1
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
2
|
Kwon Y, Piehowski PD, Zhao R, Sontag RL, Moore RJ, Burnum-Johnson KE, Smith RD, Qian WJ, Kelly RT, Zhu Y. Hanging drop sample preparation improves sensitivity of spatial proteomics. LAB ON A CHIP 2022; 22:2869-2877. [PMID: 35838077 PMCID: PMC9320080 DOI: 10.1039/d2lc00384h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Spatial proteomics holds great promise for revealing tissue heterogeneity in both physiological and pathological conditions. However, one significant limitation of most spatial proteomics workflows is the requirement of large sample amounts that blurs cell-type-specific or microstructure-specific information. In this study, we developed an improved sample preparation approach for spatial proteomics and integrated it with our previously-established laser capture microdissection (LCM) and microfluidics sample processing platform. Specifically, we developed a hanging drop (HD) method to improve the sample recovery by positioning a nanowell chip upside-down during protein extraction and tryptic digestion steps. Compared with the commonly-used sitting-drop method, the HD method keeps the tissue pixel away from the container surface, and thus improves the accessibility of the extraction/digestion buffer to the tissue sample. The HD method can increase the MS signal by 7 fold, leading to a 66% increase in the number of identified proteins. An average of 721, 1489, and 2521 proteins can be quantitatively profiled from laser-dissected 10 μm-thick mouse liver tissue pixels with areas of 0.0025, 0.01, and 0.04 mm2, respectively. The improved system was further validated in the study of cell-type-specific proteomes of mouse uterine tissues.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA.
| |
Collapse
|
3
|
Baldan-Martin M, Chaparro M, Gisbert JP. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1184-1200. [PMID: 33529308 DOI: 10.1093/ibd/izaa352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has become a global disease encompassing a group of progressive disorders characterized by recurrent chronic inflammation of the gut with variable disease courses and complications. Despite recent advances in the knowledge of IBD pathophysiology, the elucidation of its etiopathology and progression is far from fully understood, requiring complex and multiple approaches. Therefore, limited clinical progress in diagnosis, assessment of disease activity, and optimal therapeutic regimens have been made over the past few decades. This review explores recent advances and challenges in tissue proteomics with an emphasis on biomarker discovery and better understanding of the molecular mechanisms underlying IBD pathogenesis. Future multi-omic studies are required for the comprehensive molecular characterization of disease biology in real time with a future impact on early detection, disease monitoring, and prediction of the clinical outcome.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
4
|
Colley M, Liang S, Tan C, Trobough KP, Bach SB, Chun YHP. Mapping and Identification of Native Proteins of Developing Teeth in Mouse Mandibles. Anal Chem 2020; 92:7630-7637. [PMID: 32362116 PMCID: PMC7898936 DOI: 10.1021/acs.analchem.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometry imaging is a powerful tool of increasing utility due to its ability to spatially resolve molecular biomarkers directly from sectioned tissues. One hindrance to its universality is that no single protocol is sufficient for every tissue type, fixation, and pretreatment. Mineralized tissues are uniquely challenging as extensive decalcification protocols are necessary to achieve thin sections. In this study, we optimized a method to image tryptic peptides by matrix-assisted laser desorption ionization mass spectrometry of decalcified, formalin-fixed paraffin-embedded mouse hemimandibles. Using a combination of on-tissue MS/MS and hydrogel extraction LC-MS/MS, peptides from the enamel, dentin, periodontal ligament, alveolar bone, pulp, and other regions are identified and mapped. This breakthrough method provides a comprehensive approach to biomarker discovery in dental and craniofacial tissues which is highly relevant given that diseases originating from this region of the body are the most prevalent across all populations.
