1
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
El-Domyati M, Moawad O, Abdel-Wahab H, Behairy EF, Rezk AF. A New Approach with Combined Microneedle and Sublative Fractional Radiofrequency for Photoaging Management: A Clinical, Histometric, and Immunohistochemical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04416-0. [PMID: 39414647 DOI: 10.1007/s00266-024-04416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Fractional radiofrequency (FRF) has been reported to be effective in improving wrinkles. A combination of microneedle and sublative fractional radiofrequency (SFRF) may have the potential synergy to improve photoaged skin. OBJECTIVES To evaluate the efficacy and safety of combined microneedle and SFRF in photoaging management. METHODS This prospective study included 12 subjects with moderate photoaging (skin phototype III-IV). The subjects received three consecutive combined microneedle and sublative FRF at 1-month intervals. Punch biopsies were obtained before and after three months of treatment. Routine H&E, Masson-trichrome, Orcein staining, histometric measurements, as well as Collagen type I and Elastin immunohistochemical staining were performed. RESULTS Significant improvement was noticed regarding skin tightening and texture (p < 0.05), rhytides, and volunteers' satisfaction (p < 0.001). Collagen fibers appeared better organized, with a significant increase in collagen type I (p = 0.001). Meanwhile, normal-appearing elastic fibers were restored, and a significant reduction in abnormal elastin was achieved (p = 0.0005). CONCLUSION Combined microneedle and sublative FRF may provide a new therapeutic approach for photoaged skin. LEVEL OF EVIDENCE II For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Moetaz El-Domyati
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ezzeldin F Behairy
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ahmed F Rezk
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Jin W, Chen G, Chen W, Qiao G, Deng Y, Li K, Cai W. Poly-L-Lactic Acid Reduces the Volume of Dermal Adipose Tissue Through its Metabolite Lactate. Aesthetic Plast Surg 2024:10.1007/s00266-024-04265-x. [PMID: 39060798 DOI: 10.1007/s00266-024-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Poly-L-lactic acid (PLLA), a well-established biostimulator that induces collagenases, is widely used among clinical practice to treat skin aging. However, the precise regulatory effect of PLLA on different dermal cell subsets beyond fibroblast has not been fully elucidated. In this study, we constructed in vivo PLLA injection and in vitro PLLA-adipocyte co-culture models to analyze the regulatory effects of PLLA on the volume, differentiation, lipolysis, and thermogenic capacity of dermal adipocyte. We found that PLLA injection significantly reduced the thickness of dermal fat in mice. In co-culture assay, PLLA showed no effect on adipogenesis, but stimulated the lipolysis activity. Interestingly, PLLA also enhanced the differentiation of fat cells into beige fat cells, which possess higher thermogenic capacity. In mechanical study, we blocked adipocyte lactate uptake with a monocarboxylate transporter (MCT1/4) inhibitor and found that the regulatory effect of PLLA on dermal adipocyte relies on its metabolite lactate. In summary, our results suggest that PLLA has complex regulatory effects on the dermal cells, and its ability to improve skin aging is not fully attributed to stimulating collagen synthesis, but also partially involves adipocytes.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wen Jin
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Guanqun Qiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Yuequ Deng
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Kai Li
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Wei Cai
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
| |
Collapse
|
4
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol 2024; 15:1346612. [PMID: 38465261 PMCID: PMC10920283 DOI: 10.3389/fphys.2024.1346612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.
Collapse
Affiliation(s)
| | | | | | - Wen Yin
- *Correspondence: Ziang Zhang, ; Wen Yin,
| |
Collapse
|
6
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liu M, Lu F, Feng J. Therapeutic potential of adipose tissue derivatives in skin photoaging. Regen Med 2023; 18:869-883. [PMID: 37743749 DOI: 10.2217/rme-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Photoaging, the primary cause of exogenous skin aging and predominantly caused by ultraviolet radiation, is an essential type of skin aging characterized by chronic skin inflammation. Recent studies have shown that oxidative stress, inflammation, skin barrier homeostasis, collagen denaturation and pigmentation are the main contributors to it. As a composite tissue rich in matrix and vascular components, adipose tissue derivatives have been recently gaining attention as potential therapeutic agents for various human diseases with fat-processing technology upgrades. This review analyzes both 'minimally treated' and 'nonminimally treated' fat derivatives to give an overview of the preclinical and clinical relevance of adipose tissue derivatives for antiphotoaging application, highlighting their good clinical prospects as well as discussing their safety and potential risks.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
8
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
9
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon 2023; 9:e13580. [PMID: 36895391 PMCID: PMC9988502 DOI: 10.1016/j.heliyon.2023.e13580] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients. In the mechanistic section of the convoluted procedure of photoaging, we described the effect of UV radiation (UVR) on different cellular macromolecules (direct damage) and subsequently, the deleterious consequences of UVR-generated reactive oxygen species (indirect damage) and signaling pathways activated or inhibited by UV induced ROS generation in various cellular pathologies of skin photoaging like inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. We also discussed the effect of UV radiation on the adipose tissue, and transient receptor potential cation channel V of photoaging skin. In the past few decades, mechanistic studies performed in this area have deciphered various therapeutic targets, opening avenues for different available therapeutic options against this pathological condition. So the remaining portion of the review deals with various natural product-based therapeutic agents available against skin photodamage.
