1
|
Wang W, Meng Y, Yin X, Zhao P, Wang M, Ren J, Zhang J, Zhang L, Cui Y, Xia X. Novel heterologously expressed protein, AjPSPLP-3, derived from Apostichopus japonicus exhibits cell proliferation and migration activities. Protein Expr Purif 2024; 224:106577. [PMID: 39153562 DOI: 10.1016/j.pep.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Developing more effective bioactive ingredients of natural origin is imperative for promoting wound healing. Sea cucumbers have long enjoyed a good reputation as both food delicacies and traditional medicines. In this study, we heterogeneously expressed a Apostichopus japonicus derived novel protein AjPSPLP-3, which exhibits a theoretical molecular weight of 13.034 kDa, through fusion with maltose binding protein (MBP). AjPSPLP-3 contains a strict CXXCXC motif, nine extremely conserved cysteine residues and two highly conserved cysteine residues. The predicted structure of AjPSPLP-3 consists of random coil and nine β-sheets, Cys30-Cys67, Cys38-Cys58, Cys53-Cys90, Cys56-Cys66, and Cys81-Cys102 participating in the formation of five pairs of disulfide bonds. In vitro experiments conducted on HaCaT cells proved that AjPSPLP-3 and MBP-fused AjPSPLP-3 significantly contribute to HaCaT cells proliferation and migration without exhibiting hemolytic activity on murine erythrocytes. Specifically, treatment with 10 μmol/L MBP-fused AjPSPLP-3 protein increased the viability of HaCaT cells by 12.28 % (p < 0.001), while treatment with 10 μmol/L AjPSPLP-3 protein increased viability of HaCaT cells by 6.01 % (p < 0.01). Furthermore, wound closure of MBP-fused AjPSPLP-3 and AjPSPLP-3 were 22.51 % (p < 0.01) and 7.32 % (p < 0.05) higher than that of the control groups in HaCaT cells following 24 h of incubation.
Collapse
Affiliation(s)
- Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jiyuan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China; State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
2
|
Fathi F, Ghobeh M, Shirazi FH, Tabarzad M. Promising anti-inflammatory activity of a novel designed anti-microbial peptide for wound healing. Burns 2024; 50:2045-2055. [PMID: 39181772 DOI: 10.1016/j.burns.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Chronic wounds can develop as a result of prolonged inflammation during the healing process, which can happen due to bacterial infection. Therefore, preventing infection and controlling inflammation can accelerate wound healing. Antimicrobial peptides have different protective properties in addition to antimicrobial activity. Some of these activities include the stimulation of cytokine or chemokine synthesis, the facilitation of chemotaxis and cell proliferation, the acceleration of cell proliferation, the induction of anti-inflammatory responses, and the promotion of wound repair. This study aimed to assess the wound healing potential of a novel in silico-designed antimicrobial peptide. Then, its anti-inflammatory activity was investigated by measuring the level of tumor necrosis factor-α (TNF-α) and transforming growth factor beta (TGF-β) as indicators of the wound healing process. In addition, the influence of the peptide on cell migration was evaluated by a scratch test on human dermal fibroblasts (HDF) and HaCaT cells as a human epidermal keratinocyte cell line. The results showed that our new peptide could act well in inhibiting TNF-α over-secretion while increasing the expression of TGF-β as an anti-inflammatory factor. This peptide showed a significant potential to stimulate HDF and HaCaT cell migration and proliferation. Therefore, using this peptide as an anti-inflammatory component of wound dressings may be promising.
Collapse
Affiliation(s)
- Fariba Fathi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology & Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Masson F, Brown RL, Vizueta J, Irvine T, Xiong Z, Romiguier J, Stroeymeyt N. Pathogen-specific social immunity is associated with erosion of individual immune function in an ant. Nat Commun 2024; 15:9260. [PMID: 39461955 PMCID: PMC11513022 DOI: 10.1038/s41467-024-53527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Contagious diseases are a major threat to societies in which individuals live in close contact. Social insects have evolved collective defense behaviors, such as social care or isolation of infected workers, that prevent outbreaks of pathogens. It has thus been suggested that individual immunity is reduced in species with such 'social immunity'. However, this hypothesis has not been tested functionally. Here, we characterize the immune response of the ant Lasius niger using a combination of genomic analysis, experimental infections, gene expression quantification, behavioural observations and pathogen quantifications. We uncover a striking specialization of immune responses towards different pathogens. Systemic individual immunity is effective against opportunistic bacterial infections, which are not covered by social immunity, but is not elicited upon fungal infections, which are effectively controlled by social immunity. This specialization suggests that immune layers have evolved complementary functions predicted to ensure the most cost-effective response against a wide range of pathogens.
Collapse
Affiliation(s)
- Florent Masson
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Thea Irvine
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
4
|
Arora S, Seth R, Singh Y, Seth RK. Effect of male parental gamma irradiation on host suitability of its F1 progeny of a lepidopteran tropical pest, Spodoptera litura (Fabr.) towards development and virulence of entomopathogenic nematodes, Steinernema thermophilum. Appl Radiat Isot 2024; 212:111426. [PMID: 38981166 DOI: 10.1016/j.apradiso.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The suitability of F1 progeny insect larvae of the irradiated male parent, Spodoptera litura (Fabr.) for infective juveniles (IJs) of entomopathogenic nematodes (EPN), Steinernema thermophilum was assessed to comprehend the feasibility of combining EPNs with nuclear pest control tactic. As compared to the control, the IJs induced faster host mortality with reduced proliferation in F1 host larvae. IJs derived from F1 host larvae exhibited almost similar proliferation capacity on normal hosts as in control. Further, the molecular basis of EPNs induced mortality in F1 host larvae was evaluated. Dual stress of EPN infection and irradiation induced downregulation of the relative mRNA expression of antimicrobial genes and upregulated expression of antioxidative genes. A pronounced effect of EPNs in association with irradiation stress was apparent on host mortality. Radiation induced sterile F1 insect larvae of S. litura acted as a reasonably suitable host for EPNs and also provided the environment for developing viable EPNs for their potential use as biocontrol agents.
