1
|
Vladuti A, Hatami A, Clément A, Mainzer C. A Pilot Study on the Comparative Efficacy and Tolerability of a Novel Dermo-cosmetic Cream with 15% Azelaic Acid for Mild to Moderate Acne: A New Approach to Acne Treatment. Dermatol Ther (Heidelb) 2024:10.1007/s13555-024-01294-x. [PMID: 39487327 DOI: 10.1007/s13555-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Acne is a one of the most frequent skin conditions among teenagers and young adults. It is currently managed with topical retinoids and antibiotics, which can present numerous side effects, thus reducing treatment adherence and effectiveness. We evaluated the efficacy and tolerability of a novel dermo-cosmetic cream (α-AZ) in treating mild to moderate acne. METHODS Subjects were randomized into three groups: group 1 received α-AZ cream, group 2 was treated with α-AZ combined with an oral acne treatment routine, and group 3 received a topical acne treatment, for 84 days. All treated patients underwent a 28-day maintenance period with α-AZ cream. Total acne and post-inflammatory hyperpigmentation (PIH) scoring, quality of life (QoL), and skin tolerance were all evaluated during the treatment and maintenance periods. RESULTS Acne and PIH lesions significantly decreased in group 1 compared to group 3 (p < 0.001), with a reduction in acne of 66.52 ± 2.92% in group 1 versus 52.55 ± 3.90% in group 3. Patients in group 1 achieved nearly clear skin by the end of the treatment. α-AZ cream treatment was well tolerated and all participants experienced an enhanced QoL. Participants expressed high satisfaction. Additional enhancements in all groups were noted during the maintenance phase across all clinical parameters. CONCLUSION The novel dermo-cosmetic α-AZ cream could serve as a valuable new approach to current treatments for mild and moderate acne. It can be used alone, as a once-daily adjuvant to oral acne treatments, or as part of a maintenance regimen. TRIAL REGISTRATION ISRCTN registry, ISRCTN70142596, registered retrospectively on 11/12/2023.
Collapse
Affiliation(s)
- Aura Vladuti
- , Private Practice, CUI24519243, Strada Octav Cocarascu Nr. 57, Sector 1, Bucharest, Romania
| | - Afshin Hatami
- , Private Practice, CUI 2147847, Bulevardul Ferdinand I, R 12A, 021391, Bucharest, Romania
| | - Amélie Clément
- International Medical Communication, ISISPHARMA, Lyon, France
| | - Carine Mainzer
- Research and Development, ISISPHARMA, Lyon, France.
- Isispharma, Immeuble Le Dauphiné Part-Dieu, 78 Rue de La Villette, 69003, Lyon, France.
| |
Collapse
|
2
|
Zhang M, Deng L, Jia J, Cao Z, Li Y, Zhang J, He X, Lei S, Hu X, Kang X. The Different Influence of Cutibacterium acnes and Staphylococcus epidermidis in the Lumbar Disc : An in Vivo Study in Rabbits. Spine (Phila Pa 1976) 2024; 49:1488-1496. [PMID: 39146212 DOI: 10.1097/brs.0000000000005117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/30/2024] [Indexed: 08/17/2024]
Abstract
STUDY DESIGN Animal laboratory study. OBJECTIVE This study investigated the effects of Cutibacteriumacnes and Staphylococcusepidermidis on the lumbar discs of rabbits, as well as the outcomes of combined infection. SUMMARY OF BACKGROUND DATA Many studies have indicated that bacterial infections are associated with lumbar disc degeneration (LDD). The most commonly cultured bacteria from disc tissues are C. acnes and S. epidermidis . METHODS New Zealand white rabbits (n=40) were randomly divided into control, C. acnes , S. epidermidis , and C. acnes plus S. epidermidis ( i.e. , combined) groups. All groups except the control were injected with 25 μL of saline at L4-L5 and 25 μL of bacteria (1×10 7 CFU/mL) at L5-L6. All injections were performed under x-ray guidance. Weight measurements, haematological evaluations, and magnetic resonance imaging were performed after 4, 8, and 12 weeks. Histological examination and gene expression detection were performed 12 weeks after surgery. RESULTS Inflammatory factors in the blood and weight did not differ among the groups after 4, 8, and 12 weeks ( P >0.05). However, after 4 weeks, LDD occurred in the C. acnes group, and discitis occurred in the S. epidermidis and combined groups, all of which worsened after 8 weeks. After 12 weeks, the nucleus pulposus (NP) protruded and compressed the spinal cord in the C. acnes group, and tissue staining showed decreased NP tissue and cartilaginous endplate fracture. In the S. epidermidis and combined groups, the discitis was more confined, but tissue staining revealed a significant decrease in NP tissue, and loss of the normal disc structure. CONCLUSIONS In the early stage of infection in rabbits, C. acnes caused LDD, and S. epidermidis caused discitis. Coinfection with C. acnes and S. epidermidis caused discitis but was more limited in scope than infection with S. epidermidis alone.
Collapse
Affiliation(s)
- Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | | | - Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Yalong Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou
| | - Junfu Zhang
- Department of Magnetic Resonance Imaging, The people's Hospital of Linxia, Gansu, China
| | - Xuegang He
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital
- Orthopaedics Key Laboratory of Gansu Province
| |
Collapse
|
3
|
Sitohang IBS, Norawati L, Yenny SW, Kusumawardani A, Murlistyarini S, Setiawan SV, Kekalih A, Riany G, Kerob D. Effectiveness and Safety of a Dermocosmetic Cream as an Adjunct to Adapalene for Mild and Moderate Acne in Indonesia: Results of a Multicenter Randomized Controlled Study. Clin Cosmet Investig Dermatol 2024; 17:2283-2296. [PMID: 39430644 PMCID: PMC11490241 DOI: 10.2147/ccid.s474331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Purpose Acne is a chronic inflammatory skin condition affecting mainly teenagers and adults as well. Guidelines recommend retinoids as a first-line treatment for mild-to-moderate acne. However, dermocosmetics in adjunct could potentially improve efficacy and tolerability. This study was conducted to determine the effectiveness and safety of a dermocosmetic cream containing salicylic acid, lipohydroxy acid, niacinamide, Aqua posae filiformis, procerad and zinc salt in the treatment of mild-to-moderate acne vulgaris in adjunct to different regimens of adapalene compared to adapalene only. Patients and Methods This randomized, controlled, parallel-group, evaluator-blind study was conducted over 8 weeks on male and female acne subjects at five teaching hospitals in Indonesia. A total of 291 participants were enrolled and divided into three treatment groups: Group A adapalene 0.1% cream nightly - Group B dermocosmetic cream daily + adapalene 0.1% cream every two nights - Group C dermocosmetic cream daily + adapalene 0.1% cream nightly. Clinical evaluations of treatment included scoring on Global Evaluation of Acne (GEA) scale, lesion count (Indonesian Acne Expert Meeting scale), treatment tolerability and treatment satisfaction. Evaluations were performed on Day 28 and Day 56 of treatment. Results After 28 and 56 days of treatment, all groups exhibited improvements across the various measures. Data analysis, utilizing Anova for repeated measurements, revealed a statistically significant difference between Groups C and A for reduction of GEA scores (p = 0.038) in favor of Group C. On Day 56, percentages of subjects with GEA Scale improvements of at least 1 grade in comparison with baseline were in Group C (61.7%) followed by Group A (47.9%) and Group B (45.3%). Better treatment tolerance and satisfaction scores were noted in Groups B and C. Conclusion Combination of the dermocosmetic cream with adapalene showed higher efficacy, tolerability and satisfaction in comparison to adapalene alone.
