1
|
McAllester CS, Pool JE. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560529. [PMID: 37873205 PMCID: PMC10592935 DOI: 10.1101/2023.10.02.560529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3R)K favoring survival and In(3L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin – Madison, USA
| |
Collapse
|
2
|
Yamamoto A, Huang W, Anholt RR, Mackay TF. The genetic basis of variation in Drosophila melanogaster mating behavior. iScience 2024; 27:109837. [PMID: 38766354 PMCID: PMC11099327 DOI: 10.1016/j.isci.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Mating behavior is an essential fitness trait. We used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to gain insights into the evolution of mating success and to evaluate the overlap in genetic architecture of mating behavior between the sexes. We found significant genetic variation for mating success when DGRP males and females from the same line were mated together, and when DGRP males and females were mated to an unrelated strain of the opposite sex. The mating success of DGRP males and females was not correlated when they were paired with the unrelated strain, suggesting independent genetic architecture of mating success in males and females that was confirmed by genome-wide association analyses. However, the mating success between pairs of the same or different DGRP lines was predicted accurately by the respective female and male mating success with the unrelated line.
Collapse
Affiliation(s)
- Akihiko Yamamoto
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Robert R.H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F.C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| |
Collapse
|
3
|
Zhao E, Crimmins EM. Mortality and morbidity in ageing men: Biology, Lifestyle and Environment. Rev Endocr Metab Disord 2022; 23:1285-1304. [PMID: 35697963 PMCID: PMC9748037 DOI: 10.1007/s11154-022-09737-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 01/11/2023]
Abstract
Males live shorter lives than women in all countries. The universality of shorter male life expectancy is a 21st Century phenomena. It occurs with the decline in infectious diseases and the rise in cardiovascular diseases accounting for mortality. Male/female differences in morbidity are not as succinctly characterized. Men have a higher prevalence of lethal diseases, which is linked to their lower life expectancy. Women have more non-lethal conditions such as depression and arthritis; which may also be linked in part to longer survival. Men have better physical functioning and less disability which is partly explained by gender differences in diseases and also by their greater strength, size, and stamina. Gender differences in risk factors for disease have changed over time with the prevalence and treatment of risk as well as differential behavior by gender. Examination of what are seen as basic molecular and cellular measures related to aging indicates men age faster than women; however, even these basic biological measures result from a combination of biology, behavior, and social factors.
Collapse
Affiliation(s)
- Erfei Zhao
- Davis School of Gerontology, University of Southern California, 90089-0191 Los Angeles, CA United States
| | - Eileen M. Crimmins
- Davis School of Gerontology, University of Southern California, 90089-0191 Los Angeles, CA United States
| |
Collapse
|
4
|
Ruzicka F, Reuter M. Evolutionary genetics: Dissecting a sexually antagonistic polymorphism. Curr Biol 2022; 32:R828-R830. [PMID: 35944480 DOI: 10.1016/j.cub.2022.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Males and females experience divergent selection on many shared traits, which can lead to 'sexual antagonism' - opposing fitness effects of genetic variants in each sex. A new study in the fly Drosophila serrata links sexually antagonistic selection on cuticular hydrocarbons to a single major-effect gene.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
5
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
6
|
Selection for male stamina can help explain costly displays with cost-minimizing female choice. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
In many species, male lifespan is shorter than that of females, often attributed to sexual selection favouring costly expression of traits preferred by females. Coevolutionary models of female preferences and male traits predict that males can be selected to have such life histories; however, this typically requires that females also pay some costs to express their preferences. Here we show that this problem diminishes when we link coevolutionary models of costly mate choice with the idea of stamina. In our model, the most successful males are those who can combine high attendance time on a lek — or, more generally, tenacious effort in their display time budgets — with high viability such that they are not too strongly compromised in terms of lifespan. We find that an opportunistic female strategy, that minimizes its costs by mating with highly visible (displaying) males, often beats other alternatives. It typically resists invasion attempts of genotypes that mate randomly in the population genetic sense, as well as invasion of stricter ways of being choosy (which are potentially costly if choice requires e.g. active rejection of all males who do not presently display, or risky travel to lekking sites). Our model can produce a wide range of male time budgets (display vs. self-maintenance). This includes cases of alternative mating tactics where males in good condition spend much time displaying, while those in poor condition never display yet, importantly, gain some mating success due to females not engaging in rejection behaviours should these be very costly to express.