Collapse
Affiliation(s)
- Simran Arora
- Department of Zoology, University of Delhi, North Campus, Delhi, 110007, India
| | - Ranjana Seth
- Department of Zoology, University of Delhi, North Campus, Delhi, 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, North Campus, Delhi, 110007, India
| | - R K Seth
- Department of Zoology, University of Delhi, North Campus, Delhi, 110007, India.
| |
Collapse
|
5
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
7
|
Váňa V, Lipový B, Vacek L, Pavelka A, Janda L, Holoubek J. Two faces of the antimicrobial peptides and their relevance to burn wound infection. Burns 2024; 50:1938-1940. [PMID: 38777668 DOI: 10.1016/j.burns.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Affiliation(s)
- V Váňa
- Department of Burns and Plastic Surgery, Institution shared with University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic.
| | - B Lipový
- Department of Burns and Plastic Surgery, Institution shared with University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic; Advanced Biomaterials Group, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - L Vacek
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - A Pavelka
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - L Janda
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - J Holoubek
- Department of Burns and Plastic Surgery, Institution shared with University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
9
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
10
|
Bahreini M, Moghaddam MM, Ghorbani M, Nourani MR, Mirnejad R. Antimicrobial peptide-fibrin glue mixture for treatment of methicillin-resistant Staphylococcus aureus-infected wounds. Ther Deliv 2024; 15:577-591. [PMID: 39011599 PMCID: PMC11412140 DOI: 10.1080/20415990.2024.2369497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: This study was conducted to investigate the effect of fibrin glue-CM11 antibacterial peptide mixture (FG-P) on the healing of infected wounds in vivo.Materials & methods: We formulated a mixture of FG-P and evaluated its antimicrobial activity in vitro against multidrug-resistant (MDR) bacteria involved in wound infection as well as its healing effect on wound infected by methicillin-resistant S. aureus (MRSA) in vivo.Results: The peptide had an MIC of 8 μg/ml against all bacteria isolates. Growth inhibition zones were evident for FG-P compared with FG. The in vivo study showed that the FG-P could be significantly effective in healing the MRSA-infected wound.Conclusion: The use of FG-P mixture is a very suitable option for treating infected wounds.
Collapse
Affiliation(s)
- Mehran Bahreini
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Yoon JW, Kim MO, Shin S, Kwon WS, Kim SH, Kwon YJ, Lee SI. Spirobenzofuran Mitigates Ochratoxin A-Mediated Intestinal Adverse Effects in Pigs through Regulation of Beta Defensin 1. TOXICS 2024; 12:487. [PMID: 39058139 PMCID: PMC11281199 DOI: 10.3390/toxics12070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Antimicrobial peptides (AMPs) function to extensively suppress various problematic factors and are considered a new alternative for improving livestock health and enhancing immunomodulation. In this study, we explored whether AMP regulation has positive influences on Ochratoxin A (OTA) exposure using a porcine intestinal epithelial cell line (IPEC-J2 cells). We constructed a beta-defensin 1 (DEFB1) expression vector and used it to transfection IPEC-J2 cells to construct AMP overexpression cell lines. The results showed that OTA induced cytotoxicity, decreased cell migration, and increased inflammatory markers mRNA in IPEC-J2 cells. In DEFB1 overexpressing cell lines, OTA-induced reduced cell migration and increased inflammatory markers mRNA were alleviated. Additionally, a natural product capable of inducing DEFB1 expression, which was selected through high-throughput screening, showed significant alleviation of cytotoxicity, cell migration, and inflammatory markers compared to OTA-treated IPEC-J2 cells. Our finding provides novel insights and clues for the porcine industry, which is affected by OTA exposure.
Collapse
Affiliation(s)
- Jung Woong Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Soo Hyun Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, North Gyeongsang, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Yun-Ju Kwon
- National Institute for Korean Medicine Development, Gyeongsan 38540, North Gyeongsang, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
12
|
Alencar-Silva T, Díaz-Martín RD, Sousa Dos Santos M, Saraiva RVP, Leite ML, de Oliveira Rodrigues MT, Pogue R, Andrade R, Falconi Costa F, Brito N, Dias SC, Carvalho JL. Screening of the Skin-Regenerative Potential of Antimicrobial Peptides: Clavanin A, Clavanin-MO, and Mastoparan-MO. Int J Mol Sci 2024; 25:6851. [PMID: 38999961 PMCID: PMC11241485 DOI: 10.3390/ijms25136851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 μM for Clavanin-A and Clavanin-MO, and 6.25 μM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rubén D Díaz-Martín
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Mickelly Sousa Dos Santos
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rivaldo Varejão Pasqual Saraiva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil
| | | | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Rosângela Andrade
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Fabrício Falconi Costa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
| | - Nicolau Brito
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 71966-700, Brazil
| | - Simoni Campos Dias
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
- Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Brasília 71966-700, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
13
|
Ruchti F, Zwicky P, Becher B, Dubrac S, LeibundGut-Landmann S. Epidermal barrier impairment predisposes for excessive growth of the allergy-associated yeast Malassezia on murine skin. Allergy 2024; 79:1531-1547. [PMID: 38385963 DOI: 10.1111/all.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The skin barrier is vital for protection against environmental threats including insults caused by skin-resident microbes. Dysregulation of this barrier is a hallmark of atopic dermatitis (AD) and ichthyosis, with variable consequences for host immune control of colonizing commensals and opportunistic pathogens. While Malassezia is the most abundant commensal fungus of the skin, little is known about the host control of this fungus in inflammatory skin diseases. METHODS In this experimental study, MC903-treated mice were colonized with Malassezia spp. to assess the host-fungal interactions in atopic dermatitis. Additional murine models of AD and ichthyosis, including tape stripping, K5-Nrf2 overexpression and flaky tail mice, were employed to confirm and expand the findings. Skin fungal counts were enumerated. High parameter flow cytometry was used to characterize the antifungal response in the AD-like skin. Structural and functional alterations in the skin barrier were determined by histology and transcriptomics of bulk skin. Finally, differential expression of metabolic genes in Malassezia in atopic and control skin was quantified. RESULTS Malassezia grows excessively in AD-like skin. Fungal overgrowth could, however, not be explained by the altered immune status of the atopic skin. Instead, we found that by upregulating key metabolic genes in the altered cutaneous niche, Malassezia acquired enhanced fitness to efficiently colonise the impaired skin barrier. CONCLUSIONS This study provides evidence that structural and metabolic changes in the dysfunctional epidermal barrier environment provide increased accessibility and an altered lipid profile, to which the lipid-dependent yeast adapts for enhanced nutrient assimilation. Our findings reveal fundamental insights into the implication of the mycobiota in the pathogenesis of common skin barrier disorders.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
15
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
16
|
Tanveer T, Ali S, Ali NM, Farooq MA, Summer M, Hassan A, Ali F, Irfan M, Kanwal L, Shahzad H, Islam R. Evaluating the Effect of pH, Temperature and Concentration on Antioxidant and Antibacterial Potential of Spectroscopically, Spectrophotometrically and Microscopically Characterized Mentha Spicata Capped Silver Nanoparticles. J Fluoresc 2024; 34:1253-1267. [PMID: 37523138 DOI: 10.1007/s10895-023-03322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
The use of traditional plants has been tremendously increased due to their higher biological impact, minimal side effects, and comparatively low cost. Moreover, the emergence of antibacterial resistance is also shifting the scientific community to reconsider herbal remedies which provide relatively safer, cheap and biologically tolerable solutions. The present research was designed to fabricate the Mentha spicata conjugated silver nanoparticles (Me-AgNPs). Furthermore, the assessment of the bactericidal potential of Me-AgNPs against various bacterial strains was another motive behind this study. Fabricated NPs were characterized with the help of the UV-Visible spectrophotometric analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). Me-AgNPs showed a significant zone of inhibition (23 ± 0.2 mm) at 8 mg/mL against Staphylococcus aureus and a 4.0 ± 0.2 mm zone of growth inhibition at 2 mg/mL against Aeromonas veronii. The stability of Me-AgNPs was assessed at various pH (4, 7 and 11) and temperatures (25 °C, 4 °C, 37 °C, 75 °C). The significant zones of inhibition (11.3 ± 0.3 mm, 8.3 ± 0.3mm, 14.3 ± 0.3 mm, and 7.6 ± 0.2 mm) were observed at pH 11 against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumoniae, respectively. Growth inhibition zones (14.0 ± 0.5 mm and 13.0 ± 0.5 mm) were also determined against B. subtilis and S. aureus at 25 °C. DPPH bioassay was conducted to find the antioxidant properties of Me-AgNPs. The highest (38.66 ± 0.2%) free radical scavenging activity was shown by Me-AgNPs at 4 mg/mL. Present study results concluded that biogenic Me-AgNPs have bactericidal as well as anti-oxidative potential. Moreover, these green synthesized Me-AgNPs could maintain their potency and stability at a wide range of pH and temperature.