Collapse
Affiliation(s)
- Irma Bernadette S Sitohang
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Universitas Indonesia Hospital, Depok, Indonesia
| | - Lilik Norawati
- Department of Dermatology and Venereology, Indonesia Presidential Hospital Gatot Soebroto, Jakarta, Indonesia
| | - Satya Wydya Yenny
- Division of Cosmetic and Aesthetic Dermatology, Department of Dermatology, Venereology and Aesthetic, Faculty of Medicine, Universitas Andalas, Dr. M Djamil Central General Hospital, Padang, Indonesia
| | - Arie Kusumawardani
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas National Surakarta, Dr. Moewardi Regional General Hospital, Surakarta, Indonesia
| | - Sinta Murlistyarini
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar Regional General Hospital, Malang, Indonesia
| | - Silvia Veronica Setiawan
- Department of Dermatology and Venereology, Indonesia Presidential Hospital Gatot Soebroto, Jakarta, Indonesia
| | - Aria Kekalih
- Community Medicine Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gladys Riany
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Delphine Kerob
- La Roche-Posay laboratoire Dermatologique, Levallois-Perret, France
| |
Collapse
|
4
|
Maître M, Gravier E, Simcic-Mori A, Géniès C, Mias C, Alvarez-Georges S, Noustens A, Bouyer K, Bessou-Touya S, Carballido F, Duplan H. Characterization of the forehead skin microbiome in the early phase of acne. J Eur Acad Dermatol Venereol 2024; 38 Suppl 7:3-11. [PMID: 39051132 DOI: 10.1111/jdv.20203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The skin microbiota is known to be imbalanced in acne vulgaris, but the changes occurring during the early stages of acne onset remain poorly described. OBJECTIVES To characterize the skin microbiome of subclinical stages of acne in adults and adolescents. METHODS The composition and diversity of the microbiota from non-lesional skin on the forehead of subjects with mild-to-moderate acne were compared to the ones from non-acne subjects. Analyses of skin swab samples were performed using high-throughput sequencing of the V1-V3 regions of the bacterial 16S ribosomal RNA gene, the tuf gene fragment of Staphylococcus species and the internal transcribed spacer (ITS1) region of the fungal rRNA gene to determine the relative abundance, alpha-diversity and beta-diversity of bacteria and fungi. RESULTS Compared with non-acne subjects, acne subjects had a higher abundance of Cutibacterium (72.4% vs. 57.8%) and lower abundances of Corynebacterium (2.8% vs. 4.8%) and Streptococcus (1.4% vs. 3.2%). Bacterial alpha- and beta-diversity indices also differed significantly between the two groups, reflecting differences in richness, evenness, abundance and phylogenetic distance between bacterial populations. Differences were also observed at the level of Staphylococcus species: S. capitis was predominant in skin samples from non-acne subjects (46.7%), whereas S. epidermidis was the most abundant Staphylococcus species in non-lesional forehead skin areas of acne subjects (44.2%). Conversely, no significant between-group differences were found for fungi, with Malasseziales being the predominant order in both subject groups. CONCLUSION Dysbiosis was observed very early in subclinical acne stages of the forehead skin, with the overall abundance, richness and evenness of the bacterial population being lower in acne than in non-acne skin samples. Dysbiosis was also found at the level of Staphylococcus species. The development of acne lesions could therefore be prevented by using a skin care product that rebalances facial skin microbiota at very early stages.
Collapse
Affiliation(s)
- M Maître
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - E Gravier
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - A Simcic-Mori
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - C Géniès
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - C Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - S Alvarez-Georges
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - A Noustens
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - K Bouyer
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - F Carballido
- Laboratoires A-Derma, Pierre Fabre Dermo-Cosmétique, Lavaur, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| |
Collapse
|
5
|
Mim MF, Sikder MH, Chowdhury MZH, Bhuiyan AUA, Zinan N, Islam SMN. The dynamic relationship between skin microbiomes and personal care products: A comprehensive review. Heliyon 2024; 10:e34549. [PMID: 39104505 PMCID: PMC11298934 DOI: 10.1016/j.heliyon.2024.e34549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Healthy skin reflects a healthy microbiome and vice versa. The contemporary society, marked by a sharp increase in skin irritation cases, has compelled researchers, dermatologists, and the cosmetics industry to investigate the correlation between skin microbiomes and the use of skincare products. Different cosmetics can change skin's normal flora to a varying degree -some changes can be detrimental, there are also instances where these alterations aid in restoring the skin microbiome. Previous studies using artificial skin models, metagenomic analysis, and culture-based approaches have suggested that skincare products play an important role in skin microbial alteration. This article assessed current knowledge on microbial shifts from daily use of various personal and skincare products. We have also introduced a readily applicable framework, synthesized from various observations, which can be employed to identify the normal skin microbiome and evaluate the impact of personal care and skincare products on it. We also discussed how lifestyle choice remake skin microbial makeup. Future studies are warranted to examine the effect of personal and skincare product usage on skin microbiome across various age groups, genders, and body sites with a multi-study approach.