Collapse
|
11
|
Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review. J Biomed Sci 2022; 29:77. [PMID: 36199062 PMCID: PMC9533579 DOI: 10.1186/s12929-022-00863-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Living organisms are continuously exposed to multiple internal and external stimuli which may influence their emotional, psychological, and physical behaviors. Stress can modify brain structures, reduces functional memory and results in many diseases such as skin disorders like acne, psoriasis, telogen effluvium, and alopecia areata. In this review, we aim to discuss the effect of secretome on treating alopecia, especially alopecia areata. We will shed the light on the mechanism of action of the secretome in the recovery of hair loss and this by reviewing all reported in vitro and in vivo literature. Main body Hair loss has been widely known to be enhanced by stressful events. Alopecia areata is one of the skin disorders which can be highly induced by neurogenic stress especially if the patient has a predisposed genetic background. This condition is an autoimmune disease where stress in this case activates the immune response to attack the body itself leading to hair cycle destruction. The currently available treatments include medicines, laser therapy, phototherapy, and alternative medicine therapies with little or no satisfactory results. Regenerative medicine is a new era in medicine showing promising results in treating many medical conditions including Alopecia. The therapeutic effects of stem cells are due to their paracrine and trophic effects which are due to their secretions (secretome). Conclusion Stem cells should be more used as an alternative to conventional therapies due to their positive outcomes. More clinical trials on humans should be done to maximize the dose needed and type of stem cells that must be used to treat alopecia areata.
Collapse
Affiliation(s)
- Ola Salhab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Luna Khayat
- University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
12
|
Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. Int J Mol Sci 2022; 23:ijms23073828. [PMID: 35409189 PMCID: PMC8998946 DOI: 10.3390/ijms23073828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.
Collapse
|
13
|
Chen J, Zheng Y, Hu C, Jin X, Chen X, Xiao Y, Wang C. Hair Graying Regulators Beyond Hair Follicle. Front Physiol 2022; 13:839859. [PMID: 35283766 PMCID: PMC8908028 DOI: 10.3389/fphys.2022.839859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hair graying is an interesting physiological alteration associated with aging and certain diseases. The occurrence is due to depigmentation of the hair caused by depletion and dysfunction of melanocyte stem cells (MeSCs). However, what causes the depletion and dysfunction of MeSCs remains unclear. MeSCs reside in the hair follicle bulge which provides the appropriate niche for the homeostasis of various stem cells within hair follicle including MeSCs. In addition to local signaling from the cells composed of hair follicle, emerging evidences have shown that nerves, adipocytes and immune cells outside of hair follicle per se also play important roles in the regulation of MeSCs. Here, we review the recent studies on different cells in the MeSCs microenvironment beyond the hair follicle per se, discuss their function in regulating hair graying and potentially novel treatments of hair graying.
Collapse
Affiliation(s)
- Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yixin Zheng
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Chen Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Chen
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Ying Xiao,
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
- *Correspondence: Chaochen Wang,
| |
Collapse
|
14
|
Kim HM, Byun KA, Oh S, Yang JY, Park HJ, Chung MS, Son KH, Byun K. A Mixture of Topical Forms of Polydeoxyribonucleotide, Vitamin C, and Niacinamide Attenuated Skin Pigmentation and Increased Skin Elasticity by Modulating Nuclear Factor Erythroid 2-like 2. Molecules 2022; 27:1276. [PMID: 35209068 PMCID: PMC8879610 DOI: 10.3390/molecules27041276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022] Open
Abstract
It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (H.M.K.); (K.-A.B.)
| | - Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (H.M.K.); (K.-A.B.)
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Hyun Jun Park
- Maylin Anti-Aging Center Apgujeong, Seoul 06005, Korea;
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (H.M.K.); (K.-A.B.)
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| |
Collapse
|
15
|
Kasza I, Kühn JP, Völzke H, Hernando D, Xu YG, Siebert JW, Gibson ALF, Yen CLE, Nelson DW, MacDougald OA, Richardson NE, Lamming DW, Kern PA, Alexander CM. Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human. J Physiol 2022; 600:847-868. [PMID: 33724479 PMCID: PMC8443702 DOI: 10.1113/jp280922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of β-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to β-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional
Radiology, Medical Faculty Carl Gustav Carus, Technical University Dresden,
Germany
| | - Henry Völzke
- Institute of Community Medicine, University of Greifswald,
Germany
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-School of
Medicine and Public Health,Department of Medical Physics, University of
Wisconsin-School of Medicine and Public Health
| | - Yaohui G. Xu
- Department of Dermatology, University of Wisconsin-School
of Medicine and Public Health
| | - John W. Siebert
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - Angela LF Gibson
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - C.-L. Eric Yen
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | - David W. Nelson
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | | | - Nicole E. Richardson
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky,
Lexington
| | - CM Alexander
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany,corresponding author: CM Alexander, McArdle
Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland
Ave, Madison WI 53705-2275. Ph: 608-265 5182;
| |
Collapse
|
16
|
Gawronska-Kozak B, Walendzik K, Machcinska S, Padzik A, Kopcewicz M, Wiśniewska J. Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. Int J Mol Sci 2021; 23:257. [PMID: 35008683 PMCID: PMC8745105 DOI: 10.3390/ijms23010257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1-/- mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Artur Padzik
- Virus Vector Core, Turku Centre for Biotechnology BioCity, 20520 Turku, Finland;
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| |
Collapse
|
17
|
Dermal white adipose tissue: Much more than a metabolic, lipid-storage organ? Tissue Cell 2021; 71:101583. [PMID: 34171520 DOI: 10.1016/j.tice.2021.101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The role of dermal white adipose tissue (dWAT) has emerged in the biomedical science as an ancillary fat district in the derma without a defined and distinct function respect to the subcutaneous adipose tissue (sWAT). Despite some evidence describing dWAT as an immune-competent compartment, particularly engaged in wound repair, very few reports dealing with dWAT has elucidated its major modulatory role within the skin biology. Whereas an increasing bulk of evidence allows researcher to describe the main activity of sWAT, in humans dWAT is not properly a separated fat compartment and therefore scarcely considered in the scientific debate. Due to its strategic position between epidermis and sWAT, dermal fat might play a much more intriguing role than expected. This review tries to shed light on this issue, by expanding the debate about a possible role of dWAT in skin physiology.
