1
|
Eliason CM, Nicolaï MPJ, Bom C, Blom E, D'Alba L, Shawkey MD. Transitions between colour mechanisms affect speciation dynamics and range distributions of birds. Nat Ecol Evol 2024; 8:1723-1734. [PMID: 39060476 DOI: 10.1038/s41559-024-02487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Several ecogeographical 'rules' have been proposed to explain colour variation at broad spatial and phylogenetic scales but these rarely consider whether colours are based on pigments or structural colours. However, mechanism can have profound effects on the function and evolution of colours. Here, we combine geographic information, climate data and colour mechanism at broad phylogenetic (9,409 species) and spatial scales (global) to determine how transitions between pigmentary and structural colours influence speciation dynamics and range distributions in birds. Among structurally coloured species, we find that rapid dispersal into tropical regions drove the accumulation of iridescent species, whereas the build-up of non-iridescent species in the tropics was driven by a combination of dispersal and faster in situ evolution in the tropics. These results could be explained by pleiotropic links between colouration and dispersal behaviour or ecological factors influencing colonization success. These data elucidate geographic patterns of colouration at a global scale and provide testable hypotheses for future work on birds and other animals with structural colours.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, USA.
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| | - Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Cynthia Bom
- Faculty of Science, Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Eline Blom
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
3
|
Eliason CM, Cooper JC, Hackett SJ, Zahnle E, Pequeño Saco TZ, Maddox JD, Hains T, Hauber ME, Bates JM. Interspecific hybridization explains rapid gorget colour divergence in Heliodoxa hummingbirds (Aves: Trochilidae). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221603. [PMID: 36866078 PMCID: PMC9974296 DOI: 10.1098/rsos.221603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hybridization is a known source of morphological, functional and communicative signal novelty in many organisms. Although diverse mechanisms of established novel ornamentation have been identified in natural populations, we lack an understanding of hybridization effects across levels of biological scales and upon phylogenies. Hummingbirds display diverse structural colours resulting from coherent light scattering by feather nanostructures. Given the complex relationship between feather nanostructures and the colours they produce, intermediate coloration does not necessarily imply intermediate nanostructures. Here, we characterize nanostructural, ecological and genetic inputs in a distinctive Heliodoxa hummingbird from the foothills of eastern Peru. Genetically, this individual is closely allied with Heliodoxa branickii and Heliodoxa gularis, but it is not identical to either when nuclear data are assessed. Elevated interspecific heterozygosity further suggests it is a hybrid backcross to H. branickii. Electron microscopy and spectrophotometry of this unique individual reveal key nanostructural differences underlying its distinct gorget colour, confirmed by optical modelling. Phylogenetic comparative analysis suggests that the observed gorget coloration divergence from both parentals to this individual would take 6.6-10 My to evolve at the current rate within a single hummingbird lineage. These results emphasize the mosaic nature of hybridization and suggest that hybridization may contribute to the structural colour diversity found across hummingbirds.
Collapse
Affiliation(s)
- Chad M. Eliason
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Grainger Bioinformatics Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Jacob C. Cooper
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
- Directora de Monitoreo y Evaluacion de Recursos Naturales del Territorio, Plataforma digital única del Estado Peruano, Iquitos, Perú
| | - Shannon J. Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Erica Zahnle
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
| | - Tatiana Z. Pequeño Saco
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Joseph Dylan Maddox
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Taylor Hains
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Mark E. Hauber
- Department of Evolution, Ecology, and Behaviour, School at Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - John M. Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
4
|
Eliason CM, Clarke JA, Kane SA. Wrinkle nanostructures generate a novel form of blue structural color in great argus flight feathers. iScience 2023; 26:105912. [PMID: 36691618 PMCID: PMC9860389 DOI: 10.1016/j.isci.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Currently known structural colors in feathers are caused by light scattering from periodic or amorphous arrangements of keratin, melanin, and air within barbs and barbules that comprise the feather vane. Structural coloration in the largest part of the feather, the central rachis, is rare. Here, we report on an investigation of the physical mechanisms underlying the only known case of structural coloration in the rachis, the blue rachis of great argus (Argusianus argus) flight feathers. Spectrophotometry revealed a reflectance peak at 344 nm that is diffuse and well matched to the blue and UV-sensitive cone sensitivities of this species' visual system. A combination of electron microscopy and optical modeling confirmed blue coloration is generated by scattering from amorphous wrinkle nanostructures 125 nm deep and 385 nm apart, a new avian coloration mechanism. These findings have implications for understanding how novel courtship phenotypes arise through evolutionary modification of existing ontogenetic templates.