Collapse
Affiliation(s)
- Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Nayeematul Zinan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
6
|
Na HH, Kim S, Kim JS, Lee S, Kim Y, Kim SH, Lee CH, Kim D, Yoon SH, Jeong H, Kweon D, Seo HW, Ryu CM. Facemask acne attenuation through modulation of indirect microbiome interactions. NPJ Biofilms Microbiomes 2024; 10:50. [PMID: 38902263 PMCID: PMC11190265 DOI: 10.1038/s41522-024-00512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/28/2024] [Indexed: 06/22/2024] Open
Abstract
During the COVID-19 pandemic, facemasks played a pivotal role in preventing person-person droplet transmission of viral particles. However, prolonged facemask wearing causes skin irritations colloquially referred to as 'maskne' (mask + acne), which manifests as acne and contact dermatitis and is mostly caused by pathogenic skin microbes. Previous studies revealed that the putative causal microbes were anaerobic bacteria, but the pathogenesis of facemask-associated skin conditions remains poorly defined. We therefore characterized the role of the facemask-associated skin microbiota in the development of maskne using culture-dependent and -independent methodologies. Metagenomic analysis revealed that the majority of the facemask microbiota were anaerobic bacteria that originated from the skin rather than saliva. Previous work demonstrated direct interaction between pathogenic bacteria and antagonistic strains in the microbiome. We expanded this analysis to include indirect interaction between pathogenic bacteria and other indigenous bacteria classified as either 'pathogen helper (PH)' or 'pathogen inhibitor (PIn)' strains. In vitro screening of bacteria isolated from facemasks identified both strains that antagonized and promoted pathogen growth. These data were validated using a mouse skin infection model, where we observed attenuation of symptoms following pathogen infection. Moreover, the inhibitor of pathogen helper (IPH) strain, which did not directly attenuate pathogen growth in vitro and in vivo, functioned to suppress symptom development and pathogen growth indirectly through PH inhibitory antibacterial products such as phenyl lactic acid. Taken together, our study is the first to define a mechanism by which indirect microbiota interactions under facemasks can control symptoms of maskne by suppressing a skin pathogen.
Collapse
Affiliation(s)
- Han-Hee Na
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Interdisciplinary Program in Biocosmetics, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seil Kim
- Division of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Yeseul Kim
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Functional Genomics Program, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Daehyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| | - Choong-Min Ryu
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
| |
Collapse
|
7
|
Cristani M, Micale N. Bioactive Compounds from Medicinal Plants as Potential Adjuvants in the Treatment of Mild Acne Vulgaris. Molecules 2024; 29:2394. [PMID: 38792254 PMCID: PMC11124055 DOI: 10.3390/molecules29102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the use of medicinal plants and phytochemicals as potential treatments for acne vulgaris. This condition, characterized by chronic inflammation, predominantly affects adolescents and young adults. Conventional treatment typically targets the key factors contributing to its development: the proliferation of Cutibacterium acnes and the associated inflammation. However, these treatments often involve the use of potent drugs. As a result, the exploration of herbal medicine as a complementary approach has emerged as a promising strategy. By harnessing the therapeutic properties of medicinal plants and phytochemicals, it may be possible to address acne vulgaris while minimizing the reliance on strong drugs. This approach not only offers potential benefits for individuals seeking alternative treatments but also underscores the importance of natural remedies of plant origin in dermatological care. The primary aim of this study was to assess the antimicrobial, antioxidant, and anti-inflammatory properties of plants and their phytochemical constituents in the management of mild acne vulgaris. A comprehensive search of scientific databases was conducted from 2018 to September 2023. The findings of this review suggest that medicinal plants and their phytochemical components hold promise as treatments for mild acne vulgaris. However, it is crucial to note that further research employing high-quality evidence and standardized methodologies is essential to substantiate their efficacy and safety profiles.
Collapse
Affiliation(s)
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
8
|
Reynolds RV, Yeung H, Cheng CE, Cook-Bolden F, Desai SR, Druby KM, Freeman EE, Keri JE, Stein Gold LF, Tan JKL, Tollefson MM, Weiss JS, Wu PA, Zaenglein AL, Han JM, Barbieri JS. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol 2024; 90:1006.e1-1006.e30. [PMID: 38300170 DOI: 10.1016/j.jaad.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Acne vulgaris commonly affects adults, adolescents, and preadolescents aged 9 years or older. OBJECTIVE The objective of this study was to provide evidence-based recommendations for the management of acne. METHODS A work group conducted a systematic review and applied the Grading of Recommendations, Assessment, Development, and Evaluation approach for assessing the certainty of evidence and formulating and grading recommendations. RESULTS This guideline presents 18 evidence-based recommendations and 5 good practice statements. Strong recommendations are made for benzoyl peroxide, topical retinoids, topical antibiotics, and oral doxycycline. Oral isotretinoin is strongly recommended for acne that is severe, causing psychosocial burden or scarring, or failing standard oral or topical therapy. Conditional recommendations are made for topical clascoterone, salicylic acid, and azelaic acid, as well as for oral minocycline, sarecycline, combined oral contraceptive pills, and spironolactone. Combining topical therapies with multiple mechanisms of action, limiting systemic antibiotic use, combining systemic antibiotics with topical therapies, and adding intralesional corticosteroid injections for larger acne lesions are recommended as good practice statements. LIMITATIONS Analysis is based on the best available evidence at the time of the systematic review. CONCLUSIONS These guidelines provide evidence-based recommendations for the management of acne vulgaris.
Collapse
Affiliation(s)
- Rachel V Reynolds
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Howa Yeung
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Carol E Cheng
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fran Cook-Bolden
- Department of Dermatology, Weill Cornell Medicine, New York, New York
| | - Seemal R Desai
- Innovative Dermatology, Plano, Texas; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kelly M Druby
- Penn State Health Hampden Medical Center, Enola, Pennsylvania
| | - Esther E Freeman
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jonette E Keri
- University of Miami, Miller School of Medicine, Miami, Florida; Miami VA Medical Center, Miami, Florida
| | | | - Jerry K L Tan
- Western University, London, Ontario, Canada; Windsor Clinical Research Inc., Windsor, Ontario, Canada
| | - Megha M Tollefson
- Departments of Dermatology and Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Jonathan S Weiss
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia; Georgia Dermatology Partners, Snellville, Georgia
| | - Peggy A Wu
- Department of Dermatology, University of California Davis, Sacramento, California
| | - Andrea L Zaenglein
- Departments of Dermatology and Pediatrics, Penn State/Hershey Medical Center, Hershey, Pennsylvania
| | - Jung Min Han
- American Academy of Dermatology, Rosemont, Illinois.
| | - John S Barbieri
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Serrage HJ, O’ Neill CA, Uzunbajakava NE. Illuminating microflora: shedding light on the potential of blue light to modulate the cutaneous microbiome. Front Cell Infect Microbiol 2024; 14:1307374. [PMID: 38660491 PMCID: PMC11039841 DOI: 10.3389/fcimb.2024.1307374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.