Collapse
|
18
|
Boosting the Photoaged Skin: The Potential Role of Dietary Components. Nutrients 2021; 13:nu13051691. [PMID: 34065733 PMCID: PMC8156873 DOI: 10.3390/nu13051691] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Skin photoaging is mainly induced by ultraviolet (UV) irradiation and its manifestations include dry skin, coarse wrinkle, irregular pigmentation, and loss of skin elasticity. Dietary supplementation of nutraceuticals with therapeutic and preventive effects against skin photoaging has recently received increasing attention. This article aims to review the research progress in the cellular and molecular mechanisms of UV-induced skin photoaging. Subsequently, the beneficial effects of dietary components on skin photoaging are discussed. The photoaging process and the underlying mechanisms are complex. Matrix metalloproteinases, transforming growth factors, skin adipose tissue, inflammation, oxidative stress, nuclear and mitochondrial DNA, telomeres, microRNA, advanced glycation end products, the hypothalamic-pituitary-adrenal axis, and transient receptor potential cation channel V are key regulators that drive the photoaging-associated changes in skin. Meanwhile, mounting evidence from animal models and clinical trials suggests that various food-derived components attenuate the development and symptoms of skin photoaging. The major mechanisms of these dietary components to alleviate skin photoaging include the maintenance of skin moisture and extracellular matrix content, regulation of specific signaling pathways involved in the synthesis and degradation of the extracellular matrix, and antioxidant capacity. Taken together, the ingestion of food-derived functional components could be an attractive strategy to prevent skin photoaging damage.
Collapse
|
19
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
20
|
Thermogenic adipocytes: lineage, function and therapeutic potential. Biochem J 2020; 477:2071-2093. [PMID: 32539124 PMCID: PMC7293110 DOI: 10.1042/bcj20200298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Metabolic inflexibility, defined as the inability to respond or adapt to metabolic demand, is now recognised as a driving factor behind many pathologies associated with obesity and the metabolic syndrome. Adipose tissue plays a pivotal role in the ability of an organism to sense, adapt to and counteract environmental changes. It provides a buffer in times of nutrient excess, a fuel reserve during starvation and the ability to resist cold-stress through non-shivering thermogenesis. Recent advances in single-cell RNA sequencing combined with lineage tracing, transcriptomic and proteomic analyses have identified novel adipocyte progenitors that give rise to specialised adipocytes with diverse functions, some of which have the potential to be exploited therapeutically. This review will highlight the common and distinct functions of well-known adipocyte populations with respect to their lineage and plasticity, as well as introducing the most recent members of the adipocyte family and their roles in whole organism energy homeostasis. Finally, this article will outline some of the more preliminary findings from large data sets generated by single-cell transcriptomics of mouse and human adipose tissue and their implications for the field, both for discovery and for therapy.
Collapse
|
21
|
Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Butler D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PR. Obesity and ethnicity alter gene expression in skin. Sci Rep 2020; 10:14079. [PMID: 32826922 PMCID: PMC7442822 DOI: 10.1038/s41598-020-70244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and ethnicity. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from European Americans with a trend to increased epidermal thickening. In obese African Americans, compared to obese European Americans, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.
Collapse
Affiliation(s)
- Jeanne M Walker
- The Rockefeller University Hospital, New York, NY, 10065, USA.
| | - Sandra Garcet
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jose O Aleman
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY, 10016, USA
| | | | - David Danko
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daniel Butler
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jonathan R Swann
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Krueger
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jan L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Peter R Holt
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol 2020; 881:173197. [DOI: 10.1016/j.ejphar.2020.173197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
|
23
|
Li G, Tang X, Zhang S, Jin M, Wang M, Deng Z, Liu Z, Qian M, Shi W, Wang Z, Xie H, Li J, Liu B. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J 2020; 39:e104365. [PMID: 32696520 PMCID: PMC7507325 DOI: 10.15252/embj.2019104365] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life‐cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen‐to‐anagen transition, and HFSC‐specific Sirt7 knockout mice (Sirt7f/f;K15‐Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ‐dependent proteasomal degradation to terminate Nfatc1‐mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7−/− mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.
Collapse
Affiliation(s)
- Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Shuping Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ming Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimei Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China.,Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
24
|
Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 2020; 129:5327-5342. [PMID: 31503545 DOI: 10.1172/jci130239] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Zhu
- Touchstone Diabetes Center
| | | | | | - Na Li
- Touchstone Diabetes Center
| | | | | | | | | | | | - Ashwani Kumar
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope/Beckman Research Institute, Duarte, California, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| | | | | | | |
Collapse
|
25
|
Kopcewicz M, Walendzik K, Bukowska J, Kur-Piotrowska A, Machcinska S, Gimble JM, Gawronska-Kozak B. Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging (Albany NY) 2020; 12:7066-7111. [PMID: 32294622 PMCID: PMC7202484 DOI: 10.18632/aging.103064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Since there are limited studies analyzing the impact of age, sex and obesity on cutaneous repair, the current study evaluated excisional skin wound healing as a function of age, sex and diet in C57BL/6 mice subjected to either low (LFD) or high (HFD) fat diet. Older mice accumulated increased body fat relative to younger mice under HFD. Skin wound healing at particular stages was affected by age in the aspect of Tgfβ-1, MCP-1, Mmp-9 and Mmp-13 expression. The most profound, cumulative effect was observed for the combination of two parameters: age and sex. While skin of younger males displayed extremely high collagen 1 and collagen 3 expression, younger females showed exceptionally high Mmp-13 expression at day 3 and 7 after injury. Diet as a single variable modified the thickness of dermis due to increased dermal White Adipose Tissue (dWAT) accumulation in mice fed HFD. The combination of age and diet affected the re-epithelialization and inflammatory response of injured skin. Overall, our data indicate that age has the most fundamental impact although all components (age, sex and diet) contribute to skin repair.