Collapse
Affiliation(s)
- Chad M. Eliason
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Julia A. Clarke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
5
|
Jeon DJ, Ji S, Lee E, Kang J, Kim J, D'Alba L, Manceau M, Shawkey MD, Yeo JS. How keratin cortex thickness affects iridescent feather colours. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220786. [PMID: 36686555 PMCID: PMC9832292 DOI: 10.1098/rsos.220786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The bright, saturated iridescent colours of feathers are commonly produced by single and multi-layers of nanostructured melanin granules (melanosomes), air and keratin matrices, surrounded by an outer keratin cortex of varying thicknesses. The role of the keratin cortex in colour production remains unclear, despite its potential to act as a thin film or absorbing layer. We use electron microscopy, optical simulations and oxygen plasma-mediated experimental cortex removal to show that differences in keratin cortex thickness play a significant role in producing colours. The results indicate that keratin cortex thickness determines the position of the major reflectance peak (hue) from nanostructured melanosomes of common pheasant (Phasianus colchicus) feathers. Specifically, the common pheasant has appropriate keratin cortex thickness to produce blue and green structural colours. This finding identifies a general principle of structural colour production and sheds light on the processes that shaped the evolution of brilliant iridescent colours in the common pheasant.
Collapse
Affiliation(s)
- Deok-Jin Jeon
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Seungmuk Ji
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Eunok Lee
- Department of Research Planning, National Institute of Ecology, Chungcheongnam-do 33657, Republic of Korea
| | - Jihun Kang
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Jiyeong Kim
- Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology, Chungcheongnam-do 33657, Republic of Korea
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
- Naturalis Biodiversity Center, Darwinweg 2, Leiden 2333 CR, The Netherlands
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, 75006 Paris, France
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jong-Souk Yeo
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
6
|
Beltrán DF, Araya-Salas M, Parra JL, Stiles FG, Rico-Guevara A. The evolution of sexually dimorphic traits in ecological gradients: an interplay between natural and sexual selection in hummingbirds. Proc Biol Sci 2022; 289:20221783. [PMID: 36515116 PMCID: PMC9748779 DOI: 10.1098/rspb.2022.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Collapse
Affiliation(s)
- Diego F. Beltrán
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marcelo Araya-Salas
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - F. Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Ospina-Rozo L, Roberts A, Stuart-Fox D. A generalized approach to characterize optical properties of natural objects. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
To understand the diversity of ways in which natural materials interact with light, it is important to consider how their reflectance changes with the angle of illumination or viewing and to consider wavelengths beyond the visible. Efforts to characterize these optical properties, however, have been hampered by heterogeneity in measurement techniques, parameters and terminology. Here, we propose a standardized set of measurements, parameters and terminology to describe the optical properties of natural objects based on spectrometry, including angle-dependent effects, such as iridescence and specularity. We select a set of existing measurements and parameters that are generalizable to any wavelength range and spectral shape, and we highlight which subsets of measures are relevant to different biological questions. As a case study, we have applied these measures to 30 species of Christmas beetles, in which we observed previously unrealized diversity in visible and near-infrared reflectance. As expected, reflection of short wavelengths was associated with high spectral purity and angle dependence. In contrast to simple, artificial structures, iridescence and specularity were not strongly correlated, highlighting the complexity and modularity of natural materials. Species did not cluster according to spectral parameters or genus, suggesting high lability of optical properties. The proposed standardization of measures and parameters will improve our understanding of biological adaptations for manipulating light by facilitating the systematic comparison of complex optical properties, such as glossy or metallic appearances and visible or near-infrared iridescence.