Collapse
Affiliation(s)
- Tahreem Tanveer
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan.
| | - Nazish Mazhar Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Summer
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Ali Hassan
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Fareha Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Lubna Kanwal
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Hafsa Shahzad
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| | - Rahila Islam
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, 54000, Lahore, Pakistan
| |
Collapse
|
17
|
Ahmad A, Khan JM, Bandy A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024; 16:e58178. [PMID: 38741875 PMCID: PMC11089580 DOI: 10.7759/cureus.58178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
The sources of antimicrobial peptides (AMPs), also known as peptide-based antibiotics, are diverse, such as plants, animals, microorganisms including human leukocytes, saliva, human defense peptides, and human sweat. These natural sources provide a rich variety of AMPs with unique characteristics and potential therapeutic applications, including wound-healing and antimicrobial properties. AMPs derived from these sources have shown promise in combating a wide range of pathogens, making them valuable targets for further research and potential clinical applications. The design of AMPs for wound healing involves a meticulous process of structurally optimizing peptides to possess a unique combination of antibacterial and wound-healing characteristics. This systematic review was produced to show the design and applications of AMPs in wound healing. The terms "antimicrobial peptides AND wound healing" were used to search for articles published between September 2023 and January 2010. In the search, we found a total of 12958 articles, of which 12898 were excluded, and the remaining 60 articles were chosen for further study. This systematic review underscores the potential of AMPs as valuable tools in infection control and wound healing, showcasing their versatility and effectiveness in combating a wide range of pathogens. Overall, AMPs in wound healing display a diverse mechanism of action, influencing the inflammatory response, encouraging tissue regeneration, and aiding tissue remodeling, along with strong antibacterial activity. Furthermore, this systematic review addresses AMP toxicity studies, which include rigorous in vitro and in vivo examinations to determine potential cytotoxic effects, systemic toxicity, and any adverse responses connected with its usage in wound-healing applications.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, SAU
| | - Javed M Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, SAU
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra, SAU
| |
Collapse
|
18
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
19
|
Ghosh SK, Man Y, Fraiwan A, Waters C, McKenzie C, Lu C, Pfau D, Kawsar H, Bhaskaran N, Pandiyan P, Jin G, Briggs F, Zender CC, Rezaee R, Panagakos F, Thuener JE, Wasman J, Tang A, Qari H, Wise-Draper T, McCormick TS, Madabhushi A, Gurkan UA, Weinberg A. Beta-defensin index: A functional biomarker for oral cancer detection. Cell Rep Med 2024; 5:101447. [PMID: 38442713 PMCID: PMC10983043 DOI: 10.1016/j.xcrm.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.
Collapse
Affiliation(s)
- Santosh K Ghosh
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA.
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | - Arwa Fraiwan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | | | - Crist McKenzie
- Division of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Cheng Lu
- Center for Computational Imaging & Personalized Diagnostics, CWRU, Cleveland, OH, USA
| | - David Pfau
- School of Medicine, CWRU, Cleveland, OH, USA
| | - Hameem Kawsar
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Natarajan Bhaskaran
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Pushpa Pandiyan
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Ge Jin
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Farren Briggs
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH, USA
| | - Chad C Zender
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Rod Rezaee
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Fotinos Panagakos
- West Virginia University (WVU) School of Dentistry, Morgantown, WV, USA
| | - Jason E Thuener
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Jay Wasman
- Department of Pathology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Alice Tang
- Otolaryngology, Head & Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiba Qari
- Department of Diagnostic Sciences, WVU School of Dentistry, Morgantown, WV, USA
| | - Trisha Wise-Draper
- Division of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | - Aaron Weinberg
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA.
| |
Collapse
|
20
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
21
|
Shi Y, Lain E, Frasson N, Ortiz-Brugués A, Stennevin A. The Real-World Effectiveness and Tolerability of a Soothing Cream Containing the Postbiotic Aquaphilus dolomiae Extract-G2 for Skin Healing. Dermatol Ther (Heidelb) 2024; 14:697-712. [PMID: 38451421 PMCID: PMC10965845 DOI: 10.1007/s13555-024-01119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION In vitro and pre-marketing clinical data have shown the healing properties of a postbiotic extract from Aquaphilus dolomiae (ADE-G2). The effectiveness and tolerability of an ADE-G2-based cream were therefore evaluated for the management of minor skin impairment and wound healing in a large population of subjects in routine clinical practice. METHODS A real-world, international, pre-post comparative study was conducted in infants, children, and adults with various types of superficial skin impairment who used the study product daily for around 3 weeks according to their dermatologist's advice. Immediate and follow-up changes in dermatologic signs and symptoms were assessed through clinical scoring. User satisfaction, overall product effectiveness, and tolerability were also evaluated. Analyses were performed in the whole study population and in subject subgroups according to skin impairment type and age. RESULTS Overall, 1317 subjects (83.1% adults, 72.0% female) were included. Dermatologists reported effectiveness and "good" or "very good" tolerability of the cream in 93.8% (1221/1302) and 98.5% (1278/1297) of subjects, respectively. Immediate symptom relief after the first application was reported by 88.3% (849/962) of subjects. After several weeks of regular use (16.7 ± 11.6 days), dermatologic signs and symptoms significantly improved in the whole study population and in the subgroups, with mean decreases in severity scores ranging from -34.5% to -92.5% (p < 0.0001). The smallest improvements were found in subjects with oncologic treatment-related skin impairment. At study end, most users (> 95%) were "very satisfied" or "satisfied" with the cream and found that skin healing was rapid and of good quality. CONCLUSION The ADE-G2-based cream proved to be effective and well tolerated in real-life conditions for the management of minor skin impairment in a large and varied cohort of subjects. This product, used as a standalone or adjunctive regimen, can help accelerate the healing of various types of superficial skin impairment.