Collapse
Affiliation(s)
- Hannah J. Serrage
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’ Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
10
|
Dreno B, Dekio I, Baldwin H, Demessant AL, Dagnelie MA, Khammari A, Corvec S. Acne microbiome: From phyla to phylotypes. J Eur Acad Dermatol Venereol 2024; 38:657-664. [PMID: 37777343 DOI: 10.1111/jdv.19540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/02/2023]
Abstract
Acne vulgaris is a chronic inflammatory skin disease with a complex pathogenesis. Traditionally, the primary pathophysiologic factors in acne have been thought to be: (1) altered sebum production, (2) inflammation, (3) excess keratinization and (4) colonization with the commensal Cutibacterium acnes. However, the role of C. acnes has been unclear, since virtually all adults have C. acnes on their skin yet not all develop acne. In recent years, understanding of the role of C. acnes has expanded. It is still acknowledged to have an important place in acne pathogenesis, but evidence suggests that an imbalance of individual C. acnes phylotypes and an alteration of the skin microbiome trigger acne. In addition, it is now believed that Staphylococcus epidermidis is also an actor in acne development. Together, C. acnes and S. epidermidis maintain and regulate homeostasis of the skin microbiota. Antibiotics, which have long been a staple of acne therapy, induce cutaneous dysbiosis. This finding, together with the long-standing public health edict to spare antibiotic use when possible, highlights the need for a change in acne management strategies. One fertile direction of study for new approaches involves dermocosmetic products that can support epidermal barrier function and have a positive effect on the skin microbiome.
Collapse
Affiliation(s)
- Brigitte Dreno
- Dermatology Department, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes Université, Nantes, France
| | - Itaru Dekio
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hilary Baldwin
- Acne Treatment and Research Center, Morristown, New Jersey, USA
| | | | - Marie-Ange Dagnelie
- Dermatology Department, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes Université, Nantes, France
| | - Amir Khammari
- Dermatology Department, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes Université, Nantes, France
| | - Stephane Corvec
- CHU Nantes, Bacteriology Department, INCIT, UMR 1302, University Nantes, Nantes, France
| |
Collapse
|
11
|
Boby A, Lee G, Natarelli N, Correa L. Using probiotics to treat acne vulgaris: systematic review. Arch Dermatol Res 2024; 316:101. [PMID: 38472474 DOI: 10.1007/s00403-024-02836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Aleena Boby
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA.
| | - Grace Lee
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Nicole Natarelli
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Lilia Correa
- Department of Dermatology and Cutaneous Surgery, USF Health Morsani College of Medicine, Tampa, FL, 33612, USA
| |
Collapse
|
12
|
Ai J, Ma W, Pan Z, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Ameliorative effect of Lactobacillus plantarum CCFM8661 on oleic acid-induced acne: integrated gut microbiota link to acne pathogenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:328-339. [PMID: 37574818 DOI: 10.1002/jsfa.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Acne vulgaris is an inflammatory disease of the pilosebaceous unit of the skin that has serious adverse effects on the physical and mental health of patients. Probiotics are extensively employed in dermatology and could be an alternative option for acne therapy. Here, we evaluated the effect of oral ingestion of live and inactivated Lactobacillus plantarum CCFM8661 on oleic acid-induced acne using a mouse model. RESULTS Results indicated that live L. plantarum CCFM8661 suppressed skin inflammation and serum hormone (insulin and testosterone) production in acne mice. Parallelly, live L. plantarum CCFM8661 effectively reduced the formation of skin lipids (triglycerides and non-esterified free fatty acids), and normalized the expression of skin lipid metabolism-related genes (PPAR-γ, SREBP-1c, ACCα, FASN, PPAR-α, ACOX1, HSL and ATGL). In comparison, inactivated L. plantarum CCFM8661 had no effect on skin inflammation or serum hormone secretion, but decreased skin triglycerides and normalized the expression of skin lipid metabolism-related genes (PPAR-γ, SREBP-1c, FASN and ATGL) in acne mice. Both live and inactivated L. plantarum CCFM8661 raised the richness of gut microbiota, reduced the ratio of Bacteroidetes to Firmicutes and decreased the relative abundance of Staphylococcus in the feces of acne mice. CONCLUSION Oral ingestion of L. plantarum CCFM8661, particularly live cells, could alleviate acne by suppressing skin inflammation, normalizing the metabolism of hormones and skin lipids, which may be achieved by improving the gut microbial ecosystem. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenghao Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Jin Z, Song Y, He L. A review of skin immune processes in acne. Front Immunol 2023; 14:1324930. [PMID: 38193084 PMCID: PMC10773853 DOI: 10.3389/fimmu.2023.1324930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Acne vulgaris is one of the most prevalent skin conditions, affecting almost all teenagers worldwide. Multiple factors, including the excessive production of sebum, dysbiosis of the skin microbiome, disruption of keratinization within hair follicles, and local inflammation, are believed to trigger or aggravate acne. Immune activity plays a crucial role in the pathogenesis of acne. Recent research has improved our understanding of the immunostimulatory functions of microorganisms, lipid mediators, and neuropeptides. Additionally, significant advances have been made in elucidating the intricate mechanisms through which cutaneous innate and adaptive immune cells perceive and transmit stimulatory signals and initiate immune responses. However, our understanding of precise temporal and spatial patterns of immune activity throughout various stages of acne development remains limited. This review provides a comprehensive overview of the current knowledge concerning the immune processes involved in the initiation and progression of acne. Furthermore, we highlight the significance of detailed spatiotemporal analyses, including analyses of temporal dynamics of immune cell populations as well as single-cell and spatial RNA sequencing, for the development of targeted therapeutic and prevention strategies.