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne , VIC 3010 , Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| |
Collapse
|
8
|
Venable GX, Gahm K, Prum RO. Hummingbird plumage color diversity exceeds the known gamut of all other birds. Commun Biol 2022; 5:576. [PMID: 35739263 PMCID: PMC9226176 DOI: 10.1038/s42003-022-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
A color gamut quantitatively describes the diversity of a taxon's integumentary coloration as seen by a specific organismal visual system. We estimated the plumage color gamut of hummingbirds (Trochilidae), a family known for its diverse barbule structural coloration, using a tetrahedral avian color stimulus space and spectra from a taxonomically diverse sample of 114 species. The spectra sampled occupied 34.2% of the total diversity of colors perceivable by hummingbirds, which suggests constraints on their plumage color production. However, the size of the hummingbird color gamut is equivalent to, or greater than, the previous estimate of the gamut for all birds. Using the violet cone type visual system, our new data for hummingbirds increases the avian color gamut by 56%. Our results demonstrate that barbule structural color is the most evolvable plumage coloration mechanism, achieving unique, highly saturated colors with multi-reflectance peaks.
Collapse
Affiliation(s)
- Gabriela X Venable
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Ecology and Evolution, Univeristy of California, Los Angeles, California, CA, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Justyn NM, Heine KB, Hood WR, Peteya JA, Vanthournout B, Debruyn G, Shawkey MD, Weaver RJ, Hill GE. A combination of red structural and pigmentary coloration in the eyespot of a copepod. J R Soc Interface 2022; 19:20220169. [PMID: 35611618 DOI: 10.1098/rsif.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.
Collapse
Affiliation(s)
- Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Peteya
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Gerben Debruyn
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Nordén KK, Eliason CM, Stoddard MC. Evolution of brilliant iridescent feather nanostructures. eLife 2021; 10:e71179. [PMID: 34930526 PMCID: PMC8691833 DOI: 10.7554/elife.71179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
The brilliant iridescent plumage of birds creates some of the most stunning color displays known in the natural world. Iridescent plumage colors are produced by nanostructures in feathers and have evolved in diverse birds. The building blocks of these structures-melanosomes (melanin-filled organelles)-come in a variety of forms, yet how these different forms contribute to color production across birds remains unclear. Here, we leverage evolutionary analyses, optical simulations, and reflectance spectrophotometry to uncover general principles that govern the production of brilliant iridescence. We find that a key feature that unites all melanosome forms in brilliant iridescent structures is thin melanin layers. Birds have achieved this in multiple ways: by decreasing the size of the melanosome directly, by hollowing out the interior, or by flattening the melanosome into a platelet. The evolution of thin melanin layers unlocks color-producing possibilities, more than doubling the range of colors that can be produced with a thick melanin layer and simultaneously increasing brightness. We discuss the implications of these findings for the evolution of iridescent structures in birds and propose two evolutionary paths to brilliant iridescence.