Collapse
Affiliation(s)
- Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital and Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Edward Lain
- Sanova Dermatology, Austin Institute for Clinical Research, Austin, TX, USA
| | - Nicolas Frasson
- , 2 Avenue du Docteur Jean Ster, 34240, Lamalou Les Bains, France
| | - Ariadna Ortiz-Brugués
- Laboratoires Dermatologiques Avène, Pierre Fabre Dermo-Cosmétique, Les Cauquillous, 81500, Lavaur, France
| | - Aline Stennevin
- Laboratoires Dermatologiques Avène, Pierre Fabre Dermo-Cosmétique, Les Cauquillous, 81500, Lavaur, France.
| |
Collapse
|
22
|
Wang Y, Hua Z, Tang L, Song Q, Cui Q, Sun S, Yuan Y, Zhang L. Therapeutic implications of extracorporeal shock waves in burn wound healing. J Tissue Viability 2024; 33:96-103. [PMID: 38155029 DOI: 10.1016/j.jtv.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Burns are a common type of trauma that seriously affect not only the physical health, but also the mental health and quality of life of the patient. Extracorporeal shock wave therapy (ESWT) is an emerging treatment that has been used in clinical treatment. It has many advantages, including safety, non-invasiveness, efficiency, short treatment duration, fewer complications, and relatively low prices. In clinical settings, ESWT has played an important role in the healing process of burns and the prevention of sequelae. This article reviews the history of ESWT, the mechanism of ESWT to promote burn healing, and the application of ESWT in burns. Current status of ESWT treatment for burns as well as future perspectives for research have been summarized and proposed. However, patients with burns cannot be considered recovered when the wounds have healed, we need some new technology to adjust to the challenges of the future.
Collapse
Affiliation(s)
- Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Zuoyu Hua
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Liang Tang
- Department of Rehabilitation Medicine, Anshan Central Hospotal (6 Th Clinical College of China Medical University), Anshan, Liaoning Province, 114001, China
| | - Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China.
| |
Collapse
|
23
|
Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, Ahmad H, Maarof M, Motta A, Fauzi MB. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng 2024; 15:20417314241280359. [PMID: 39398382 PMCID: PMC11468004 DOI: 10.1177/20417314241280359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Shahabudin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Raniya Adiba Mohd Razif
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Arka Sanyal
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anushikha Ghosh
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
24
|
Biomaterial therapeutic strategies for treatment of bacterial lung infections. Biofilm 2023; 5:100111. [PMID: 36909663 PMCID: PMC9999167 DOI: 10.1016/j.bioflm.2023.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bacterial infections of the lung frequently occur as a secondary infection to many respiratory viral infections and conditions, including influenza, COVID-19, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). Currently, clinical standard treats bacterial infections of the lung with antibiotic drugs. However, the use of broad-spectrum antibiotics can disrupt host microbiomes, lead to patient discomfort, and current clinical settings face the constantly increasing threat of drug-resistant bacteria. Biofilms further obstruct effective treatment due to their protective matrix layer, which shields bacteria from both the host immune system and antimicrobial drugs and subsequently promotes drug resistance. Alternative antimicrobial agents, including bacteriophages and antimicrobial peptides, have been utilized to treat drug-resistant bacteria. However, these antimicrobial agents have significant limitations pertaining to their ability to arrive at infection sites without compromised function and ability to persist over an extended period to fully treat infections. Enhanced delivery strategies present great promise in addressing these issues by using micro/nanoparticle carriers that shield antimicrobial agents in transit and result in sustained release, enhancing subsequent therapeutic effect and can even be modulated to be multi-functional to further improve recovery following bacterial infection.
Collapse
|
25
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
26
|
Qi G, Tang Y, Shi L, Zhuang J, Liu X, Liu B. Capsule Shedding and Membrane Binding Enhanced Photodynamic Killing of Gram-Negative Bacteria by a Unimolecular Conjugated Polyelectrolyte. NANO LETTERS 2023; 23:10374-10382. [PMID: 37921703 DOI: 10.1021/acs.nanolett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The development of new antimicrobial agents to treat infections caused by Gram-negative bacteria is of paramount importance due to increased antibiotic resistance worldwide. Herein, we show that a water-soluble porphyrin-cored hyperbranched conjugated polyelectrolyte (PorHP) exhibits high photodynamic bactericidal activity against the Gram-negative bacteria tested, including a multidrug-resistant (MDR) pathogen, while demonstrating low cytotoxicity toward mammalian cells. Comprehensive analyses reveal that the antimicrobial activity of PorHP proceeds via a multimodal mechanism by effective bacterial capsule shedding, strong bacterial outer membrane binding, and singlet oxygen generation. Through this multimodal antimicrobial mechanism, PorHP displays significant performance for Gram-negative bacteria with >99.9% photodynamic killing efficacy. Overall, PorHP shows great potential as an antimicrobial agent in fighting the growing threat of Gram-negative bacteria.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Xianglong Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore (Singapore), 4 Engineering Drive 4, Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University (Fuzhou, China), Binhai New City, Fuzhou 350207, China
- Institute for Functional Intelligent Materials, National University of Singapore (Singapore), Blk S9, Level 9, 4 Science Drive 2, Singapore 117544
| |
Collapse
|
27
|
Barman P, Sharma C, Joshi S, Sharma S, Maan M, Rishi P, Singla N, Saini A. In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10176-1. [PMID: 37910332 DOI: 10.1007/s12602-023-10176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Bacterial infections at the surgical sites are one of the most prevalent skin infections that impair the healing mechanism. They account for about 20% of all types of infections and lead to approximately 75% of surgical-site infection-associated mortality. Several antibiotics, such as cephalosporins, fluoroquinolones, quinolones, penicillin, sulfonamides, etc., that are used to treat such wound infections not only counter infections but also disrupt the normal flora. Moreover, antibiotics, when used for a prolonged duration, may impair the formation of new blood vessels, delay collagen production, or inhibit the migration of certain cells involved in wound repair, leading to an impaired healing process. Therefore, there is a dire need for alternate therapeutic approaches against such infections. Antimicrobial peptides have gained considerable attention as a promising strategy to counter these pathogens and prevent the spread of infection. Recently, we have reported a designed peptide, DP1, and its broad-spectrum in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, in vivo acute toxicity of DP1 was evaluated and even at a high dose (20 mg/kg body weight) of DP1, a 100% survival of mice was observed. Subsequently, a Staphylococcus aureus-infected murine wound excision model was established to assess the wound healing efficacy of DP1. The study revealed significant wound healing vis-a-vis attenuated S. aureus bioburden at the wound site and also controlled the oxidative stress depicting anti-oxidant activity as well. Healing of the infected wounds was also verified by histopathological examination. Based on the results of this study, it can be concluded that DP1 improves wound resolution despite infections and promotes the healing mechanism. Hence, DP1 holds compelling potential as a novel antimicrobial drug that requires further explorations in clinical platforms.
