - María Isabel Castaño
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street (MC066), Chicago, IL 60607, USA
| | - Alex E Jahn
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Avenida 24a, no. 1515, Rio Claro, São Paulo, Brazil
| | - John M Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Riede T, Olson CR. The vocal organ of hummingbirds shows convergence with songbirds. Sci Rep 2020; 10:2007. [PMID: 32029812 PMCID: PMC7005288 DOI: 10.1038/s41598-020-58843-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
How sound is generated in the hummingbird syrinx is largely unknown despite their complex vocal behavior. To fill this gap, syrinx anatomy of four North American hummingbird species were investigated by histological dissection and contrast-enhanced microCT imaging, as well as measurement of vocalizations in a heliox atmosphere. The placement of the hummingbird syrinx is uniquely located in the neck rather than inside the thorax as in other birds, while the internal structure is bipartite with songbird-like anatomical features, including multiple pairs of intrinsic muscles, a robust tympanum and several accessory cartilages. Lateral labia and medial tympaniform membranes consist of an extracellular matrix containing hyaluronic acid, collagen fibers, but few elastic fibers. Their upper vocal tract, including the trachea, is shorter than predicted for their body size. There are between-species differences in syrinx measurements, despite similar overall morphology. In heliox, fundamental frequency is unchanged while upper-harmonic spectral content decrease in amplitude, indicating that syringeal sounds are produced by airflow-induced labia and membrane vibration. Our findings predict that hummingbirds have fine control of labia and membrane position in the syrinx; adaptations that set them apart from closely related swifts, yet shows convergence in their vocal organs with those of oscines.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, United States
| | - Christopher R Olson
- Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, United States.
| |
Collapse
|
19
|
Eliason CM, Maia R, Parra JL, Shawkey MD. Signal evolution and morphological complexity in hummingbirds (Aves:
Trochilidae
). Evolution 2020; 74:447-458. [DOI: 10.1111/evo.13893] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Chad M. Eliason
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Rafael Maia
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología Universidad de Antioquia Medellín Colombia
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology University of Ghent 9000 Ghent Belgium
| |
Collapse
|
20
|
Clark CJ, Rankin D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments*. Evolution 2019; 74:528-543. [DOI: 10.1111/evo.13881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/22/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Christopher J. Clark
- Department of Evolution, Ecology, and Organismal Biology University of California, Riverside Riverside CA 92521
| | - David Rankin
- Department of Evolution, Ecology, and Organismal Biology University of California, Riverside Riverside CA 92521
| |
Collapse
|
21
|
Simpson RK, McGraw KJ. Interspecific Covariation in Courtship Displays, Iridescent Plumage, Solar Orientation, and Their Interactions in Hummingbirds. Am Nat 2019; 194:441-454. [DOI: 10.1086/704774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Taylor JRA, deVries MS, Elias DO. Growling from the gut: co-option of the gastric mill for acoustic communication in ghost crabs. Proc Biol Sci 2019; 286:20191161. [PMID: 31506058 PMCID: PMC6742986 DOI: 10.1098/rspb.2019.1161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/12/2019] [Indexed: 11/12/2022] Open
Abstract
Animal acoustic communication systems can be built upon co-opted structures that become specialized for sound production or morphological novelties. The ghost crab, Ocypode quadrata, evolved a novel stridulation apparatus on the claws that is used during agonistic interactions, but they also produce a rasping sound without their claw apparatus. We investigated the nature of these sounds and show that O. quadrata adopted a unique and redundant mode of sound production by co-opting the gastric mill (grinding teeth of the foregut). Acoustic characteristics of the sound are consistent with stridulation and are produced by both male and female crabs during aggressive interactions. Laser Doppler vibrometry localized the source of maximum vibration to the gastric region and fluoroscopy showed movement of the gastric mill that coincided with stridulation. The lateral teeth of the gastric mill possess a series of comb-like structures that rub against the median tooth to produce stridulation with dominant frequencies below 2 kHz. This previously undescribed gastric stridulation can be modulated and provide a means of assessment during aggressive interactions, similar to the use of the claw stridulation apparatus. This functional redundancy of stridulation in crabs offers unique insights into the mechanisms of evolution of acoustic communication systems.