Collapse
Affiliation(s)
- Klara Katarina Nordén
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural HistoryChicagoUnited States
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
11
|
Freyer P, Wilts BD, Stavenga DG. Cortex Thickness Is Key for the Colors of Iridescent Starling Feather Barbules With a Single, Organized Melanosome Layer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.746254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The iridescent plumage of many birds is structurally colored due to an orderly arrangement of melanosomes in their feather barbules. Here, we investigated the blue- to purple-colored feathers of the European starling (Sturnus vulgaris) and the blue and green feathers of the Cape starling (Lamprotornis nitens). In both cases, the barbules contain essentially a single layer of melanosomes, but in S. vulgaris they are solid and rod-shaped, and in L. nitens they are hollow and rod- as well as platelet-shaped. We analyzed the coloration of the feathers by applying imaging scatterometry, bifurcated-probe- and micro-spectrophotometry. The reflectance spectra of the feathers of the European starling showed multiple peaks and a distinct, single peak for the Cape starling feathers. Assuming that the barbules of the two starling species contain a simple multilayer, consisting locally only of a cortex plus a single layer of melanosomes, we interpret the experimental data by applying effective-medium-multilayer modeling. The optical modeling provides quantitative insight into the function of the keratin cortex thickness, being the principal factor to determine the peak wavelength of the reflectance bands; the melanosome layer only plays a minor role. The air cavity in the hollow melanosomes of the Cape starling creates a strongly enhanced refractive index contrast, thus very effectively causing a high reflectance.
Collapse
|
12
|
Jeon DJ, Paik S, Ji S, Yeo JS. Melanin-based structural coloration of birds and its biomimetic applications. Appl Microsc 2021; 51:14. [PMID: 34633588 PMCID: PMC8505553 DOI: 10.1186/s42649-021-00063-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Melanin has been a widely researched pigment by scientists for decades as it is undoubtedly the most ubiquitous and ancient pigment found in nature. Melanin plays very significant roles in structural plumage colors in birds: it has visible light-absorbing capabilities, and nanoscale structures can be formed by self-assembling melanin granules. Herein, we review recent progress on melanin-based structural coloration research. We hope that this review will provide current understanding of melanin's structural and optical properties, natural coloration mechanisms, and biomimetic methods to implement artificial melanin-based structural colors.
Collapse
Affiliation(s)
- Deok-Jin Jeon
- School of Integrated Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Suejeong Paik
- 39 Yeonhui-ro 22-gil, Seodaemun-gu, Seoul, 03723, Republic of Korea
| | - Seungmuk Ji
- School of Integrated Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jong-Souk Yeo
- School of Integrated Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
- Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
13
|
Giraldo M, Sosa J, Stavenga D. Feather iridescence of Coeligena hummingbird species varies due to differently organized barbs and barbules. Biol Lett 2021; 17:20210190. [PMID: 34428957 PMCID: PMC8385349 DOI: 10.1098/rsbl.2021.0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hummingbirds are perhaps the most exquisite bird species because of their prominent iridescence, created by stacks of melanosomes in the feather barbules. The feather colours crucially depend on the nanoscopic dimensions of the melanosome, and the displayed iridescence can distinctly vary, dependent on the spatial organization of the barbs and barbules. We have taken the genus Coeligena as a model group, with species having feathers that strongly vary in their spatial reflection properties. We studied the feather morphology and the optical characteristics. We found that the coloration of Coeligena hummingbirds depends on both the Venetian-blind-like arrangement of the barbules and the V-shaped, angular arrangement of the barbules at opposite sides of the barbs. Both the nanoscopic and microscopic organization of the hummingbird feather components determine the bird's macroscopic appearance.