Collapse
Affiliation(s)
- Madeline Colley
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Sitai Liang
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Chunyan Tan
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Kyle P. Trobough
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | | | - Yong-Hee Patricia Chun
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
5
|
Hiratsuka T, Arakawa Y, Yajima Y, Kakimoto Y, Shima K, Yamazaki Y, Ikegami M, Yamamoto T, Fujiwake H, Fujimoto K, Yamada N, Tsuruyama T. Hierarchical Cluster and Region of Interest Analyses Based on Mass Spectrometry Imaging of Human Brain Tumours. Sci Rep 2020; 10:5757. [PMID: 32238824 PMCID: PMC7113320 DOI: 10.1038/s41598-020-62176-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Imaging mass spectrometry (IMS) has been rarely used to examine specimens of human brain tumours. In the current study, high quality brain tumour samples were selected by tissue observation. Further, IMS analysis was combined with a new hierarchical cluster analysis (IMS-HCA) and region of interest analysis (IMS-ROI). IMS-HCA was successful in creating groups consisting of similar signal distribution images of glial fibrillary acidic protein (GFAP) and related multiple proteins in primary brain tumours. This clustering data suggested the relation of GFAP and these identified proteins in the brain tumorigenesis. Also, high levels of histone proteins, haemoglobin subunit α, tubulins, and GFAP were identified in a metastatic brain tumour using IMS-ROI. Our results show that IMS-HCA and IMS-ROI are promising techniques for identifying biomarkers using brain tumour samples.
Collapse
Affiliation(s)
- Takuya Hiratsuka
- Department of Drug and Discovery Medicine, Pathology Division, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yoshiki Arakawa
- Department of Neural Surgery, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Yuka Yajima
- Department of Microbiology, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Graduate School of Medicine, Tokai University School of Medicine, Isehara-Shimokasuya 143, Kanagawa, 259-1193, Japan
| | - Keisuke Shima
- Kyoto Applications Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1 Nishino-kyo-Kuwabara-cho, Kyoto, 604-8511, Japan
| | - Yuzo Yamazaki
- Kyoto Applications Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1 Nishino-kyo-Kuwabara-cho, Kyoto, 604-8511, Japan
| | - Masahiro Ikegami
- Kyoto Applications Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1 Nishino-kyo-Kuwabara-cho, Kyoto, 604-8511, Japan
| | - Takushi Yamamoto
- Kyoto Applications Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1 Nishino-kyo-Kuwabara-cho, Kyoto, 604-8511, Japan
| | - Hideshi Fujiwake
- Research Center, Shimadzu General Services, Inc., 1 Nishino-kyo-Kuwabara-cho, Kyoto, 604-8511, Japan
| | - Koichi Fujimoto
- Department of Neural Surgery, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Norishige Yamada
- Clinical bioresource centre, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan. .,Clinical bioresource centre, Kyoto University Hospital, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A, Perry WJ, Cassat JE, Skaar EP, Caprioli RM, Spraggins JM. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Anal Chem 2019; 91:7578-7585. [PMID: 31149808 PMCID: PMC6652190 DOI: 10.1021/acs.analchem.8b05889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a liquid extraction surface analysis (LESA) workflow, termed microLESA, that allows proteomic profiling from discrete tissue features of ∼110 μm in diameter by integrating nondestructive autofluorescence microscopy and spatially targeted liquid droplet micro-digestion. Autofluorescence microscopy provides the visualization of tissue foci without the need for chemical stains or the use of serial tissue sections. Tryptic peptides are generated from tissue foci by applying small volume droplets (∼250 pL) of enzyme onto the surface prior to LESA. The microLESA workflow reduced the diameter of the sampled area almost 5-fold compared to previous LESA approaches. Experimental parameters, such as tissue thickness, trypsin concentration, and enzyme incubation duration, were tested to maximize proteomics analysis. The microLESA workflow was applied to the study of fluorescently labeled Staphylococcus aureus infected murine kidney to identify unique proteins related to host defense and bacterial pathogenesis. Proteins related to nutritional immunity and host immune response were identified by performing microLESA at the infectious foci and surrounding abscess. These identifications were then used to annotate specific proteins observed in infected kidney tissue by MALDI FT-ICR IMS through accurate mass matching.