Significance statement
In many species, males spend much time and energy on displaying to attract females, but it is not always clear what females gain from paying attention to male displays. The tradition in mathematical models attempting to understand the situation is to assume that random mating is the least costly option for females. However, random mating in the population genetic sense requires females to behave in a manner that equalizes mating success between displaying and non-displaying males, and here we point out that this is biologically unlikely. Opportunistically mating females can cause males to spend much of their time budgets displaying and will shorten male lifespans in a quality-dependent manner.
Collapse
|
7
|
Giraldo-Deck LM, Loveland JL, Goymann W, Tschirren B, Burke T, Kempenaers B, Lank DB, Küpper C. Intralocus conflicts associated with a supergene. Nat Commun 2022; 13:1384. [PMID: 35296671 PMCID: PMC8927407 DOI: 10.1038/s41467-022-29033-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/23/2022] [Indexed: 11/12/2022] Open
Abstract
Chromosomal inversions frequently underlie major phenotypic variation maintained by divergent selection within and between sexes. Here we examine whether and how intralocus conflicts contribute to balancing selection stabilizing an autosomal inversion polymorphism in the ruff Calidris pugnax. In this lekking shorebird, three male mating morphs (Independents, Satellites and Faeders) are controlled by an inversion-based supergene. We show that in a captive population, Faeder females, who are smaller and whose inversion haplotype has not undergone recombination, have lower average reproductive success in terms of laying rate, egg size, and offspring survival than Independent females, who lack the inversion. Satellite females, who carry a recombined inversion haplotype and have intermediate body size, more closely resemble Independent than Faeder females in reproductive performance. We inferred that the lower reproductive output of Faeder females is most likely balanced by higher than average reproductive success of individual Faeder males. These findings suggest that intralocus conflicts may play a major role in the evolution and maintenance of supergene variants.
Collapse
Affiliation(s)
- Lina M Giraldo-Deck
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
| | - Jasmine L Loveland
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Clemens Küpper
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
| |
Collapse
|
8
|
Herdegen-Radwan M, Cattelan S, Buda J, Raubic J, Radwan J. What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution 2021; 75:3037-3055. [PMID: 34658022 PMCID: PMC9299167 DOI: 10.1111/evo.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Female preferences for male ornamental traits can arise from indirect benefits, such as increased attractiveness or better viability of progeny, but empirical evidence for such benefits is inconsistent. Artificial selection offers a powerful way to investigate indirect effects of male ornaments. Here, we selected for the area of orange spots on male guppies, a trait subject to female preferences in our population, in replicated up‐ and down‐selected lines. We found a significant direct response to selection, and a correlated response in female preferences, with females from down‐selected lines showing less interest in more orange males. Nevertheless, up‐selected males sired more offspring in direct competition with low‐selected males, irrespective of female origin. We did not find a significantly correlated response to selection among any other fitness correlates we measured. Our results imply that female preferences for orange spots can lead to increased reproductive success of their sons, with no effect on general viability of progeny. Furthermore, although we demonstrate that female preferences may evolve via linkage disequilibrium with the preferred trait, the potential for runaway selection by positive feedback may be constrained by the lack of corresponding linkage with male reproductive competitiveness.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jarosław Raubic
- Population Ecology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| |
Collapse
|
9
|
Jardine MD, Ruzicka F, Diffley C, Fowler K, Reuter M. A non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster exhibits antagonistically pleiotropic fitness effects. Proc Biol Sci 2021; 288:20202958. [PMID: 33975471 PMCID: PMC8113896 DOI: 10.1098/rspb.2020.2958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The amount of genetic variation for fitness within populations tends to exceed that expected under mutation-selection-drift balance. Several mechanisms have been proposed to actively maintain polymorphism and account for this discrepancy, including antagonistic pleiotropy (AP), where allelic variants have opposing effects on different components of fitness. Here, we identify a non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster and measure survival and reproductive components of fitness in males and females of replicate lines carrying each respective allele. Expressing the fruitless region in a hemizygous state reveals a pattern of AP, with one allele generating greater reproductive fitness and the other conferring greater survival to adulthood. Different fitness effects were observed in an alternative genetic background, which may reflect dominance reversal and/or epistasis. Our findings link sequence-level variation at a single locus with complex effects on a range of fitness components, thus helping to explain the maintenance of genetic variation for fitness. Transcription factors, such as fruitless, may be prime candidates for targets of balancing selection since they interact with multiple target loci and their associated phenotypic effects.