Collapse
Affiliation(s)
- Jennifer R. A. Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya S. deVries
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Damian O. Elias
- Environmental Science, Policy and Management Department, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Hogan BG, Stoddard MC. Synchronization of speed, sound and iridescent color in a hummingbird aerial courtship dive. Nat Commun 2018; 9:5260. [PMID: 30563977 PMCID: PMC6299134 DOI: 10.1038/s41467-018-07562-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Many animal signals are complex, often combining multimodal components with dynamic motion. To understand the function and evolution of these displays, it is vital to appreciate their spatiotemporal organization. Male broad-tailed hummingbirds (Selasphorus platycercus) perform dramatic U-shaped courtship dives over females, appearing to combine rapid movement and dive-specific mechanical noises with visual signals from their iridescent gorgets. To understand how motion, sound and color interact in these spectacular displays, we obtained video and audio recordings of dives performed by wild hummingbirds. We then applied a multi-angle imaging technique to estimate how a female would perceive the male's iridescent gorget throughout the dive. We show that the key physical, acoustic and visual aspects of the dive are remarkably synchronized-all occurring within 300 milliseconds. Our results highlight the critical importance of accounting for motion and orientation when investigating animal displays: speed and trajectory affect how multisensory signals are produced and perceived.
Collapse
Affiliation(s)
- Benedict G Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA. .,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA.
| |
Collapse
|
24
|
Clark CJ, Mistick EA. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds. ACTA ACUST UNITED AC 2018; 221:jeb.173625. [PMID: 29776995 DOI: 10.1242/jeb.173625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/15/2018] [Indexed: 11/20/2022]
Abstract
Wing trills are pulsed sounds produced by modified wing feathers at one or more specific points in time during a wingbeat. Male Allen's hummingbirds (Selasphorus sasin) produce a sexually dimorphic 9 kHz wing trill in flight. Here, we investigated the kinematic basis for trill production. The wingtip velocity hypothesis posits that trill production is modulated by the airspeed of the wingtip at some point during the wingbeat, whereas the wing rotation hypothesis posits that trill production is instead modulated by wing rotation kinematics. To test these hypotheses, we flew six male Allen's hummingbirds in an open-jet wind tunnel at flight speeds of 0, 3, 6, 9, 12 and 14 m s-1, and recorded their flight with two 'acoustic cameras' placed below and behind, or below and lateral to the flying bird. The acoustic cameras are phased arrays of 40 microphones that used beamforming to spatially locate sound sources within a camera image. Trill sound pressure level (SPL) exhibited a U-shaped relationship with flight speed in all three camera positions. SPL was greatest perpendicular to the stroke plane. Acoustic camera videos suggest that the trill is produced during supination. The trill was up to 20 dB louder during maneuvers than it was during steady-state flight in the wind tunnel, across all airspeeds tested. These data provide partial support for the wing rotation hypothesis. Altered wing rotation kinematics could allow male Allen's hummingbirds to modulate trill production in social contexts such as courtship displays.
Collapse
Affiliation(s)
- Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, CA 92521, USA
| | - Emily A Mistick
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, CA 92521, USA.,Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
25
|
Clark CJ, Mistick EA. Strategic Acoustic Control of a Hummingbird Courtship Dive. Curr Biol 2018; 28:1257-1264.e6. [PMID: 29657113 DOI: 10.1016/j.cub.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 01/02/2023]
Abstract
Male hummingbirds court females with a high-speed dive in which they "sing" with their tail feathers. The male's choice of trajectory provides him strategic control over acoustic frequency and pressure levels heard by the female. Unlike related species, male Costa's hummingbirds (Calypte costae) choose to place their dives to the side of females. Here we show that this minimizes an audible Doppler curve in their dive sound, thereby depriving females of an acoustic indicator that would otherwise reveal male dive speed. Wind-tunnel experiments indicate that the sounds produced by their feathers are directional; thus, males should aim their tail toward females. High-speed video of dives reveal that males twist half of their tail vertically during the dive, which acoustic-camera video shows effectively aims this sound sideways, toward the female. Our results demonstrate that male animals can strategically modulate female perception of dynamic aspects of athletic motor displays, such as their speed.
Collapse
Affiliation(s)
- Christopher J Clark
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Emily A Mistick
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|