Collapse
Affiliation(s)
- Marco Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Colombia.,Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Juliana Sosa
- Biophysics Group, Institute of Physics, University of Antioquia, Colombia
| | - Doekele Stavenga
- Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
14
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
15
|
Rubenstein DR, Corvelo A, MacManes MD, Maia R, Narzisi G, Rousaki A, Vandenabeele P, Shawkey MD, Solomon J. Feather Gene Expression Elucidates the Developmental Basis of Plumage Iridescence in African Starlings. J Hered 2021; 112:417-429. [PMID: 33885791 PMCID: PMC11502951 DOI: 10.1093/jhered/esab014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
- Center for Integrative Animal Behavior, Columbia University, New York, NY
| | | | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | | | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat, Ghent, Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| |
Collapse
|
16
|
Lopes RJ, Faria PMV, Gomes D, Freitas B, Málinger J. The Hummingbird Collection of the Natural History and Science Museum of the University of Porto (MHNC-UP), Portugal. Biodivers Data J 2021; 9:e59913. [PMID: 34393580 PMCID: PMC8324581 DOI: 10.3897/bdj.9.e59913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Hummingbird (Family Trochilidae) Collection of the Natural History and Science Museum of the University of Porto (MHNC-UP) is one of the oldest collections of this family harboured in European museums. Almost 2,000 specimens, that encompass most of the taxonomic diversity of this family, were collected in the late 19th Century. The collection is relevant due its antiquity and because all specimens were bought from the same provider, mainly as mounted specimens, for a Portuguese private collection of Neotropical fauna. In the early 20th Century, it was donated to the Museum that is now the MHNC-UP. NEW INFORMATION The information about the majority of these specimens is now available for consultation on the GBIF platform after curation of all specimens and digital cleaning of the associated metadata. In the process, hundreds of non-catalogued specimens were found and taxonomic and spatial information was updated for many of the specimens.
Collapse
Affiliation(s)
- Ricardo Jorge Lopes
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, PortugalMHNC-UP, Natural History and Science Museum of the University of PortoPortoPortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Vairão, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de VairãoVairãoPortugal
| | - Pedro Miguel Vieira Faria
- FCUP, Faculdade de Ciências da Universidade do Porto, Porto, PortugalFCUP, Faculdade de Ciências da Universidade do PortoPortoPortugal
| | - Daniela Gomes
- FCUP, Faculdade de Ciências da Universidade do Porto, Porto, PortugalFCUP, Faculdade de Ciências da Universidade do PortoPortoPortugal
| | - Bárbara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Vairão, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de VairãoVairãoPortugal
- FCUP, Faculdade de Ciências da Universidade do Porto, Porto, PortugalFCUP, Faculdade de Ciências da Universidade do PortoPortoPortugal
| | - Judit Málinger
- University of Pannonia, Veszprem, HungaryUniversity of PannoniaVeszpremHungary
| |
Collapse
|
17
|
D'Alba L, Meadows M, Maia R, Jong-Souk Y, Manceau M, Shawkey M. Morphogenesis of iridescent feathers in Anna's hummingbird Calypte anna. Integr Comp Biol 2021; 61:1502-1510. [PMID: 34104966 DOI: 10.1093/icb/icab123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Color is a phenotypic trait of utmost importance, particularly in birds, which are known for their diverse color signals and color-producing mechanisms including pigment-based colors, light scattering from nanostructured feather tissues and combinations thereof. Bright iridescent plumage colors of hummingbirds are caused by light scattering by an organized array of flattened, pigment organelles, containing air-filled vesicles, called melanosomes. These hollow platelets are organized in multilayer arrays that contain numerous sharp air/melanin refractive index interfaces, producing brilliant iridescent colors. Despite their ecological significance and potential for inspiration of new optical materials, how platelets form and spatially arrange in nanostructures in growing feathers remains unknown. Here, we tested the hypothesis that melanosome formation and organization occurs mostly through passive self-assembly processes by assembling a developmental time series of growing hummingbird feathers using optical and electron microscopy. We show that hummingbird platelets contain air bubbles or vesicles upon their formation in pigment-producing cells, melanocytes. When melanosomes are transferred to neighboring keratinocytes (the cells shaping barbule structure) they drastically expand in size; and variation in this enlargement appears to be driven by physical constraints caused by the placement of the melanosomes within the barbule plate and their proximity to other melanosomes. As the barbule elongates and narrows, polymerizing feather corneous beta protein (CβP) orients melanosomes unilaterally, forcing them into a stacked configuration. These results reveal potentially novel forces driving the self-assembly of the nanostructures producing some of the brightest colors in nature.<.