Collapse
Affiliation(s)
- Michael D. Jardine
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Australia
| | - Charlotte Diffley
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| |
Collapse
|
10
|
Flintham EO, Savolainen V, Mullon C. Dispersal Alters the Nature and Scope of Sexually Antagonistic Variation. Am Nat 2021; 197:543-559. [PMID: 33908829 DOI: 10.1086/713739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIntralocus sexual conflict, or sexual antagonism, occurs when alleles have opposing fitness effects in the two sexes. Previous theory suggests that sexual antagonism is a driver of genetic variation by generating balancing selection. However, most of these studies assume that populations are well mixed, neglecting the effects of spatial subdivision. Here, we use mathematical modeling to show that limited dispersal changes evolution at sexually antagonistic autosomal and X-linked loci as a result of inbreeding and sex-specific kin competition. We find that if the sexes disperse at different rates, kin competition within the philopatric sex biases intralocus conflict in favor of the more dispersive sex. Furthermore, kin competition diminishes the strength of balancing selection relative to genetic drift, reducing genetic variation in small subdivided populations. Meanwhile, by decreasing heterozygosity, inbreeding reduces the scope for sexually antagonistic polymorphism due to nonadditive allelic effects, and this occurs to a greater extent on the X chromosome than autosomes. Overall, our results indicate that spatial structure is a relevant factor in predicting where sexually antagonistic alleles might be observed. We suggest that sex-specific dispersal ecology and demography can contribute to interspecific and intragenomic variation in sexual antagonism.
Collapse
|
11
|
Maney DL, Merritt JR, Prichard MR, Horton BM, Yi SV. Inside the supergene of the bird with four sexes. Horm Behav 2020; 126:104850. [PMID: 32937166 PMCID: PMC7725849 DOI: 10.1016/j.yhbeh.2020.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a 'supergene'. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the "bird with four sexes". The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | | | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Plesnar-Bielak A, Skwierzyńska AM, Radwan J. Sexual and ecological selection on a sexual conflict gene. J Evol Biol 2020; 33:1433-1439. [PMID: 32654292 DOI: 10.1111/jeb.13680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
Sexual selection and conflict can act on genes with important metabolic functions, potentially shaping standing genetic variance in such genes and thus evolutionary potential of populations. Here, using experimental evolution, we show how reproductive competition intensity and thermal environment affect selection on phosphogluconate dehydrogenase (6Pgdh)-a metabolic gene involved in sexual selection and conflict in the bulb mite. The S allele of 6Pgdh increases male success in reproductive competition, but is detrimental to S-bearing males' partners. We found that the rate of the S allele spread increased with the proportion of males in the experimental populations, illustrating that harm to females is more easily compensated for males under more intense sexual competition. Furthermore, we found that under equal sex ratio, the S allele spreads faster at higher temperature. While the direction of selection on 6Pgdh was not reversed in any of the conditions we tested, which would be required for environmental heterogeneity to maintain polymorphism at this locus, our study highlights that ecological and sexual selection can jointly affect selection on important metabolic enzymes.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna M Skwierzyńska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
13
|
Łukasiewicz A, Niśkiewicz M, Radwan J. Sexually selected male weapon is associated with lower inbreeding load but higher sex load in the bulb mite. Evolution 2020; 74:1851-1855. [PMID: 32519389 PMCID: PMC7496443 DOI: 10.1111/evo.14033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 11/12/2022]
Abstract
Elaborate sexually selected ornaments and armaments are costly but increase the reproductive success of their bearers (usually males). It has been postulated that high‐quality males can invest disproportionately more in such traits, making those traits honest signals of genetic quality. However, genes associated with such traits may have sexually antagonistic effects on fitness. Here, using a bulb mite Rhizoglyphus robini, a species in which a distinct dimorphism exists between males in the expression of a sexually selected weapon, we compare inbreeding and gender load between lines derived from armed fighters and unarmed scramblers. After four generations of sib‐mating, inbreeding depression for female fitness was significantly lower in fighter‐derived lines compared to scrambler‐derived lines, suggesting that fighter males had significantly higher genetic quality. However, outbred females from fighter‐derived lines had significantly lower fitness compared to outbred females from scrambler‐derived lines, demonstrating significant gender load associated with the presence of a sexually selected male weapon. Our results imply that under outbreeding, genetic benefits of mating with bearers of elaborate sexually selected traits might be swamped by the costs of decreased fitness of female progeny due to sexually antagonistic effects.