Collapse
Affiliation(s)
| | | | - Li He
- Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
14
|
Khammari A, Kerob D, Demessant AL, Nioré M, Dréno B. A dermocosmetic regimen is able to mitigate skin sensitivity induced by a retinoid-based fixed combination treatment for acne: Results of a randomized clinical trial. J Cosmet Dermatol 2023. [PMID: 38102855 DOI: 10.1111/jocd.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Topical retinoids cause retinoid-induced skin discomfort (RISD) mainly during the first weeks of use leading to noncompliance and premature treatment discontinuation. A dermocosmetic (DC) may help to reduce treatment-related signs and symptoms and improve adherence. OBJECTIVES To assess the benefit of a DC regimen compared to a routine skin care regimen (RC) by reducing RISD signs and symptoms induced by a retinoid/benzoyl peroxide fixed-drug combination in subjects with acne. MATERIALS AND METHODS Double-blind, randomized, comparative study in subjects ≥16 years with mild to moderate acne candidates to a topical adapalene/BPO fixed drug combination (A/BPO). Evaluations took place at Day 0, 7, 14, 28, and 84 and included erythema, desquamation, burning, itching and stinging and RISD (SD, a composite score of local treatment-related signs and symptoms and acne severity. Subjects used daily the DC or RC together with the fixed combination for 84 days. RESULTS Eighty-eight subjects were included, the mean age was 21 years; 84% were females. At Day 0 the SD score was 0.8 in both groups. A statistically significant difference in terms of skin sensitivity with DC compared to RC (1.6 points, vs. 2.4 points p < 0.05) was observed at Day 14. Clinical sign and symptom scores were more reduced with DC than with RC at all time points. Acne severity improved in both groups. CONCLUSION DC significantly reduces A/BPO-related RISD compared to RC, especially during the first 14 days of treatment, without interfering with the clinical efficacy of the treatment, thus helping to maintain treatment adherence.
Collapse
Affiliation(s)
- Amir Khammari
- Department of Dermatology, Nantes University, CHU Nantes, CIC 1413, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| | - Delphine Kerob
- La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | | | - Margot Nioré
- La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | - Brigitte Dréno
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| |
Collapse
|
15
|
Sun L, Wang Q, Wang H, Huang J, Yu Z. A cross-sectional cohort study on the skin microbiota in patients with different acne durations. Exp Dermatol 2023; 32:2102-2111. [PMID: 37846925 DOI: 10.1111/exd.14951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Acne is a chronic disease that often persists for years. Skin microbial communities play an essential role in the development of acne. However, limited information is available about the dynamic patterns of skin microbiota in acne. This study aimed to characterize microbial community changes in skin pores and surfaces of acne patients with varying disease time. In this study, a total of 70 skin samples from 22 subjects were collected and sequenced using 16S rRNA amplicon sequencing. Although microbial compositions in skin pores were similar over time, significant differences in microbial structure were observed on the skin surface, with the dominance of Cutibacterium in the first 3 years and replacement by Staphylococcus in 4-6 years. Lactobacillus and Acinetobacter were more abundant in the normal group and continuingly decreased with disease time on the skin surface. Microbial networks further revealed substantial increases in microbial interactions in the 4-6 years group in both skin surfaces and pores. These results demonstrate that the skin microbiota alters with the disease duration and may provide a potential guide in redirecting skin microbiota towards healthy states.
Collapse
Affiliation(s)
- Lang Sun
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qingqun Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Huan Wang
- Department of Dermatology, The Fourth Hospital of Changsha, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
16
|
Leignadier J, Drago M, Lesouhaitier O, Barreau M, Dashi A, Worsley O, Attia-Vigneau J. Lysine-Dendrimer, a New Non-Aggressive Solution to Rebalance the Microbiota of Acne-Prone Skin. Pharmaceutics 2023; 15:2083. [PMID: 37631297 PMCID: PMC10459463 DOI: 10.3390/pharmaceutics15082083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Acne is a chronic inflammatory skin disease that affects the quality of life of patients. Several treatments exist for acne, but their effectiveness tends to decrease over time due to increasing resistance to treatment and associated side effects. To circumvent these issues, a new approach has emerged that involves combating the pathogen Cutibacterium acnes while maintaining the homeostasis of the skin microbiome. Recently, it was shown that the use of a G2 lysine dendrigraft (G2 dendrimer) could specifically decrease the C. acnes phylotype (IAI) involved in acne, compared to non-acne-causing C. acnes (phylotype II) bacteria. In the present study, we demonstrate that the efficacy of this technology is related to its 3D structure, which, in contrast to the linear form, significantly decreases the inflammation factor (IL-8) linked to acne. In addition, our in-vitro data confirm the specific activity of the G2 dendrimer: after treatment of bacterial cultures and biofilms, the G2 dendrimer affected neither non-acneic C. acnes nor commensal bacteria of the skin (Staphylococcus epidermidis, S. hominis, and Corynebacterium minutissimum). In parallel, comparative in-vitro and in-vivo studies with traditional over-the-counter molecules showed G2's effects on the survival of commensal bacteria and the reduction of acne outbreaks. Finally, metagenomic analysis of the cutaneous microbiota of volunteers who applied a finished cosmetic product containing the G2 dendrimer confirmed the ability of G2 to rebalance cutaneous acne microbiota dysbiosis while maintaining commensal bacteria. These results confirm the value of using this G2 dendrimer to gently prevent the appearance of acne vulgaris while respecting the cutaneous microbiota.
Collapse
Affiliation(s)
- Julie Leignadier
- Lucas Meyer Cosmetics, 195 Route d’Espagne, 31036 Toulouse, France;
| | - Marie Drago
- Shiseido EMEA, 56A Rue du Faubourg St Honoré, 75008 Paris, France;
| | - Olivier Lesouhaitier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France; (O.L.); (M.B.)