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, 160014, India
| | - Chakshu Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, U.T, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T, 160014, India.
| |
Collapse
|
28
|
Trejos M, Aristizabal Y, Aragón-Muriel A, Oñate-Garzón J, Liscano Y. Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). Int J Mol Sci 2023; 24:13091. [PMID: 37685896 PMCID: PMC10487549 DOI: 10.3390/ijms241713091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The growing challenge of chronic wounds and antibiotic resistance has spotlighted the potential of dual-function peptides (antimicrobial and wound healing) as novel therapeutic strategies. The investigation aimed to characterize and correlate in silico the physicochemical attributes of these peptides with their biological activity. We sourced a dataset of 207 such peptides from various peptide databases, followed by a detailed analysis of their physicochemical properties using bioinformatic tools. Utilizing statistical tools like clustering, correlation, and principal component analysis (PCA), patterns and relationships were discerned among these properties. Furthermore, we analyzed the peptides' functional domains for insights into their potential mechanisms of action. Our findings spotlight peptides in Cluster 2 as efficacious in wound healing, whereas Cluster 1 peptides exhibited pronounced antimicrobial potential. In our study, we identified specific amino acid patterns and peptide families associated with their biological activities, such as the cecropin antimicrobial domain. Additionally, we found the presence of polar amino acids like arginine, cysteine, and lysine, as well as apolar amino acids like glycine, isoleucine, and leucine. These characteristics are crucial for interactions with bacterial membranes and receptors involved in migration, proliferation, angiogenesis, and immunomodulation. While this study provides a groundwork for therapeutic development, translating these findings into practical applications necessitates additional experimental and clinical research.
Collapse
Affiliation(s)
- María Trejos
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Yesid Aristizabal
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
- Grupo de Investigación e Innovación en Biotecnología (BITI), Tecnoparque Nodo Valle, Servicio Nacional de Aprendizaje (SENA), Cali 760044, Colombia
| | - José Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (J.O.-G.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
29
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
30
|
Soundrarajan N, Somasundaram P, Kim D, Cho HS, Jeon H, Ahn B, Kang M, Song H, Park C. Effective Healing of Staphylococcus aureus-Infected Wounds in Pig Cathelicidin Protegrin-1-Overexpressing Transgenic Mice. Int J Mol Sci 2023; 24:11658. [PMID: 37511418 PMCID: PMC10380341 DOI: 10.3390/ijms241411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.
Collapse
Affiliation(s)
| | - Prathap Somasundaram
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Dohun Kim
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Byeonyong Ahn
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| |
Collapse
|
31
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
32
|
Cappiello F, Verma S, Lin X, Moreno IY, Casciaro B, Dutta D, McDermott AM, Willcox M, Coulson-Thomas VJ, Mangoni ML. Novel Peptides with Dual Properties for Treating Pseudomonas aeruginosa Keratitis: Antibacterial and Corneal Wound Healing. Biomolecules 2023; 13:1028. [PMID: 37509064 PMCID: PMC10377436 DOI: 10.3390/biom13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
- School of Optometry, Aston University, Birmingham B4 7ET, UK
| | - Alison M. McDermott
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| |
Collapse
|
33
|
Cao M, He C, Gong M, Wu S, He J. The effects of vitamin D on all-cause mortality in different diseases: an evidence-map and umbrella review of 116 randomized controlled trials. Front Nutr 2023; 10:1132528. [PMID: 37426183 PMCID: PMC10325578 DOI: 10.3389/fnut.2023.1132528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose To conduct a solid evidence by synthesizing meta-analyses and updated RCTs about the effects of vitamin D on all-cause mortality in different health conditions. Methods Data sources: Pubmed, Embase, Web of Science, the Cochrane Library, Google Scholar from inception until 25th April, 2022. Study selection: English-language, meta-analyses and updated RCTs assessing the relationships between vitamin D and all-cause mortality. Data synthesis: Information of study characteristics, mortality, supplementation were extracted, estimating with fixed-effects model. A Measurement Tool to Assess Systematic Reviews, Grading of Recommendations Assessment, Development and Evaluation, and funnel plot was used to assess risk of bias. Main outcomes: All-cause mortality, cancer mortality, cardiovascular disease mortality. Results In total of 27 meta-analyses and 19 updated RCTs were selected, with a total of 116 RCTs and 149, 865 participants. Evidence confirms that vitamin D reduces respiratory cancer mortality (RR, 0.56 [95%CI, 0.33 to 0.96]). All-cause mortality is decreased in patients with COVID-19 (RR, 0.54[95%CI, 0.33 to 0.88]) and liver diseases (RR, 0.64 [95%CI, 0.50 to 0.81]), especially in liver cirrhosis (RR, 0.63 [95%CI, 0.50 to 0.81]). As for other health conditions, such as the general health, chronic kidney disease, critical illness, cardiovascular diseases, musculoskeletal diseases, sepsis, type 2 diabetes, no significant association was found between vitamin D and all-cause mortality. Conclusions Vitamin D may reduce respiratory cancer mortality in respiratory cancer patients and all-cause mortality in COVID-19 and liver disorders' patients. No benefits showed in all-cause mortality after vitamin D intervention among other health conditions. The hypothesis of reduced mortality with vitamin D still requires exploration. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=252921, identifier: CRD42021252921.