Collapse
Affiliation(s)
- Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Melissa Meadows
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8525
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | - Yeo Jong-Souk
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS 7241, INSERM U1050, Collège de France, Paris, France
| | - Matthew Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
18
|
Beltrán DF, Shultz AJ, Parra JL. Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution 2021; 75:1665-1680. [PMID: 34037257 DOI: 10.1111/evo.14277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
A fascinating pattern in nature is the uneven distribution of biodiversity among clades, some with low species richness and phenotypic variation in contrast to others with remarkable species richness and phenotypic diversity. In animals, communication signals are crucial for intra- and interspecific interactions and are likely an important factor in speciation. However, evidence for the association between the evolution of such signals and speciation is mixed. In hummingbirds, plumage coloration is an important communication signal, particularly for mate selection. Here, using reflectance data for 237 hummingbird species (∼66% of total diversity), we demonstrate that color evolution rates are associated with speciation rates, and that differences among feather patches are consistent with an interplay between natural and sexual selection. We found that female color evolution rates of multiple plumage elements, including the gorget, were similar to those of males. Although male color evolution in this patch was associated with speciation, female gorget color evolution was not. In other patches, the relationship between speciation and color evolution rates was pervasive between sexes. We anticipate that future studies on animal communication will likely find that evolution of signaling traits of both sexes has played a vital role in generating signal and species diversity.
Collapse
Affiliation(s)
- Diego F Beltrán
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia.,Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, California, 90007, USA
| | - Juan L Parra
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
19
|
Bazzano LT, Mendicino LR, Inchaussandague ME, Skigin DC, García NC, Tubaro PL, Barreira AS. Mechanisms involved in the production of differently colored feathers in the structurally colored swallow tanager (Tersina viridis; Aves: Thraupidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:404-416. [PMID: 33988912 DOI: 10.1002/jez.b.23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
Non-iridescent, structural coloration in birds originates from the feather's internal nanostructure (the spongy matrix) but melanin pigments and the barb's cortex can affect the resulting color. Here, we explore how this nanostructure is combined with other elements in differently colored plumage patches within a bird. We investigated the association between light reflectance and the morphology of feathers from the back and belly plumage patches of male swallow tanagers (Tersina viridis), which look greenish-blue and white, respectively. Both plumage patches have a reflectance peak around 550 nm but the reflectance spectrum is much less saturated in the belly. The barbs of both types of feathers have similar spongy matrices at their tips, rendering their reflectance spectra alike. However, the color of the belly feather barbs changes from light green at their tips to white closer to the rachis. These barbs lack pigments and their morphology changes considerably throughout. Toward the rachis, the barb is almost hollow, with a reduced area occupied by spongy matrix, and has a flattened shape. By contrast, the blue back feathers' barbs have melanin underneath the spongy matrix resulting in a much more saturated coloration. The color of these barbs is also even along the barbs' length. Our results suggest that the color differences between the white and greenish-blue plumage are mostly due to the differential deposition of melanin and a reduction of the spongy matrix near the rachis of the belly feather barbs and not a result of changes in the characteristics of the spongy matrix.