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France; (O.L.); (M.B.)
| | - Albert Dashi
- Sequential Skin Ltd., 85 Great Portland Street, London W1W 7LT, UK; (A.D.); (O.W.)
| | - Oliver Worsley
- Sequential Skin Ltd., 85 Great Portland Street, London W1W 7LT, UK; (A.D.); (O.W.)
| | | |
Collapse
|
17
|
Wu Y, Chen Y, Chen B, Wu W, Yang J. DNA methylation mediated genetic risk in severe acne in a young men population. Front Med (Lausanne) 2023; 10:1196149. [PMID: 37554505 PMCID: PMC10405078 DOI: 10.3389/fmed.2023.1196149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Acne is a chronic inflammatory skin disease that affects the pilosebaceous follicle and is influenced by heredity, hormones, inflammation, and the environment. At present, the recognized pathogenesis mainly includes four categories: excessive sebum secretion, excessive Cutibacterium acnes proliferation, excessive keratinization of sebaceous glands in hair follicles, and inflammatory mechanisms. Previous studies have found that DNA methylation is closely related to some chronic inflammatory skin diseases, and there is evidence that DNA methylation is controlled by genetic factors, making us want to know the relationship between DNA methylation, genetic variation and acne. MATERIALS AND METHODS In our previous study, we performed genome-wide DNA methylation analysis in peripheral blood samples from 44 patients with severe acne and 44 unaffected normal subjects, and identified 23 differentially methylated probes (DMPs). In this study, we identified single nucleotide polymorphisms (SNPs) associated with severe acne by genome-wide association analysis in these 88 samples. To test the association between SNPs and DMPs, we conducted DNA methylation quantitative trait loci (methQTL) analysis. Next, causal inference testing (CIT) was used to determine whether genetic variation influences DNA methylation, which impacts disease phenotypes. RESULT We found 38,269 SNPs associated with severe acne. By methQTL analysis, we obtained 24 SNP-CpG pairs that reached the threshold (FDR < 0.05), which included 7 unique CpGs and 22 unique methQTL SNPs. After CIT analysis, we found that 11 out of 24 pairs of SNP-CpG showed a weakened SNP effect after adjustment for methylation, indicating a methylation-mediated relationship between SNPs and severe acne. These 11 SNP-CpG pairs consist of four unique CpG sites and 11 SNPs, of which three CpG sites, cg03020863, cg20652636, and cg19964325, are located on the gene body of PDGFD, the intron of SH2D6, and the 5'UTR of the IL1R1 gene, respectively. CONCLUSION During this study, the DNA methylation of certain genes was found to be influenced by genetic factors and mediated the risk of severe acne in a young Chinese male population, providing a new perspective on the pathogenesis of severe acne.
Collapse
Affiliation(s)
- Yujia Wu
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Yun Chen
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Bo Chen
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
18
|
Carvalho MJ, S Oliveira AL, Santos Pedrosa S, Pintado M, Pinto-Ribeiro I, Madureira AR. Skin Microbiota and the Cosmetic Industry. MICROBIAL ECOLOGY 2023; 86:86-96. [PMID: 35809121 DOI: 10.1007/s00248-022-02070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Skin harbors an important microbial ecosystem - the skin microbiota that is in homeostasis with its host and is beneficial for human health. Cosmetic products have the potential to interfere with this microbial community; therefore their impact should be assessed. The aim of this review is to highlight the importance of skin microbiota in the cosmetic industry. Several studies determined that cosmetic ingredients have the potential to disrupt the skin microbiota equilibrium leading to the development of skin diseases and dysregulation of immune response. These studies led their investigation by using different methodologies and models, concluding that methods must be chosen according to the aim of the study, the skin site to be evaluated, and the target population of the cosmetics. Overall, it is crucial to test the impact of cosmetics in the skin microbiota and to stablish standard procedures, as well as specific criteria that allow to classify a cosmetic product as skin microbiota friendly.
Collapse
Affiliation(s)
- Maria João Carvalho
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana L S Oliveira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sílvia Santos Pedrosa
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Inês Pinto-Ribeiro
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Amyris Bio Products Portugal Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Raquel Madureira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
19
|
Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol 2023; 14:1151527. [PMID: 37081873 PMCID: PMC10110978 DOI: 10.3389/fimmu.2023.1151527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Despite its harsh and dry environment, human skin is home to diverse microbes, including bacteria, fungi, viruses, and microscopic mites. These microbes form communities that may exist at the skin surface, deeper skin layers, and within microhabitats such as the hair follicle and sweat glands, allowing complex interactions with the host immune system. Imbalances in the skin microbiome, known as dysbiosis, have been linked to various inflammatory skin disorders, including atopic dermatitis, acne, and psoriasis. The roles of abundant commensal bacteria belonging to Staphylococcus and Cutibacterium taxa and the fungi Malassezia, where particular species or strains can benefit the host or cause disease, are increasingly appreciated in skin disorders. Furthermore, recent research suggests that the interactions between microorganisms and the host's immune system on the skin can have distant and systemic effects on the body, such as on the gut and brain, known as the "skin-gut" or "skin-brain" axes. Studies on the microbiome in skin disease have typically relied on 16S rRNA gene sequencing methods, which cannot provide accurate information about species or strains of microorganisms on the skin. However, advancing technologies, including metagenomics and other functional 'omic' approaches, have great potential to provide more comprehensive and detailed information about the skin microbiome in health and disease. Additionally, inter-species and multi-kingdom interactions can cause cascading shifts towards dysbiosis and are crucial but yet-to-be-explored aspects of many skin disorders. Better understanding these complex dynamics will require meta-omic studies complemented with experiments and clinical trials to confirm function. Evolving how we profile the skin microbiome alongside technological advances is essential to exploring such relationships. This review presents the current and emerging methods and their findings for profiling skin microbes to advance our understanding of the microbiome in skin disease.
Collapse
Affiliation(s)
- Yang Chen
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, United States
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
21
|
Wongtada C, Prombutara P, Asawanonda P, Noppakun N, Kumtornrut C, Chatsuwan T. Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: A randomized, investigator-blinded exploratory study. Exp Dermatol 2023. [PMID: 36841971 DOI: 10.1111/exd.14779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
The effects of topical non-antibiotic acne treatment on skin microbiota have rarely been demonstrated. In the study, we randomized 45 mild acne vulgaris participants into three treatment groups, including a cream-gel dermocosmetic containing Aqua Posae Filiformis, lipohydroxy acid, salicylic acid, linoleic acid, niacinamide and piroctone olamine (DC), retinoic acid 0.025% cream (VAA) and benzoyl peroxide 2.5% gel (BP). At months 0, 1 and 3, skin specimens were swabbed from the cheek and forehead and sequenced by targeting V3-V4 regions of the 16 S rRNA gene. QIIME2 was used to characterize bacterial communities. Acne severity, sebum level and tolerability were assessed concomitantly in each visit. We found that both VAA and BP could significantly reduce the bacterial diversity at month 1 (p-value = 0.010 and 0.004 respectively), while no significant reduction was observed in DC group. The microbiota compositions also significantly altered for beta diversity in all treatments (all p-value = 0.001). An increased Cutibacterium with decreased Staphylococcus relative abundance was observed at months 1 and 3 in DC group, while an opposite trend was demonstrated in VAA and BP groups. These findings suggest a potential impact of DC, VAA and BP on the diversity and composition profiles of the skin microbiota in mild acne participants.