Collapse
Affiliation(s)
| | | | - Jacek Radwan
- Evolutionary Biology Group, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
14
|
Saccheri IJ, Whiteford S, Yung CJ, Van't Hof AE. Recessive Z-linked lethals and the retention of haplotype diversity in a captive butterfly population. Heredity (Edinb) 2020; 125:28-39. [PMID: 32404940 DOI: 10.1038/s41437-020-0316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
Sex chromosomes are predicted to harbour elevated levels of sexually antagonistic variation due to asymmetries in the heritability of recessive traits in the homogametic versus heterogametic sex. This evolutionary dynamic may manifest as high recessive load specifically affecting the homogametic sex, and the retention of haplotype diversity in small populations. We tested the hypothesis that the Z chromosome in the butterfly Bicyclus anynana carries a high inbred load for male fertility and viability. Homozygosity of Z chromosome blocks was produced by daughter-father backcrosses, and inferred from marker loci positioned via a linkage map. Male sterility was, in general, unrelated to homozygosity in any region of the Z, but there was an extreme deficit of homozygous males within a 2 cM interval in all families. In contrast, no corresponding skew in Z genotype was detected in their (hemizygous) sisters. The same pattern was observed in historically inbred lines, indicating a high frequency of recessive lethals in the ancestral population. Allele-frequency changes between 1993 and 2006 (70 generations at Ne ~ 160) show that, despite the loss of many haplotypes, diversity was retained significantly above the neutral expectation. Effective overdominance in the lethal region can account for this effect locally but not in other parts of the chromosome, that are also associated with persistent linkage disequilibrium. These unexpected patterns suggest the operation of other factors, such as epistatic selection, recombination suppression, assortative mating and meiotic drive. Our results highlight the role of balancing selection in maintaining the inbred load and linked genetic diversity.
Collapse
Affiliation(s)
- Ilik J Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Samuel Whiteford
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Arjen E Van't Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:1087-1098. [PMID: 31969430 PMCID: PMC7056975 DOI: 10.1534/g3.120.401041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Limited lifespan and senescence are near-universal phenomena. These quantitative traits exhibit variation in natural populations due to the segregation of many interacting loci and from environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed reproductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and delayed reproductive senescence is the first step toward understanding the evolutionary forces that maintain segregating variation at these loci in nature and may provide potential targets for therapeutic intervention to delay senescence while increasing lifespan.
Collapse
Affiliation(s)
- Grace A Parker
- Department of Biological Sciences
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| | | | | | | | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Trudy F C Mackay
- Department of Biological Sciences,
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| |
Collapse
|
16
|
Huang W, Campbell T, Carbone MA, Jones WE, Unselt D, Anholt RRH, Mackay TFC. Context-dependent genetic architecture of Drosophila life span. PLoS Biol 2020; 18:e3000645. [PMID: 32134916 PMCID: PMC7077879 DOI: 10.1371/journal.pbio.3000645] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/17/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the genetic basis of variation in life span is a major challenge that is difficult to address in human populations. Evolutionary theory predicts that alleles affecting natural variation in life span will have properties that enable them to persist in populations at intermediate frequencies, such as late-life-specific deleterious effects, antagonistic pleiotropic effects on early and late-age fitness components, and/or sex- and environment-specific or antagonistic effects. Here, we quantified variation in life span in males and females reared in 3 thermal environments for the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and an advanced intercross outbred population derived from a subset of DGRP lines. Quantitative genetic analyses of life span and the micro-environmental variance of life span in the DGRP revealed significant genetic variance for both traits within each sex and environment, as well as significant genotype-by-sex interaction (GSI) and genotype-by-environment interaction (GEI). Genome-wide association (GWA) mapping in both populations implicates over 2,000 candidate genes with sex- and environment-specific or antagonistic pleiotropic allelic effects. Over 1,000 of these genes are associated with variation in life span in other D. melanogaster populations. We functionally assessed the effects of 15 candidate genes using RNA interference (RNAi): all affected life span and/or micro-environmental variance of life span in at least one sex and environment and exhibited sex-and environment-specific effects. Our results implicate novel candidate genes affecting life span and suggest that variation for life span may be maintained by variable allelic effects in heterogeneous environments.