Collapse
Affiliation(s)
- Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans, LA 70112, USA.,Obatala Sciences Inc., New Orleans, LA 70148, USA.,Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
26
|
Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, Chelliah MP, Rein S, Pförringer D, Thor D, Reumuth G, Wallner C, Branski LK, Siemers F, Grieb G, Lehnhardt M, Yazdi AS, Maan ZN, Duscher D. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020; 236:271-280. [PMID: 32163945 DOI: 10.1159/000506155] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Hair is a defining feature of mammals and has critical functions, including protection, production of sebum, apocrine sweat and pheromones, social and sexual interactions, thermoregulation, and provision of stem cells for skin homeostasis, regeneration, and repair. The hair follicle (HF) is considered a "mini-organ," consisting of intricate and well-organized structures which originate from HF stem and progenitor cells. Dermal papilla cells are the main components of the mesenchymal compartments in the hair bulb and are instrumental in generating signals to regulate the behavior of neighboring epithelial cells during the hair cycle. Mesenchymal-epithelial interactions within the dermal papilla niche drive HF embryonic development as well as the postnatal hair growth and regeneration cycle. This review summarizes the current understanding of HF development, repair, and regeneration, with special focus on cell signaling pathways governing these processes. In particular, we discuss emerging paradigms of molecular signaling governing the dermal papilla-epithelial cellular interactions during hair growth and maintenance and the recent progress made towards tissue engineering of human hair follicles.
Collapse
Affiliation(s)
- Khosrow Siamak Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Christian Tapking
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Daniel Popp
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Center, Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Thor
- College of Pharmacy, University of Florida Gainesville, Gainesville, Florida, USA
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ludwik K Branski
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, University Hospital Aachen, Aachen, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany,
| |
Collapse
|
27
|
Venning VL, Cheung K, Sebaratnam DF. A Practical Precaution Relevant to Facial Injections-Reply. JAMA FACIAL PLAST SU 2020; 21:572-573. [PMID: 31647495 DOI: 10.1001/jamafacial.2019.1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Karen Cheung
- The Skin Hospital, Sydney, New South Wales, Australia
| | - Deshan Frank Sebaratnam
- The Skin Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Kruglikov IL, Scherer PE. Caveolin-1 as a possible target in the treatment for acne. Exp Dermatol 2020; 29:177-183. [PMID: 31769542 PMCID: PMC6995412 DOI: 10.1111/exd.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Expression of caveolin-1 (Cav-1) is an important pathophysiological factor in acne. Cav-1 strongly interacts with such well-recognized etiopathogenic factors such as hyperseborrhea, follicular hyperkeratinization and pathogenicity of Cutibacterium acnes. Cav-1 is a strong negative regulator of transforming growth factor beta (TGF-β) expression. It acts as a critical determinant of autophagy, which is significantly induced in acne lesions through C. acnes and by absorption of fatty acids. Cav-1 also demonstrates different correlations with the development of innate immunity. We propose that normalization of Cav-1 expression can serve as a target in anti-acne therapy.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
29
|
Adipose Infiltration of the Dermis, Involving the Arrector Pili Muscle, and Dermal Displacement of Eccrine Sweat Coils: New Histologic Observations in Frontal Fibrosing Alopecia. Am J Dermatopathol 2019; 41:492-497. [PMID: 30624243 DOI: 10.1097/dad.0000000000001349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Frontal fibrosing alopecia (FFA) is an irreversible scarring alopecia, and its incidence has reached epidemic size. Immune privilege collapse of the bulge and epithelial mesenchymal transition play a role in the pathogenesis. We have noted adipose tissue in the dermis in several specimens from FFA. OBJECTIVE Our primary objective was to verify the presence of adipose tissue at the isthmus level in biopsies from FFA. Additional objectives included the presence of deep inflammation and position of the sweat coils. METHODS Eighty-three histologic specimens of FFA diagnosed at the Dermatopathology Laboratory at the Department of Dermatology, University of Miami, within 3 years were evaluated retrospectively. All biopsies were bisected horizontally and assessed at several levels. Sixty biopsies from androgenetic alopecia served as controls. Statistical analysis was performed using the χ test. A P value of 0.05 or less was considered significant. RESULTS Sixty specimens met the inclusion criteria for optimal quality and classic diagnostic features. Seventy percent demonstrated fat tissue infiltration at the isthmus level as clusters of cells or small globules versus 23% of the controls. The fat infiltration in the arrector pili muscle (APM) was present in 55% versus 15% of the controls, and the sweat coils were positioned in the reticular dermis in 43% versus 1.7% of the controls. All results were statistically significant (P < 0.0001). When accounting for the simultaneous presence of any of these 3 variables, 30% of the FFA cases had triple positivity, 61.7% had double positivity, and 75% had at least 1 positive variable versus 0%, 15%, and 10%, respectively, of the controls. CONCLUSION New histologic findings in FFA involve the presence of adipose tissue in the dermis. We believe that the close interaction of the hair follicles and the APM with the adipose tissue may play a role in APM degeneration and in epithelial mesenchymal transition.