Collapse
Affiliation(s)
- Chanidapa Wongtada
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopadon Noppakun
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Kumtornrut
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Bacteriophages and the Microbiome in Dermatology: The Role of the Phageome and a Potential Therapeutic Strategy. Int J Mol Sci 2023; 24:ijms24032695. [PMID: 36769020 PMCID: PMC9916943 DOI: 10.3390/ijms24032695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Bacteriophages, also known as phages, are viruses that selectively target and infect bacteria. In addition to bacterial dysbiosis, dermatologic conditions such as acne, psoriasis, and atopic dermatitis are characterized by a relative reduction in the abundance of phages and the overgrowth of the corresponding bacteria. Phages often exhibit high specificity for their targeted bacteria, making phage-replacement therapy a promising therapeutic strategy for the control of pathogenic bacteria in dermatologic disease. Novel therapeutic strategies regulating pathogenic bacteria are especially necessary in light of growing antibiotic resistance. In this review, we aimed to review the medical literature assessing phage dysbiosis and therapeutic trials in dermatology. Ultimately, studies have depicted promising results for the treatment of acne, psoriasis, and atopic dermatitis but are limited by low sample sizes and the omission of control groups in some trials. Additional work is necessary to validate the efficacy depicted in proof-of-concept trials and to further determine optimal treatment vehicles, administration mechanisms, and dosing schedules. This review provides the necessary framework for the assessment of phage efficacy in future trials.
Collapse
|
23
|
Legiawati L, Halim PA, Fitriani M, Hikmahrachim HG, Lim HW. Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:145. [PMID: 36671346 PMCID: PMC9854683 DOI: 10.3390/antibiotics12010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Hot and humid countries such as Indonesia have a higher prevalence of acne vulgaris (AV). The activity of skin microbes, not only Cutibacterium acnes, contribute to the formation of AV. Topical and oral antibiotics are routinely prescribed to treat AV. As antimicrobial resistance rates increase globally, there are concerns about decreased efficacy. This study intends to systematically evaluate the microbiomes isolated from AV lesions and their antibiotics susceptibility in Indonesia. The data were retrieved through PubMed, EMBASE, Google Scholar, and ScienceDirect searches for articles published until July 2022 using three multiword searches. Sixteen studies published between 2001 and 2022 were identified from which the data were pooled using a random effects model. The pooled prevalence estimates demonstrated that C. acnes, Staphylococcus epidermidis, and Staphylococcus aureus were the three common microbes associated with AV in Indonesia. Tetracyclines had lower resistance rates compared to those of macrolides and clindamycin, with C. acnes showing a resistance rate that is as high as 60.1% against macrolides. C. acnes resistance against minocycline showed an increasing trend, whereas the resistances to doxycycline, clindamycin, and macrolides stagnated. The high resistance prevalence and trends signify a public health concern. The results of this study call for the development of antibiotic stewardship programs in Indonesia, which may lead to improved acne outcomes.
Collapse
Affiliation(s)
- Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Paulus Anthony Halim
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Magna Fitriani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Bilal H, Xiao Y, Khan MN, Chen J, Wang Q, Zeng Y, Lin X. Stabilization of Acne Vulgaris-Associated Microbial Dysbiosis with 2% Supramolecular Salicylic Acid. Pharmaceuticals (Basel) 2023; 16:ph16010087. [PMID: 36678584 PMCID: PMC9864713 DOI: 10.3390/ph16010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Facial microbiota dysbiosis is an important factor in causing acne vulgaris. The present study aimed to analyze the effect of 2% Supramolecular Salicylic Acid (SSA) on acne-associated facial bacteria. In the current study, 30 acne vulgaris patients (treated with 2% SSA for eight weeks) and ten volunteers with no facial acne were selected. Samples from acne patients (before and after treatment) and volunteers (not treated) were analyzed via high throughput sequencing, Deblur algorithm, and R microbiome package. After treatment with 2% SSA, the total lesion count and global acne grading system (GAGS) score reduced significantly (p < 0.001). Metagenomic sequencing analysis revealed that the pre-treated acne group had low α and deviated β diversity compared to the control and post-treated acne groups. Due to the treatment with 2% SSA, α diversity index was increased and β diversity was stabilized significantly (p < 0.001). The relative abundance of bacterial genera in the pre-treated acne group was uneven and had a high proportion of Staphylococcus, Ralstonia, and Streptococcus. The proportion of these three genera was significantly decreased in the post-treated group, and overall bacteria genera distribution tends toward the healthy individual. It is concluded that 2% SSA normalizes the microbial communities associated with the skin.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuanyuan Xiao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Dermatology, People’s Hospital of Deyang City, Deyang 618000, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jinyu Chen
- Department of Dermatology, Chengdu Second People’s Hospital, Chengdu 610017, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Medical, Surgical and Experimental Sciences, University of Sassari—Neurology Unit, Azienza Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Correspondence: (Y.Z.); (X.L.)
| | - Xinyu Lin
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Correspondence: (Y.Z.); (X.L.)