Collapse
Affiliation(s)
- Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Terry Campbell
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary Anna Carbone
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - W. Elizabeth Jones
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Desiree Unselt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert R. H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mérot C, Llaurens V, Normandeau E, Bernatchez L, Wellenreuther M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat Commun 2020; 11:670. [PMID: 32015341 PMCID: PMC6997199 DOI: 10.1038/s41467-020-14479-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
How natural diversity is maintained is an evolutionary puzzle. Genetic variation can be eroded by drift and directional selection but some polymorphisms persist for long time periods, implicating a role for balancing selection. Here, we investigate the maintenance of a chromosomal inversion polymorphism in the seaweed fly Coelopa frigida. Using experimental evolution and quantifying fitness, we show that the inversion underlies a life-history trade-off, whereby each haplotype has opposing effects on larval survival and adult reproduction. Numerical simulations confirm that such antagonistic pleiotropy can maintain polymorphism. Our results also highlight the importance of sex-specific effects, dominance and environmental heterogeneity, whose interaction enhances the maintenance of polymorphism through antagonistic pleiotropy. Overall, our findings directly demonstrate how overdominance and sexual antagonism can emerge from a life-history trade-off, inviting reconsideration of antagonistic pleiotropy as a key part of multi-headed balancing selection processes that enable the persistence of genetic variation. Few studies empirically pinpoint how balanced polymorphisms are maintained. “Mérot et al”. identify an inversion polymorphism that is maintained in seaweed fly populations because of antagonistic pleiotropy that mediates a classic life history tradeoff between larval survival and adult reproduction.
Collapse
Affiliation(s)
- Claire Mérot
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada.
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE), Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005, Paris, France
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Quebec, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, PO Box 5114, Port Nelson, Nelson, 7043, New Zealand.,School of Biological Sciences, University of Auckland, 5 Symonds St, 1010, Auckland, New Zealand
| |
Collapse
|
18
|
Grieshop K, Arnqvist G. Sex-specific dominance reversal of genetic variation for fitness. PLoS Biol 2018; 16:e2006810. [PMID: 30533008 PMCID: PMC6303075 DOI: 10.1371/journal.pbio.2006810] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/21/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
The maintenance of genetic variance in fitness represents one of the most longstanding enigmas in evolutionary biology. Sexually antagonistic (SA) selection may contribute substantially to maintaining genetic variance in fitness by maintaining alternative alleles with opposite fitness effects in the two sexes. This is especially likely if such SA loci exhibit sex-specific dominance reversal (SSDR)-wherein the allele that benefits a given sex is also dominant in that sex-which would generate balancing selection and maintain stable SA polymorphisms for fitness. However, direct empirical tests of SSDR for fitness are currently lacking. Here, we performed a full diallel cross among isogenic strains derived from a natural population of the seed beetle Callosobruchus maculatus that is known to exhibit SA genetic variance in fitness. We measured sex-specific competitive lifetime reproductive success (i.e., fitness) in >500 sex-by-genotype F1 combinations and found that segregating genetic variation in fitness exhibited pronounced contributions from dominance variance and sex-specific dominance variance. A closer inspection of the nature of dominance variance revealed that the fixed allelic variation captured within each strain tended to be dominant in one sex but recessive in the other, revealing genome-wide SSDR for SA polymorphisms underlying fitness. Our findings suggest that SA balancing selection could play an underappreciated role in maintaining fitness variance in natural populations.
Collapse
Affiliation(s)
- Karl Grieshop
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|