Collapse
Affiliation(s)
- Mingyu Cao
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Chunrong He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew Gong
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Wu
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinshen He
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Wang X, Duan H, Li M, Xu W, Wei L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front Cell Dev Biol 2023; 11:1219427. [PMID: 37397255 PMCID: PMC10309037 DOI: 10.3389/fcell.2023.1219427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Wound-healing-promoting peptides are excellent candidates for developing wound-healing agents due to their small size and low production cost. Amphibians are one of the major sources of bioactive peptides, including wound-healing-promoting peptides. So far, a series of wound-healing-promoting peptides have been characterized from amphibians. We hereby summarized the amphibian-derived wound-healing-promoting peptides and their mechanism of action. Among these peptides, two peptides (tylotoin and TK-CATH) were characterized from salamanders, and twenty five peptides were characterized from frogs. These peptides generally have small sizes with 5-80 amino acid residues, nine peptides (tiger17, cathelicidin-NV, cathelicidin-DM, OM-LV20, brevinin-2Ta, brevinin-2PN, tylotoin, Bv8-AJ, and RL-QN15) have intramolecular disulfide bonds, seven peptides (temporin A, temporin B, esculentin-1a, tiger17, Pse-T2, DMS-PS2, FW-1, and FW-2) are amidated at the C-terminus, and the others are linear peptides without modifications. They all efficiently accelerated the healing of skin wounds or photodamage in mice or rats. They selectively promoted the proliferation and migration of keratinocytes and fibroblasts, recruited neutrophils and macrophages to wounds, and regulated the immune response of neutrophils and macrophages in wounds, which were essential for wound healing. Interestingly, MSI-1, Pse-T2, cathelicidin-DM, brevinin-2Ta, brevinin-2PN, and DMS-PS2 were just antimicrobial peptides, but they also significantly promoted the healing of infected wounds by clearing off bacteria. Considering the small size, high efficiency, and definite mechanism, amphibian-derived wound-healing-promoting peptides might be excellent candidates for developing novel wound-healing-promoting agents in future.
Collapse
|
35
|
Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. Photodynamic Therapy, Probiotics, Acetic Acid, and Essential Oil in the Treatment of Chronic Wounds Infected with Pseudomonas aeruginosa. Pharmaceutics 2023; 15:1721. [PMID: 37376169 PMCID: PMC10301549 DOI: 10.3390/pharmaceutics15061721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a prevalent medical problem that burdens millions of patients across the world, chronic wounds pose a challenge to the healthcare system. These wounds, often existing as a comorbidity, are vulnerable to infections. Consequently, infections hinder the healing process and complicate clinical management and treatment. While antibiotic drugs remain a popular treatment for infected chronic wounds, the recent rise of antibiotic-resistant strains has hastened the need for alternative treatments. Future impacts of chronic wounds are likely to increase with aging populations and growing obesity rates. With the need for more effective novel treatments, promising research into various wound therapies has seen an increased demand. This review summarizes photodynamic therapy, probiotics, acetic acid, and essential oil studies as developing antibiotic-free treatments for chronic wounds infected with Pseudomonas aeruginosa. Clinicians may find this review informative by gaining a better understanding of the state of current research into various antibiotic-free treatments. Furthermore. this review provides clinical significance, as clinicians may seek to implement photodynamic therapy, probiotics, acetic acid, or essential oils into their own practice.
Collapse
Affiliation(s)
- Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The Second People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China
| | - Trenton G. Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Braydon C. Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
36
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
37
|
Scieuzo C, Giglio F, Rinaldi R, Lekka ME, Cozzolino F, Monaco V, Monti M, Salvia R, Falabella P. In Vitro Evaluation of the Antibacterial Activity of the Peptide Fractions Extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). INSECTS 2023; 14:insects14050464. [PMID: 37233092 DOI: 10.3390/insects14050464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Antimicrobial peptides (AMPs) are a chemically and structurally heterogeneous family of molecules produced by a large variety of living organisms, whose expression is predominant in the sites most exposed to microbial invasion. One of the richest natural sources of AMPs is insects which, over the course of their very long evolutionary history, have adapted to numerous and different habitats by developing a powerful innate immune system that has allowed them to survive but also to assert themselves in the new environment. Recently, due to the increase in antibiotic-resistant bacterial strains, interest in AMPs has risen. In this work, we detected AMPs in the hemolymph of Hermetia illucens (Diptera, Stratiomyidae) larvae, following infection with Escherichia coli (Gram negative) or Micrococcus flavus (Gram positive) and from uninfected larvae. Peptide component, isolated via organic solvent precipitation, was analyzed by microbiological techniques. Subsequent mass spectrometry analysis allowed us to specifically identify peptides expressed in basal condition and peptides differentially expressed after bacterial challenge. We identified 33 AMPs in all the analyzed samples, of which 13 are specifically stimulated by Gram negative and/or Gram positive bacterial challenge. AMPs mostly expressed after bacterial challenge could be responsible for a more specific activity.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fabiana Giglio
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Roberta Rinaldi
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145 Naples, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
38
|
Blasi-Romero A, Ångström M, Franconetti A, Muhammad T, Jiménez-Barbero J, Göransson U, Palo-Nieto C, Ferraz N. KR-12 Derivatives Endow Nanocellulose with Antibacterial and Anti-Inflammatory Properties: Role of Conjugation Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24186-24196. [PMID: 37167266 DOI: 10.1021/acsami.3c04237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This work combines the wound-healing-related properties of the host defense peptide KR-12 with wood-derived cellulose nanofibrils (CNFs) to obtain bioactive materials, foreseen as a promising solution to treat chronic wounds. Amine coupling through carbodiimide chemistry, thiol-ene click chemistry, and Cu(I)-catalyzed azide-alkyne cycloaddition were investigated as methods to covalently immobilize KR-12 derivatives onto CNFs. The effects of different coupling chemistries on the bioactivity of the KR12-CNF conjugates were evaluated by assessing their antibacterial activities against Escherichia coli and Staphylococcus aureus. Potential cytotoxic effects and the capacity of the materials to modulate the inflammatory response of lipopolysaccharide (LPS)-stimulated RAW 245.6 macrophages were also investigated. The results show that KR-12 endowed CNFs with antibacterial activity against E. coli and exhibited anti-inflammatory properties and those conjugated by thiol-ene chemistry were the most bioactive. This finding is attributed to a favorable peptide conformation and accessibility (as shown by molecular dynamics simulations), driven by the selective chemistry and length of the linker in the conjugate. The results represent an advancement in the development of CNF-based materials for chronic wound care. This study provides new insights into the effect of the conjugation chemistry on the bioactivity of immobilized host defense peptides, which we believe to be of great value for the use of host defense peptides as therapeutic agents.