Collapse
|
30
|
Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. J Invest Dermatol 2019; 139:1002-1009. [DOI: 10.1016/j.jid.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
|
31
|
Kojyl Cinnamate Ester Derivatives Increase Adiponectin Expression and Stimulate Adiponectin-Induced Hair Growth Factors in Human Dermal Papilla Cells. Int J Mol Sci 2019; 20:ijms20081859. [PMID: 30991711 PMCID: PMC6514963 DOI: 10.3390/ijms20081859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Adiponectin (APN), released mainly from adipose tissue, is a well-known homeostatic factor for regulating glucose levels, lipid metabolism, and insulin sensitivity. A recent study showed that human hair follicles express APN receptors and the presence of APN-mediated hair growth signaling, thereby suggesting that APN is a potent hair growth-promoting adipokine. Previously, kojyl cinnamate ester derivatives (KCEDs) were synthesized in our institute as new anti-aging or adiponectin-/adipogenesis-inducing compounds. Here, we tested the activity of these derivatives to induce endogenous APN secretion. Among the derivatives, KCED-1 and KCED-2 showed improved activity in inducing APN mRNA expression, secretion of APN protein, and adipogenesis in human subcutaneous fat cells (hSCFs) when compared with the effects of Seletinoid G, a verified APN inducer. When human follicular dermal papilla cells were treated with the culture supernatant of KCED-1- or KCED-2-treated hSCFs, the mRNA expression of APN-induced hair growth factors such as insulin-like growth factor, hepatocyte growth factor, and vascular endothelial growth factor was upregulated compared with that in the control. Taken together, our study shows that among kojyl cinnamate ester derivatives, KCED-1, KCED-2, as well as Seletinoid G are effective inducers of endogenous APN production in subcutaneous fat tissues, which may in turn contribute to the promotion of hair growth in the human scalp.
Collapse
|
32
|
Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. BIOLOGY 2019; 8:biology8020023. [PMID: 30978929 PMCID: PMC6628053 DOI: 10.3390/biology8020023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Adipose tissue not only stores energy, but also controls metabolism through secretion of hormones, cytokines, proteins, and microRNAs that affect the function of cells and tissues throughout the body. Adipose tissue is organized into discrete depots throughout the body, and these depots are differentially associated with insulin resistance and increased risk of metabolic disease. In addition to energy-dissipating brown and beige adipocytes, recent lineage tracing studies have demonstrated that individual adipose depots are composed of white adipocytes that are derived from distinct precursor populations, giving rise to distinct subpopulations of energy-storing white adipocytes. In this review, we discuss this developmental and functional heterogeneity of white adipocytes both between and within adipose depots. In particular, we will highlight findings from our recent manuscript in which we find and characterize three major subtypes of white adipocytes. We will discuss these data relating to the differences between subcutaneous and visceral white adipose tissue and in relationship to previous work deciphering adipocyte heterogeneity within adipose tissue depots. Finally, we will discuss the possible implications of adipocyte heterogeneity may have for the understanding of lipodystrophies.
Collapse
Affiliation(s)
- Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
33
|
Kruglikov IL, Zhang Z, Scherer PE. The Role of Immature and Mature Adipocytes in Hair Cycling. Trends Endocrinol Metab 2019; 30:93-105. [PMID: 30558832 PMCID: PMC6348020 DOI: 10.1016/j.tem.2018.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Hair follicles (HFs) strongly interact with adipocytes within the dermal white adipose tissue (dWAT), suggesting a strong physiological dependence on the content of immature and mature adipocytes in this layer. This content is regulated by the proliferation and differentiation of adipocyte precursors, as well as by dedifferentiation of mature existing adipocytes. Spatially, long-range interactions between HFs and dWAT involve the exchange of extracellular vesicles which are differentially released by precursors, preadipocytes, and mature adipocytes. Different exogenous factors, including light irradiation, are likely to modify the release of adipocyte-derived exosomes in dWAT, which can lead to aberrations of the HF cycle. Consequently, dWAT should be considered as a potential target for the modulation of hair growth.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
34
|
Wollina U, Goldman A, Abdel-Naser MB, Philipp-Dormston WG. Adipose tissue, fillers, and skin tightening. Dermatol Ther 2018; 32:e12626. [PMID: 30175548 DOI: 10.1111/dth.12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
The role of adipose tissue has long been underestimated in esthetic dermatology. With the development of liposculpture and lipolysis, subcutaneous adipose tissue has gained an increasing interest. Harvested tissue has been used for lipofilling. In recent years, a better understanding of adipocyte physiology and its role in aging opened a new road for targeted treatments. Subcutaneous adipose tissue is no longer an innocent bystander in the combat of aging and the correction in esthetics. Adipose tissue is of importance for metabolic function and thermoregulation. Adipose tissue is involved in inflammation. Adipose tissue is heterogeneous in sense of function, color and size of adipocytes. The tissue is an important source of somatic stem cells.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden, Dresden, Germany
| | - Alberto Goldman
- Department of Plastic Surgery, Clinica Goldman and Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Mohamed B Abdel-Naser
- Department of Dermatology and Venereology, Ain Shams University Hospital, Cairo, Egypt
| | | |
Collapse
|
35
|
Differential Role of the RasGEFs Sos1 and Sos2 in Mouse Skin Homeostasis and Carcinogenesis. Mol Cell Biol 2018; 38:MCB.00049-18. [PMID: 29844066 DOI: 10.1128/mcb.00049-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022] Open
Abstract
Using Sos1 knockout (Sos1-KO), Sos2-KO, and Sos1/2 double-knockout (Sos1/2-DKO) mice, we assessed the functional role of Sos1 and Sos2 in skin homeostasis under physiological and/or pathological conditions. Sos1 depletion resulted in significant alterations of skin homeostasis, including reduced keratinocyte proliferation, altered hair follicle and blood vessel integrity in dermis, and reduced adipose tissue in hypodermis. These defects worsened significantly when both Sos1 and Sos2 were absent. Simultaneous Sos1/2 disruption led to severe impairment of the ability to repair skin wounds, as well as to almost complete ablation of the neutrophil-mediated inflammatory response in the injury site. Furthermore, Sos1 disruption delayed the onset of tumor initiation, decreased tumor growth, and prevented malignant progression of papillomas in a DMBA (7,12-dimethylbenz[α]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate)-induced skin carcinogenesis model. Finally, Sos1 depletion in preexisting chemically induced papillomas resulted also in decreased tumor growth, probably linked to significantly reduced underlying keratinocyte proliferation. Our data unveil novel, distinctive mechanistic roles of Sos 1 and Sos2 in physiological control of skin homeostasis and wound repair, as well as in pathological development of chemically induced skin tumors. These observations underscore the essential role of Sos proteins in cellular proliferation and migration and support the consideration of these RasGEFs as potential biomarkers/therapy targets in Ras-driven epidermal tumors.