Collapse
Affiliation(s)
- Daniel J. Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nicole E. Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aimee D. Wilde
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - William J. Perry
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
| | - James E. Cassat
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- United States (U.S.) Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave South #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue South #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| |
Collapse
|
7
|
Mass spectrometric imaging of cysteine rich proteins in human skin. Int J Biol Macromol 2018; 125:270-277. [PMID: 30517841 DOI: 10.1016/j.ijbiomac.2018.11.272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Looking insight pathological processes, metallothioneins (MTs) are considered to be potential biomarkers for monitoring of a development of various types of diseases, such as cancer. The early identification of the MTs in biological tissues could be important tool for the estimation of appropriate clinical therapy. Therefore, here we investigated the application of matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) together with immunohistochemical analyses (IHC) using MT-1/2 antibody for MT detection in formalin-fixed paraffin-embedded (FFPE) biopsy specimens of human skin. Principal component analyses revealed differences in the peptide/protein profiles separating healthy skin from the carcinoma specimens. Statistically significant ion peaks at m/z 6038, 6300, 6676, and 7026 were more frequently detected in squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and melanoma. Using IHC, we found that MT-1/2 was significantly higher in SCC and melanoma compared to healthy skin. Surprisingly, significantly low levels of MT-1/2 were found in BCC. On one side, the results indicate important role of MTs in melanoma occurrence and progression, as on the second side, there are hidden processes associated with MTs based on differences of the occurrence of the MS peaks, which could be associated with cycling of MTs isoforms.
Collapse
|
8
|
Taverna D, Mignogna C, Santise G, Gaspari M, Cuda G. On‐Tissue Hydrogel‐Mediated Nondestructive Proteomic Characterization: Application to fr/fr and FFPE Tissues and Insights for Quantitative Proteomics Using a Case of Cardiac Myxoma. Proteomics Clin Appl 2018; 13:e1700167. [DOI: 10.1002/prca.201700167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/10/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Chiara Mignogna
- Department of Health ScienceInterdepartmental Service CentreMagna Graecia University of CatanzaroViale Europa 88100 Catanzaro Italy
| | - Gianluca Santise
- Cardiothoracic Surgery UnitSant'Anna Hospital 88100 Catanzaro Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| |
Collapse
|
9
|
Buck A, Heijs B, Beine B, Schepers J, Cassese A, Heeren RMA, McDonnell LA, Henkel C, Walch A, Balluff B. Round robin study of formalin-fixed paraffin-embedded tissues in mass spectrometry imaging. Anal Bioanal Chem 2018; 410:5969-5980. [PMID: 29968108 PMCID: PMC6096706 DOI: 10.1007/s00216-018-1216-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Mass spectrometry imaging (MSI) has provided many results with translational character, which still have to be proven robust in large patient cohorts and across different centers. Although formalin-fixed paraffin-embedded (FFPE) specimens are most common in clinical practice, no MSI multicenter study has been reported for FFPE samples. Here, we report the results of the first round robin MSI study on FFPE tissues with the goal to investigate the consequences of inter- and intracenter technical variation on masking biological effects. A total of four centers were involved with similar MSI instrumentation and sample preparation equipment. A FFPE multi-organ tissue microarray containing eight different types of tissue was analyzed on a peptide and metabolite level, which enabled investigating different molecular and biological differences. Statistical analyses revealed that peptide intercenter variation was significantly lower and metabolite intercenter variation was significantly higher than the respective intracenter variations. When looking at relative univariate effects of mass signals with statistical discriminatory power, the metabolite data was more reproducible across centers compared to the peptide data. With respect to absolute effects (cross-center common intensity scale), multivariate classifiers were able to reach on average > 90% accuracy for peptides and > 80% for metabolites if trained with sufficient amount of cross-center data. Overall, our study showed that MSI data from FFPE samples could be reproduced to a high degree across centers. While metabolite data exhibited more reproducibility with respect to relative effects, peptide data-based classifiers were more directly transferable between centers and therefore more robust than expected. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764, Oberschleißheim, Germany