Collapse
Affiliation(s)
- Anna Blasi-Romero
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Molly Ångström
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | | | - Taj Muhammad
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio-Bizkaia 48160, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Bilbao 48009, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Carlos Palo-Nieto
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
39
|
Leite ML, Duque HM, Rodrigues GR, da Cunha NB, Franco OL. The LL-37 domain: a clue to cathelicidin immunomodulatory response? Peptides 2023; 165:171011. [PMID: 37068711 DOI: 10.1016/j.peptides.2023.171011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response. AVAILABILITY OF DATA AND MATERIAL: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, Brasil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
40
|
Froelich A, Jakubowska E, Wojtyłko M, Jadach B, Gackowski M, Gadziński P, Napierała O, Ravliv Y, Osmałek T. Alginate-Based Materials Loaded with Nanoparticles in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041142. [PMID: 37111628 PMCID: PMC10143535 DOI: 10.3390/pharmaceutics15041142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Alginate is a naturally derived polysaccharide widely applied in drug delivery, as well as regenerative medicine, tissue engineering and wound care. Due to its excellent biocompatibility, low toxicity, and the ability to absorb a high amount of exudate, it is widely used in modern wound dressings. Numerous studies indicate that alginate applied in wound care can be enhanced with the incorporation of nanoparticles, revealing additional properties beneficial in the healing process. Among the most extensively explored materials, composite dressings with alginate loaded with antimicrobial inorganic nanoparticles can be mentioned. However, other types of nanoparticles with antibiotics, growth factors, and other active ingredients are also investigated. This review article focuses on the most recent findings regarding novel alginate-based materials loaded with nanoparticles and their applicability as wound dressings, with special attention paid to the materials of potential use in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Emilia Jakubowska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Olga Napierała
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Yulia Ravliv
- Department of Pharmacy Management, Economics and Technology, I. Horbachevsky Ternopil National Medical University, 36 Ruska Street, 46000 Ternopil, Ukraine
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
41
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
42
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
43
|
Yao Y, Zhang W, Li S, Xie H, Zhang Z, Jia B, Huang S, Li W, Ma L, Gao Y, Song J, Wang R. Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. J Med Chem 2023; 66:6617-6630. [PMID: 36893465 DOI: 10.1021/acs.jmedchem.2c02021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.
Collapse
Affiliation(s)
- Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengzheng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenyuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuxuan Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
44
|
Sathiyaseelan A, Zhang X, Wang MH. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023; 15:nu15061319. [PMID: 36986049 PMCID: PMC10051692 DOI: 10.3390/nu15061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, antibacterial and antioxidant molecules-rich Melaleuca alternifolia oil (tea tree oil (TTO)) loaded chitosan (CS) based nanoemulsions (NEMs) were prepared and encapsulated by sodium alginate (SA) microsphere for antibacterial wound dressing. CS-TTO NEMs were prepared by oil-in-water emulsion technique, and the nanoparticle tracking analysis (NTA) confirmed that the CS-TTO NEMs had an average particle size of 89.5 nm. Further, the SA-CS-TTO microsphere was confirmed through SEM analysis with an average particle size of 0.76 ± 0.10 µm. The existence of TTO in CS NEMs and SA encapsulation was evidenced through FTIR analysis. The XRD spectrum proved the load of TTO and SA encapsulation with CS significantly decreased the crystalline properties of the CS-TTO and SA-CS-TTO microsphere. The stability of TTO was increased by the copolymer complex, as confirmed through thermal gravimetric analysis (TGA). Furthermore, TTO was released from the CS-SA complex in a sustained manner and significantly inhibited the bacterial pathogens observed under confocal laser scanning microscopy (CLSM). In addition, CS-TTO (100 µg/mL) showed antioxidant potential (>80%), thereby increasing the DPPH and ABTS free radicals scavenging ability of SA-CS-TTO microspheres. Moreover, CS and SA-CS-TTO microsphere exhibited negligible cytotoxicity and augmented the NIH3T3 cell proliferation confirmed in the in vitro scratch assay. This study concluded that the SA-CS-TTO microsphere could be an antibacterial and antioxidant wound dressing.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
45
|
Canchy L, Kerob D, Demessant A, Amici JM. Wound healing and microbiome, an unexpected relationship. J Eur Acad Dermatol Venereol 2023; 37 Suppl 3:7-15. [PMID: 36635613 DOI: 10.1111/jdv.18854] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Skin wounds are common and represent a major public health and economical problem, with risks of complications and a significant negative impact on the quality of life of patients. Cutaneous wound healing is a tightly regulated process resulting in the restoration of tissue integrity. Wound healing involves the interaction of several skin, immune and vascular cells, growth factors and cytokines. However, external actors can play an important role in wound healing, such as the skin microbiome, which is the microbial commensal collection of bacteria, fungi and viruses inhabiting the skin. Indeed, recent advances have featured the interactions, within the wound environment, between different microbial species and between microbial species and the host immune system. This article reviews the relationship between the skin microbiome and the wound healing process. Although cutaneous wounds are a potential entry site for infection, the wound microbiome can have either a detrimental or a beneficial role on wound healing. Thus, targeting the skin microbiome could represent an essential part of wound healing management.
Collapse
Affiliation(s)
- Ludivine Canchy
- Laboratoire Dermatologique La Roche-Posay, Levallois-Perret, France
| | - Delphine Kerob
- Laboratoire Dermatologique La Roche-Posay, Levallois-Perret, France
| | | | - Jean-Michel Amici
- Dermatology Department, CHU Bordeaux, Hôpital Saint-André, Bordeaux, France
| |
Collapse
|
46
|
Purification of PaTx-II from the Venom of the Australian King Brown Snake and Characterization of Its Antimicrobial and Wound Healing Activities. Int J Mol Sci 2023; 24:ijms24054359. [PMID: 36901790 PMCID: PMC10002107 DOI: 10.3390/ijms24054359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Infections caused by multi-drug-resistant (MDR) bacteria are a global threat to human health. As venoms are the source of biochemically diverse bioactive proteins and peptides, we investigated the antimicrobial activity and murine skin infection model-based wound healing efficacy of a 13 kDa protein. The active component PaTx-II was isolated from the venom of Pseudechis australis (Australian King Brown or Mulga Snake). PaTx-II inhibited the growth of Gram-positive bacteria in vitro, with moderate potency (MICs of 25 µM) observed against S. aureus, E. aerogenes, and P. vulgaris. The antibiotic activity of PaTx-II was associated with the disruption of membrane integrity, pore formation, and lysis of bacterial cells, as evidenced by scanning and transmission microscopy. However, these effects were not observed with mammalian cells, and PaTx-II exhibited minimal cytotoxicity (CC50 > 1000 µM) toward skin/lung cells. Antimicrobial efficacy was then determined using a murine model of S. aureus skin infection. Topical application of PaTx-II (0.5 mg/kg) cleared S. aureus with concomitant increased vascularization and re-epithelialization, promoting wound healing. As small proteins and peptides can possess immunomodulatory effects to enhance microbial clearance, cytokines and collagen from the wound tissue samples were analyzed by immunoblots and immunoassays. The amounts of type I collagen in PaTx-II-treated sites were elevated compared to the vehicle controls, suggesting a potential role for collagen in facilitating the maturation of the dermal matrix during wound healing. Levels of the proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-10 (IL-10), factors known to promote neovascularization, were substantially reduced by PaTx-II treatment. Further studies that characterize the contributions towards efficacy imparted by in vitro antimicrobial and immunomodulatory activity with PaTx-II are warranted.