Collapse
Affiliation(s)
- Lisandro T Bazzano
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas R Mendicino
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina E Inchaussandague
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diana C Skigin
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia C García
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Fuller Evolutionary Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Pablo L Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana S Barreira
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Chen CK, Juan WT, Liang YC, Wu P, Chuong CM. Making region-specific integumentary organs in birds: evolution and modifications. Curr Opin Genet Dev 2021; 69:103-111. [PMID: 33780743 DOI: 10.1016/j.gde.2021.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Birds are the most diversified terrestrial vertebrates due to highly diverse integumentary organs that enable robust adaptability to various eco-spaces. Here we show that this complexity is built upon multi-level regional specifications. Across-the-body (macro-) specification includes the evolution of beaks and feathers as new integumentary organs that are formed with regional specificity. Within-an-organ (micro-) specification involves further modifications of organ shapes. We review recent progress in elucidating the molecular mechanisms underlying feather diversification as an example. (1) β-Keratin gene clusters are regulated by typical enhancers or high order chromatin looping to achieve macro- and micro-level regional specification, respectively. (2) Multi-level symmetry-breaking of feather branches confers new functional forms. (3) Complex color patterns are produced by combinations of macro-patterning and micro-patterning processes. The integration of these findings provides new insights toward the principle of making a robustly adaptive bio-interface.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Tau Juan
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Cao W, Zhou X, McCallum NC, Hu Z, Ni QZ, Kapoor U, Heil CM, Cay KS, Zand T, Mantanona AJ, Jayaraman A, Dhinojwala A, Deheyn DD, Shawkey MD, Burkart MD, Rinehart JD, Gianneschi NC. Unraveling the Structure and Function of Melanin through Synthesis. J Am Chem Soc 2021; 143:2622-2637. [PMID: 33560127 DOI: 10.1021/jacs.0c12322] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.
Collapse
Affiliation(s)
| | | | | | | | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Christian M Heil
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Kristine S Cay
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Tara Zand
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex J Mantanona
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, United States
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000 Ghent, Belgium
| | - Michael D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeffrey D Rinehart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Bonaccorso E, Rodríguez-Saltos CA, Freile JF, Peñafiel N, Rosado-Llerena L, Oleas NH. Recent diversification in the high Andes: unveiling the evolutionary history of the Ecuadorian hillstar, Oreotrochilus chimborazo(Apodiformes: Trochilidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractStudying the genetic signatures of evolutionary diversification in young lineages is among the most promising approaches for unveiling the processes behind speciation. Here, we focus on Oreotrochilus chimborazo, a high Andean species of hummingbird that might have experienced rapid diversification in the recent past. To understand the evolution of this species, we generated a dataset of ten microsatellite markers and complementary data on morphometrics, plumage variation and ecological niches. We applied a series of population and coalescent-based analyses to understand the population structure and differentiation within the species, in addition to the signatures of current and historical gene flow, the location of potential contact zones and the relationships among lineages. We found that O. chimborazo comprises three genetic groups: one corresponding to subspecies O. c. chimborazo, from Chimborazo volcano and surroundings, and two corresponding to the northern and southern ranges of subspecies O. c. jamesonii, found from the extreme south of Colombia to southern Ecuador. We inferred modest levels of both contemporary and historical gene flow and proposed the location of a contact zone between lineages. Also, our coalescent-based analyses supported a rapid split among these three lineages during the mid-to-late Holocene. We discuss our results in the light of past and present potential distributions of the species, in addition to evolutionary trends seen in other Andean hummingbirds.
Collapse
Affiliation(s)
- Elisa Bonaccorso
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biología Evolutiva, and Instituto Biósfera, Diego de Robles y Pampite, Quito, Ecuador
- Instituto Biósfera, Universidad San Francisco de Quito, Diego de Robles y Pampite, Quito, Ecuador
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
| | | | - Juan F Freile
- Comité Ecuatoriano de Registros Ornitológicos, Pasaje El Moro E4-216 y Norberto Salazar, Tumbaco, Ecuador
| | - Nicolás Peñafiel
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
- Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada AIB
| | - Laura Rosado-Llerena
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biología Evolutiva, and Instituto Biósfera, Diego de Robles y Pampite, Quito, Ecuador
| | - Nora H Oleas
- Universidad Tecnológica Indoamérica, Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Machala y Sabanilla, Quito, Ecuador
| |
Collapse
|
23
|
Stuart-Fox D, Ospina-Rozo L, Ng L, Franklin AM. The Paradox of Iridescent Signals. Trends Ecol Evol 2020; 36:187-195. [PMID: 33168152 DOI: 10.1016/j.tree.2020.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Signals reliably convey information to a receiver. To be reliable, differences between individuals in signal properties must be consistent and easily perceived and evaluated by receivers. Iridescent objects are often striking and vivid, but their appearance can change dramatically with viewing geometry and illumination. The changeable nature of iridescent surfaces creates a paradox: how can they be reliable signals? We contend that iridescent color patches can be reliable signals only if accompanied by specific adaptations to enhance reliability, such as structures and behaviors that limit perceived hue shift or enhance and control directionality. We highlight the challenges of studying iridescence and key considerations for the evaluation of its adaptive significance.