Collapse
|
36
|
Simchick G, Yin A, Yin H, Zhao Q. Fat spectral modeling on triglyceride composition quantification using chemical shift encoded magnetic resonance imaging. Magn Reson Imaging 2018; 52:84-93. [PMID: 29928937 DOI: 10.1016/j.mri.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To explore, at a high field strength of 7T, the performance of various fat spectral models on the quantification of triglyceride composition and proton density fat fraction (PDFF) using chemical-shift encoded MRI (CSE-MRI). METHODS MR data was acquired from CSE-MRI experiments for various fatty materials, including oil and butter samples and in vivo brown and white adipose mouse tissues. Triglyceride composition and PDFF were estimated using various a priori 6- or 9-peak fat spectral models. To serve as references, NMR spectroscopy experiments were conducted to obtain material specific fat spectral models and triglyceride composition estimates for the same fatty materials. Results obtained using the spectroscopy derived material specific models were compared to results obtained using various published fat spectral models. RESULTS Using a 6-peak fat spectral model to quantify triglyceride composition may lead to large biases at high field strengths. When using a 9-peak model, triglyceride composition estimations vary greatly depending on the relative amplitudes of the chosen a priori spectral model, while PDFF estimations show small variations across spectral models. Material specific spectroscopy derived spectral models produce estimations that better correlate with NMR spectroscopy estimations in comparison to those obtained using non-material specific models. CONCLUSION At a high field strength of 7T, a material specific 9-peak fat spectral model, opposed to a widely accepted or generic human liver model, is necessary to accurately quantify triglyceride composition when using CSE-MRI estimation methods that assume the spectral model to be known as a priori information. CSE-MRI allows for the quantification of the spatial distribution of triglyceride composition for certain in vivo applications. Additionally, PDFF quantification is shown to be independent of the chosen a priori spectral model, which agrees with previously reported results obtained at lower field strengths (e.g. 3T).
Collapse
Affiliation(s)
- Gregory Simchick
- Physics and Astronomy, University of Georgia, Athens, GA, United States; Bio-Imaging Research Center, University of Georgia, Athens, GA, United States
| | - Amelia Yin
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Hang Yin
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Qun Zhao
- Physics and Astronomy, University of Georgia, Athens, GA, United States; Bio-Imaging Research Center, University of Georgia, Athens, GA, United States.
| |
Collapse
|
37
|
Naldaiz‐Gastesi N, Bahri OA, López de Munain A, McCullagh KJA, Izeta A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. J Anat 2018; 233:275-288. [PMID: 29893024 PMCID: PMC6081499 DOI: 10.1111/joa.12840] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
The panniculus carnosus is a thin striated muscular layer intimately attached to the skin and fascia of most mammals, where it provides skin twitching and contraction functions. In humans, the panniculus carnosus is conserved at sparse anatomical locations with high interindividual variability, and it is considered of no functional significance (most possibly being a remnant of evolution). Diverse research fields (such as anatomy, dermatology, myology, neuroscience, surgery, veterinary science) use this unique muscle as a model, but several unknowns and misconceptions remain in the literature. In this article, we review what is currently known about panniculus carnosus structure, development, anatomical location, response to environmental stimuli and potential function(s), with the aim of putting together the evidence arising from the different research communities and raising interest in this unique muscle, which we postulate as an ideal model for both vascular and muscular research.
Collapse
Affiliation(s)
- Neia Naldaiz‐Gastesi
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Ola A. Bahri
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Adolfo López de Munain
- Neuroscience AreaInstituto BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
- Faculty of Medicine and DentistryUPV‐EHUSan SebastianSpain
- Department of NeurologyHospital Universitario DonostiaSan SebastianSpain
| | - Karl J. A. McCullagh
- Department of PhysiologyHuman Biology BuildingSchool of MedicineNational University of Ireland GalwayGalwayIreland
- Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
| | - Ander Izeta
- Tissue Engineering GroupBioengineering AreaInstituto BiodonostiaSan SebastianSpain
- Department of Biomedical EngineeringSchool of EngineeringTecnun‐University of NavarraSan SebastianSpain
| |
Collapse
|
38
|
Foster AR, Nicu C, Schneider MR, Hinde E, Paus R. Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal. Arch Dermatol Res 2018; 310:453-462. [PMID: 29704126 DOI: 10.1007/s00403-018-1831-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
In murine skin, dermal white adipose tissue (DWAT) undergoes major changes in thickness in synchrony with the hair cycle (HC); however, the underlying mechanisms remain unclear. We sought to elucidate whether increased DWAT thickness during anagen is mediated by adipocyte hypertrophy or adipogenesis, and whether lipolysis or apoptosis can explain the decreased DWAT thickness during catagen. In addition, we compared HC-associated DWAT changes between spontaneous and depilation-induced hair follicle (HF) cycling to distinguish between spontaneous and HF trauma-induced events. We show that HC-dependent DWAT remodelling is not an artefact caused by fluctuations in HF down-growth, and that dermal adipocyte (DA) proliferation and hypertrophy are HC-dependent, while classical DA apoptosis is absent. However, none of these changes plausibly accounts for HC-dependent oscillations in DWAT thickness. Contrary to previous studies, in vivo BODIPY uptake suggests that increased DWAT thickness during anagen occurs via hypertrophy rather than hyperplasia. From immunohistomorphometry, DWAT thickness likely undergoes thinning during catagen by lipolysis. Hence, we postulate that progressive, lipogenesis-driven DA hypertrophy followed by dynamic switches between lipogenesis and lipolysis underlie DWAT fluctuations in the spontaneous HC, and dismiss apoptosis as a mechanism of DWAT reduction. Moreover, the depilation-induced HC displays increased DWAT thickness, area, and DA number, but decreased DA volume/area compared to the spontaneous HC. Thus, DWAT shows additional, novel HF wounding-related responses during the induced HC. This systematic reappraisal provides important pointers for subsequent functional and mechanistic studies, and introduces the depilation-induced murine HC as a model for dissecting HF-DWAT interactions under conditions of wounding/stress.