Collapse
|
47
|
Pulat G, Muganlı Z, Ercan UK, Karaman O. Effect of antimicrobial peptide conjugated surgical sutures on multiple drug-resistant microorganisms. J Biomater Appl 2023; 37:1182-1194. [PMID: 36510770 DOI: 10.1177/08853282221145872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surgical site infections are commonly encountered as a risk factor in clinics that increase the morbidity of a patient after a surgical operation. Surgical sutures are one of the leading factor for the formation of surgical site infections that induce bacterial colonization by their broad surface area. Current strategies to overcome with surgical site infections consist utilization of antibiotic agent coatings such as triclosan. However, the significant increase in antibiotic resistance majorly decreases their efficiency against recalcitrant pathogens such as; Pseudomonas aeruginosa and Staphylococcus aureus. Therefore, the development of a multi drug-resistant antimicrobial suture without any cytotoxic effect to combat surgical site infections is vital. Antimicrobial peptides are the first defense line which has a broad range of spectrum against Gram-positive, and Gram-negative bacteria and even viruses. In addition, antimicrobial peptides have a rapid killing mechanism which is enhanced by membrane disruption and inhibition of functional proteins in pathogens without the development of antimicrobial resistance. In the scope of the current study, the antimicrobial effect of antimicrobial peptide conjugated poly (glycolic acid-co-caprolactone) (PGCL) sutures were investigated against P. aeruginosa and methicillin-resistant S. aureus (MRSA) strains by using antimicrobial peptide sequences of KRFRIRVRV-NH2, RWRWRWRW-NH2 and their dual combination (1:1). In addition, in vitro wound scratch assays were performed to evaluate the effect of antimicrobial peptide conjugated sutures on keratinocyte cell lines. Our results indicated that antimicrobial peptide modified sutures could be a potential novel medical device to overcome surgical site infections by the superior acceleration of wound healing.
Collapse
Affiliation(s)
- Günnur Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Zülal Muganlı
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Utku Kürşat Ercan
- Plasma Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, 226844İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
48
|
Qiu JF, Cui WZ, Zhang Q, Dai TM, Liu K, Li JL, Wang YJ, Sima YH, Xu SQ. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. INSECT SCIENCE 2023; 30:31-46. [PMID: 35446483 DOI: 10.1111/1744-7917.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock plays a critical role in the regulation of host immune defense. However, the mechanistic basis for this regulation is largely unknown. Herein, the core clock gene cryptochrome1 (cry1) knockout line in Bombyx mori, an invertebrate animal model, was constructed to obtain the silkworm with dysfunctional molecular clock, and the dynamic regulation of the circadian clock on the immune responsiveness within 24 h of Staphylococcus aureus infection was analyzed. We found that deletion of cry1 decreased viability of silkworms and significantly reduced resistance of larvae to S. aureus. Time series RNA-seq analysis identified thousands of rhythmically expressed genes, including immune response genes, in the larval immune tissue, fat bodies. Uninfected cry1 knockout silkworms exhibited expression patterns of rhythmically expressed genes similar to wild-type (WT) silkworms infected with S. aureus. However, cry1 knockout silkworms exhibited a seriously weakened response to S. aureus infection. The immune response peaked at 6 and 24 h after infection, during which "transcription storms" occurred, and the expression levels of the immune response genes, PGRP and antimicrobial peptides (AMPs), were significantly upregulated in WT. In contrast, cry1 knockout did not effectively activate Toll, Imd, or NF-κB signaling pathways during the immune adjustment period from 12 to 18 h after infection, resulting in failure to initiate the immune responsiveness peak at 24 h after infection. This may be related to inhibited silkworm fat body energy metabolism. These results demonstrated the dynamic regulation of circadian clock on silkworm immune response to bacterial infection and provided important insights into host antimicrobial defense mechanisms.
Collapse
Affiliation(s)
- Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China, Guangxi Province
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| |
Collapse
|
49
|
Byatt TC, Martin P. Parallel repair mechanisms in plants and animals. Dis Model Mech 2023; 16:286774. [PMID: 36706000 PMCID: PMC9903144 DOI: 10.1242/dmm.049801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
All organisms have acquired mechanisms for repairing themselves after accidents or lucky escape from predators, but how analogous are these mechanisms across phyla? Plants and animals are distant relatives in the tree of life, but both need to be able to efficiently repair themselves, or they will perish. Both have an outer epidermal barrier layer and a circulatory system that they must protect from infection. However, plant cells are immotile with rigid cell walls, so they cannot raise an animal-like immune response or move away from the insult, as animals can. Here, we discuss the parallel strategies and signalling pathways used by plants and animals to heal their tissues, as well as key differences. A more comprehensive understanding of these parallels and differences could highlight potential avenues to enhance healing of patients' wounds in the clinic and, in a reciprocal way, for developing novel alternatives to agricultural pesticides.
Collapse
Affiliation(s)
- Timothy C. Byatt
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| | - Paul Martin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| |
Collapse
|
50
|
A Designed Host Defense Peptide for the Topical Treatment of MRSA-Infected Diabetic Wounds. Int J Mol Sci 2023; 24:ijms24032143. [PMID: 36768463 PMCID: PMC9917076 DOI: 10.3390/ijms24032143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is a chronic disease characterized by metabolic dysregulation which is frequently associated with diabetic foot ulcers that result from a severely compromised innate immune system. The high levels of blood glucose characteristic of diabetes cause an increase in circulating inflammatory mediators, which accelerate cellular senescence and dampen antimicrobial activity within dermal tissue. In diabetic wounds, bacteria and fungi proliferate in a protective biofilm forming a structure that a compromised host defense system cannot easily penetrate, often resulting in chronic infections that require antimicrobial intervention to promote the healing process. The designed host defense peptide (dHDP) RP557 is a synthesized peptide whose sequence has been derived from naturally occurring antimicrobial peptides (AMPs) that provide the first line of defense against invading pathogens. AMPs possess an amphipathic α-helix or β-sheet structure and a net positive charge that enables them to incorporate into pathogen membranes and perturb the barrier function of Gram-positive and Gram-negative bacteria along with fungi. The capacity of skin to resist infections is largely dependent upon the activity of endogenous AMPs that provided the basis for the design and testing of RP557 for the resolution of wound infections. In the current study, the topical application of RP557 stopped bacterial growth in the biofilm of methicillin-resistant Staphylococcus aureus (MRSA) USA300 infected wounds on the flanks of clinically relevant diabetic TALLYHO mice. Topical application of RP557 reduced bacterial load and accelerated wound closure, while wound size in control diabetic mice continued to expand. These studies demonstrate that RP557 reduces or eliminates an infection in its biofilm and restores wound-healing capacity.
Collapse
|