Collapse
Affiliation(s)
- Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Laura Ospina-Rozo
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leslie Ng
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amanda M Franklin
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Freyer P, Stavenga DG. Biophotonics of diversely coloured peacock tail feathers. Faraday Discuss 2020; 223:49-62. [PMID: 32720960 DOI: 10.1039/d0fd00033g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peacock feathers feature a rich gamut of colours, created by a most sophisticated structural colouration mechanism. The feather barbules contain biophotonic structures consisting of two-dimensionally-ordered lattices of cylindrical melanosomes and air channels embedded in keratin. Here, we study the reflectance characteristics of the various peacock tail feather colours by applying bifurcated-probe- and micro-spectrophotometry and imaging scatterometry. We compare the experimental results with published anatomical SEM and TEM data, using a transfer-matrix based effective-medium multilayer model that includes the number and diameter of the melanosome rodlets and air channels, the lattice spacing and the keratin cortex thickness, together with the recently determined wavelength-dependence of the refractive indices of keratin and melanin. Slight variations in the parameter values cause substantial changes in the spectral position and shape of the reflectance bands. We find that the number of layers crucially determines the number of peaks in the reflectance spectra. For a small number of melanosome layers, the reflectance band shape is particularly sensitive to the properties of the uppermost layer, which provides a simple mechanism for tuning the feather colours.
Collapse
Affiliation(s)
- Pascal Freyer
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
25
|
Riede T, Pasch B. Pygmy mouse songs reveal anatomical innovations underlying acoustic signal elaboration in rodents. J Exp Biol 2020; 223:jeb223925. [PMID: 32457066 DOI: 10.1242/jeb.223925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Elaborate animal communication displays are often accompanied by morphological and physiological innovations. In rodents, acoustic signals used in reproductive contexts are produced by two distinct mechanisms, but the underlying anatomy that facilitates such divergence is poorly understood. 'Audible' vocalizations with spectral properties between 500 Hz and 16 kHz are thought to be produced by flow-induced vocal fold vibrations, whereas 'ultrasonic' vocalizations with fundamental frequencies above 19 kHz are produced by an aerodynamic whistle mechanism. Baiomyine mice (genus Baiomys and Scotinomys) produce complex frequency-modulated songs that span these traditional distinctions and represent important models to understand the evolution of signal elaboration. We combined acoustic analyses of spontaneously vocalizing northern pygmy mice (Baiomystaylori) in air and light gas atmosphere with morphometric analyses of their vocal apparatus to infer the mechanism of vocal production. Increased fundamental frequencies in heliox indicated that pygmy mouse songs are produced by an aerodynamic whistle mechanism supported by the presence of a ventral pouch and alar cartilage. Comparative analyses of the larynx and ventral pouch size among four additional ultrasonic whistle-producing rodents indicated that the unusually low 'ultrasonic' frequencies (relative to body size) of pygmy mice songs are associated with an enlarged ventral pouch. Additionally, mice produced shorter syllables while maintaining intersyllable interval duration, thereby increasing syllable repetition rates. We conclude that while laryngeal anatomy sets the foundation for vocal frequency range, variation and adjustment of central vocal motor control programs fine tunes spectral and temporal characters to promote acoustic diversity within and between species.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA
| | - Bret Pasch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|