Collapse
Affiliation(s)
- April R Foster
- Centre for Dermatology Research, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, and Manchester Academic Health Science Centre, Manchester, UK
| | - Carina Nicu
- Centre for Dermatology Research, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, and Manchester Academic Health Science Centre, Manchester, UK
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Eleanor Hinde
- Centre for Dermatology Research, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, and Manchester Academic Health Science Centre, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, The University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, and Manchester Academic Health Science Centre, Manchester, UK.
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
39
|
Poblet E, Jimenez F, Escario-Travesedo E, Hardman J, Hernández-Hernández I, Agudo-Mena J, Cabrera-Galvan J, Nicu C, Paus R. Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. Br J Dermatol 2018; 178:1163-1172. [DOI: 10.1111/bjd.16436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- E. Poblet
- Department of Pathology; Reina Sofía University General Hospital and Murcia University; Murcia Spain
| | - F. Jimenez
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | | | - J.A. Hardman
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - I. Hernández-Hernández
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | - J.L. Agudo-Mena
- Dermatology Department; Albacete University General Hospital; Albacete Spain
| | - J.J. Cabrera-Galvan
- Department of Morphology; University of Las Palmas de Gran Canaria; Gran Canaria Spain
| | - C. Nicu
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - R. Paus
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| |
Collapse
|
40
|
Abstract
Although the major white adipose depots evolved primarily to store energy, secrete hormones and thermo-insulate the body, multiple secondary depots developed additional specialized and unconventional functions. Unlike any other fat tissue, dermal white adipose tissue (dWAT) evolved a large repertoire of novel features that are central to skin physiology, which we discuss in this Review. dWAT exists in close proximity to hair follicles, the principal appendages of the skin that periodically grow new hairs. Responding to multiple hair-derived signals, dWAT becomes closely connected to cycling hair follicles and periodically cycles itself. At the onset of new hair growth, hair follicles secrete activators of adipogenesis, while at the end of hair growth, a reduction in the secretion of activators or potentially, an increase in the secretion of inhibitors of adipogenesis, results in fat lipolysis. Hair-driven cycles of dWAT remodelling are uncoupled from size changes in other adipose depots that are controlled instead by systemic metabolic demands. Rich in growth factors, dWAT reciprocally signals to hair follicles, altering the activation state of their stem cells and modulating the pace of hair regrowth. dWAT cells also facilitate skin repair following injury and infection. In response to wounding, adipose progenitors secrete repair-inducing activators, while bacteria-sensing adipocytes produce antimicrobial peptides, thus aiding innate immune responses in the skin.
Collapse
Affiliation(s)
- Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, 2011 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, 2620 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, 2011 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, 2620 Biological Sciences III, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
41
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
42
|
Abstract
Purpose of Review This review provides a summary of recent insights into the role of the local white adipose tissue (WAT) in systemic sclerosis. Recent Findings Adipocytes located in an interfacial WAT area adjacent to fibrotic lesions have an intermediate phenotype and special properties implicated in fibrotic pathology in systemic sclerosis (SSc). The important role of these cells is recognized in different pathologies, such as wound healing, psoriasis, breast cancer, and prostate cancer. Additionally, both immature and mature adipocytes are involved in the appearance of fibroblast-like cells but exhibit different phenotypes and synthetic properties. Summary Adipocytes from interfacial WAT adjacent to the fibrotic area in SSc are phenotypically different from bulk adipocytes and are involved in pathogenesis of SSc. Immature and mature adipocytes from this WAT layer differentiate into various types of fibroblast-like cells, making the local ratio of immature to mature adipocytes in interfacial WAT of particular importance in SSc pathogenesis.