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Birte Beine
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V, 44139, Dortmund, Germany
| | - Jan Schepers
- Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Alberto Cassese
- Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Pigeon Hole 57, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Fondazione Pisana per la Scienza ONLUS, 56017, Pisa, Italy
| | - Corinna Henkel
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Bruker Daltonik, Bremen, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764, Oberschleißheim, Germany
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Pigeon Hole 57, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kendall AC, Koszyczarek MM, Jones EA, Hart PJ, Towers M, Griffiths CEM, Morris M, Nicolaou A. Lipidomics for translational skin research: A primer for the uninitiated. Exp Dermatol 2018; 27:721-728. [DOI: 10.1111/exd.13558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandra C. Kendall
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | - Marta M. Koszyczarek
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | | | | | | | - Christopher E. M. Griffiths
- Dermatology Centre; Salford Royal Hospital; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | | | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| |
Collapse
|
11
|
Bateman NW, Conrads TP. Recent advances and opportunities in proteomic analyses of tumour heterogeneity. J Pathol 2018; 244:628-637. [PMID: 29344964 DOI: 10.1002/path.5036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/27/2023]
Abstract
Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.,Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA
| |
Collapse
|
12
|
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation. Talanta 2017; 174:325-335. [PMID: 28738588 DOI: 10.1016/j.talanta.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection.
Collapse
|
13
|
Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM. Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion. Anal Chem 2017; 89:2948-2955. [DOI: 10.1021/acs.analchem.6b04395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David G. Rizzo
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Boone M. Prentice
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jessica L. Moore
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeremy L. Norris
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Casadonte R, Longuespée R, Kriegsmann J, Kriegsmann M. MALDI IMS and Cancer Tissue Microarrays. Adv Cancer Res 2017; 134:173-200. [PMID: 28110650 DOI: 10.1016/bs.acr.2016.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) technology creates a link between the molecular assessment of numerous molecules and the morphological information about their special distribution. The application of MALDI IMS on formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) is suitable for large-scale discovery analyses. Data acquired from FFPE TMA cancer samples in current research are very promising, and applications for routine diagnostics are under development. With the current rapid advances in both technology and applications, MALDI IMS technology is expected to enter into routine diagnostics soon. This chapter is intended to be comprehensive with respect to all aspects and considerations for the application of MALDI IMS on FFPE cancer TMAs with in-depth notes on technical aspects.
Collapse
Affiliation(s)
| | | | - J Kriegsmann
- Proteopath GmbH, Trier, Germany; Institute of Molecular Pathology, Trier, Germany; Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - M Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen 2016; 24:775-785. [PMID: 27256813 DOI: 10.1111/wrr.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
Abstract
The spatiotemporal analysis of the proteomic profile during human wound healing is a critical investigative step that can establish the complex interplay of molecular events that comprise the local response to burn injury. Partial-thickness wound samples with adjacent "normal" skin were collected from twenty-one patients with burn wounds and examined across a time spectrum ranging from the acute injury period at 3, 6, 11 days to the later hypertrophic scar period at 7 and 15 months. The techniques used for histology-directed tissue analyses highlighted inflammatory protein markers at the early time points after injury with diminished expression as burn wounds progressed into the proliferative phase. The datasets show the usefulness of MALDI MS and imaging mass spectrometry as discovery approaches to identify and map the cutaneous molecular sequence that is activated in response to the unique systemic inflammatory response following burn trauma. This information has the potential to define the unique factors that predispose human burn victims to disfiguring hypertrophic scar formation.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy. .,Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Giovanni Sindona
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|