Collapse
|
43
|
Sardella C, Winkler C, Quignodon L, Hardman JA, Toffoli B, Giordano Attianese GMP, Hundt JE, Michalik L, Vinson CR, Paus R, Desvergne B, Gilardi F. Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. J Invest Dermatol 2017; 138:500-510. [PMID: 28964716 DOI: 10.1016/j.jid.2017.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023]
Abstract
PPARγ regulates multiple aspects of skin physiology, including sebocyte differentiation, keratinocyte proliferation, epithelial stem cell survival, adipocyte biology, and inflammatory skin responses. However, the effects of its global deletion, namely of nonredundant key functions of PPARγ signaling in mammalian skin, are yet unknown because of embryonic lethality. Here, we describe the skin and hair phenotype of a whole-body PPARγ-null mouse (PpargΔ/Δ), obtained by preserving PPARγ expression in the placenta. PpargΔ/Δ mice exhibited total lipoatrophy and complete absence of sebaceous glands. Right after birth, hair follicle (HF) morphogenesis was transiently delayed, along with reduced expression of HF differentiation markers and of transcriptional regulators necessary for HF development. Later, adult PpargΔ/Δ mice developed scarring alopecia and severe perifollicular inflammation. Skin analyses in other models of lipodystrophy, AZIPtg/+ and Adipoq-Cretg/+Ppargfl/fl mice, coupled with skin graft experiments, showed that the early defects observed in hair morphogenesis were caused by the absence of adipose tissue. In contrast, the late alteration of HF cycle and appearance of inflammation were observed only in PpargΔ/Δ mice and likely were due to the lack sebaceous glands. Our findings underscore the increasing appreciation for the importance of adipose tissue-mediated signals in HF development and function.
Collapse
Affiliation(s)
- Chiara Sardella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laure Quignodon
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jonathan A Hardman
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Barbara Toffoli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Jennifer E Hundt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charles R Vinson
- Center for Cancer Research, National Cancer Institute, Laboratory of Metabolism, Bethesda, Maryland, USA
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Béatrice Desvergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
44
|
Yang CC, Chung PL, Lin LY, Hughes MW, Tsai YS. Higher plasma leptin is associated with higher risk of androgenetic alopecia in men. Exp Dermatol 2017; 26:524-526. [DOI: 10.1111/exd.13369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Chao-Chun Yang
- Department of Dermatology; National Cheng Kung University Hospital, College of Medicine; National Cheng Kung University; Tainan Taiwan
- International Research Center for Wound Repair and Regeneration; National Cheng Kung University; Tainan Taiwan
| | - Pei-Lun Chung
- Department of Dermatology; National Cheng Kung University Hospital, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Li-Yu Lin
- Yuan's Dermatology Clinic; Taichung Taiwan
| | - Michael W. Hughes
- International Research Center for Wound Repair and Regeneration; National Cheng Kung University; Tainan Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
45
|
Testroet ED, Sherman P, Yoder C, Testroet A, Reynolds C, O'Neil M, Lei SM, Beitz DC, Baas TJ. A novel and robust method for testing bimodality and characterizing porcine adipocytes of adipose tissue of 5 purebred lines of pig. Adipocyte 2017; 6:102-111. [PMID: 28425850 PMCID: PMC5477704 DOI: 10.1080/21623945.2017.1304870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipocyte sizes from adipose tissue of mature animals form a bimodal distribution, thus reporting mean cell size is misleading. The objectives of this study were to develop a robust method for testing bimodality of porcine adipocytes, describe the size distribution with an informative metric, and statistically test hypertrophy and appearance of new small adipocytes, possibly resulting from hyperplasia or lipid filling of previously divided fibroblastic cells. Ninety-three percent of adipose samples measured were bimodal (P < 0.0001); therefore, we describe and propose a method of testing hyperplasia or lipid filling of previously divided fibroblastic cells based upon the probability of an adipocyte falling into 2 chosen competing “bins” as adiposity increases. We also conclude that increased adiposity is correlated positively with an adipocyte being found in the minor mode (r = 0.46) and correlated negatively with an adipocyte being found in the major mode (r = −0.22), providing evidence of either hyperplasia or lipid filling of previously divided fibroblastic cells. We additionally conclude that as adiposity increases, the mode of the major distribution of cells occurs at a larger diameter of adipocyte, indicating hypertrophy.
Collapse
Affiliation(s)
- Eric D. Testroet
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Peter Sherman
- Department of Statistics, Iowa State University, Ames, IA, USA
| | | | - Amber Testroet
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Carmen Reynolds
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Mathew O'Neil
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Soi Meng Lei
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Donald C. Beitz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Tom J. Baas
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
46
|
Kruglikov IL, Wollina U. Local effects of adipose tissue in psoriasis and psoriatic arthritis. PSORIASIS-TARGETS AND THERAPY 2017; 7:17-25. [PMID: 29387604 PMCID: PMC5774600 DOI: 10.2147/ptt.s122959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structure and physiological state of the local white adipose tissue (WAT) located underneath the lesional psoriatic skin and inside of the joints affected by psoriatic arthritis play an important role in the pathophysiology of these diseases. WAT pads associated with inflammatory sites in psoriasis and psoriatic arthritis are, correspondingly, dermal WAT and articular adipose tissue; these pads demonstrate inflammatory phenotypes in both diseases. Such local WAT inflammation could be the primary effect in the pathophysiology of psoriasis leading to the modification of the local expression of adipokines, a change in the structure of the basement membrane and the release of keratinocytes with consequent epidermal hyperproliferation during psoriasis. Similar articular adipose tissue inflammation can lead to the induction of structural modifications and synovial inflammation in the joints of patients with psoriatic arthritis.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Department of Dermatology and Allergology, Hospital Dresden-Friedrichstadt Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|
47
|
Varga J, Marangoni RG. Systemic sclerosis in 2016: Dermal white adipose tissue implicated in SSc pathogenesis. Nat Rev Rheumatol 2017; 13:71-72. [PMID: 28077865 DOI: 10.1038/nrrheum.2016.223] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John Varga
- Division of Rheumatology and Northwestern Scleroderma Program, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, Illinois 60657, USA
| | - Roberta G Marangoni
- Division of Rheumatology and Northwestern Scleroderma Program, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, Illinois 60657, USA
| |
Collapse
|
48
|
Kruglikov IL, Scherer PE. Skin aging: are adipocytes the next target? Aging (Albany NY) 2016; 8:1457-69. [PMID: 27434510 PMCID: PMC4993342 DOI: 10.18632/aging.100999] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|