| |
Collapse
|
25
|
Liao D, Zhang J, Liu R, Chen K, Liu Y, Shao Y, Shi X, Zhang Y, Yang Z. Whole-genome sequencing, annotation, and biological characterization of a novel Siphoviridae phage against multi-drug resistant Propionibacterium acne. Front Microbiol 2023; 13:1065386. [PMID: 36687605 PMCID: PMC9846536 DOI: 10.3389/fmicb.2022.1065386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
Antibiotics-resistant Propionibacterium acne (P. acne) causes severe acne vulgaris, serious public health, and psychological threat. A new lytic bacteriophage (phage), φPaP11-13, infecting P. acne, was isolated from the sewage management center of Xinqiao Hospital. It can form transparent plaque with diameters of 1.0 ~ 5.0 mm on the double-layer agar plate, indicating a robust lytic ability against its host. Transmission electron microscopy (TEM) showed that φPaP11-13 belonged to the Siphoviridae family (head diameter 60 ± 4.5 nm, tail length 170 ± 6.4 nm, tail width 14 ± 2.4 nm). The one-step growth curve showed the incubation period was 5 h, and the burst size was 26 PFU (plaque-forming unit)/cell. Moreover, it exhibited tolerance over a broad range of pH and temperature ranges but was utterly inactivated by ultraviolet (UV) irradiation for 1 h. The whole-genome sequencing results revealed φPaP11-13 had a linear dsDNA with 29,648 bp length. The G/C content was 54.08%. Non-coding RNA genes and virulence factors were not found. Forty five open reading frames (ORFs) were identified after online annotation. This study reports a novel P. acne phage φPaP11-13, which has a robust lytic ability, no virulence factors, and good stability. The characterization and genomic analysis of φPaP11-13 will develop our understanding of phage biology and diversity and provide a potential arsenal for controlling antibiotics-resistant P. acne-induced severe acne vulgaris.
Collapse
Affiliation(s)
- Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jian Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Kui Chen
- Department of Clinical Laboratory, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yuanyuan Liu
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yuming Shao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Xi Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
- Department of Microbiology, College of Basic Medicine, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
26
|
Solid lipid nanoparticles dispersed topical hydrogel for Co-delivery of adapalene and minocycline for acne treatment. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Guo Y, Zeng M, Yuan Y, Yuan M, Chen Y, Yu H, Liu R, Ruan Z, Xie Q, Jiao X, Lu T. Photodynamic therapy treats acne by altering the composition of the skin microbiota. Skin Res Technol 2023; 29:e13269. [PMID: 36704881 PMCID: PMC9838775 DOI: 10.1111/srt.13269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acne is the eighth-most prevalent inflammatory skin disease with no optimal treatment. Photodynamic therapy (PDT) is an effective treatment for severe acne. AIMS The effect of PDT on the composition and diversity of skin microflora in severe acne patients was studied. MATERIALS AND METHODS A total of 18 patients with severe acne and 8 healthy individuals were selected for this study. Patients were treated with 5-aminolevulinic acid-mediated PDT once a week three times in total; the skin microbiome was measured by 16S ribosomal RNA gene sequencing before and after treatment (1 week after each PDT). RESULTS The microflora composition was different between healthy controls and patients, and between patients before and after treatment. Alpha diversity indices were lower in patients than those in control. There were 15 bacterial genera with high relative abundance that had noticeable changes during treatment. At the genus level,particularly Cutibacterium acnes (C. acnes formerly Propionibacterium acnes), there was no statistically significant difference among different group. The abundances of Staphylococcus epidermidis and Staphylococcus aureus were low. DISCUSSION The microbial composition is different between severe acne patients acne patients and healthy individuals. The therapeutic efficacy of severe acne treated with PDT is associated with the composition and diversity of skin microbiota. CONCLUSION The skin microbial composition changes after PDT treatment. PDT is an effective method for the treatment of severe acne.
Collapse
Affiliation(s)
- Yangmin Guo
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of DermatologyHuizhou Dermatology HospitalHuizhouChina
| | - Mi Zeng
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Yumeng Yuan
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Mengsi Yuan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yanxia Chen
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Haoyang Yu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ruimin Liu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhijie Ruan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Xiaoyang Jiao
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Tao Lu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
28
|
Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep 2022; 12:21104. [PMID: 36473894 PMCID: PMC9727105 DOI: 10.1038/s41598-022-25436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.
Collapse
|
29
|
D'Auria E, Acunzo M, Salvatore S, Grazi R, Agosti M, Vandenplas Y, Zuccotti G. Biotics in atopic diseases: state of the art and future perspectives. Minerva Pediatr (Torino) 2022; 74:688-702. [PMID: 36149096 DOI: 10.23736/s2724-5276.22.07010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prevalence of allergic diseases has growing in recent decades, being a significant burden for patients and their families. Different environmental factors, acting in early life, can significantly affect the timing and diversity of bacterial colonization and the immune system development. Growing evidence points to a correlation between early life microbial perturbation and development of allergic diseases. Besides, changes in the microbiota in one body site may influence other microbiota communities at distance by different mechanisms, including microbial-derived metabolites, mainly the short chain fatty acids (SCFA). Hence, there has been an increasing interest on the role of "biotics" (probiotics, prebiotics, symbiotics and postbiotics) in shaping dysbiosis and modulating allergic risk. Systemic type 2 inflammation is emerging as a common pathogenetic pathway of allergic diseases, intertwining communication with the gut mcirobiota. The aim of this review was to provide an update overview of the current knowledge of biotics in prevention and treatment of allergic diseases, also addressing research gaps which need to be filled.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Roberta Grazi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Yvan Vandenplas
- KidZ Health Castle, Free University of Brussels, Brussels, Belgium
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Shao X, Chen Y, Zhang L, Zhang Y, Ariyawati A, Chen T, Chen J, Liu L, Pu Y, Li Y, Chen J. Effect of 30% Supramolecular Salicylic Acid Peel on Skin Microbiota and Inflammation in Patients with Moderate-to-Severe Acne Vulgaris. Dermatol Ther (Heidelb) 2022; 13:155-168. [PMID: 36350527 PMCID: PMC9823178 DOI: 10.1007/s13555-022-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Thirty-percent supramolecular salicylic acid (SSA), a modified salicylic acid preparation, is a safe and effective treatment for moderate-to-severe acne vulgaris (AV). However, its mechanism of action remains unclear. We aimed to analyze the role of 30% SSA peels on skin microbiota and inflammation in patients with moderate-to-severe AV. METHODS A total of 28 patients were enrolled and received 30% SSA peels biweekly for 2 months. The Global Acne Grading System (GAGS) score, skin water content, transepidermal water loss (TEWL), pH, and sebum levels were assessed. Skin microbial samples and perilesional skin biopsies were obtained at the onset and 2 weeks after treatment completion. Samples were characterized using a high-throughput sequencing approach targeting a portion of the bacterial 16S ribosomal RNA gene. RESULTS After treatment, patients showed a significant improvement in their GAGS score and skin barrier indicators (P < 0.05). The GAGS score was positively associated with both the sebum concentration (R = 0.3, P = 0.027) and pH (R = 0.39, P = 0.003). Increased expression of caveolin-1 and decreased expression of interleukin (IL)-1a, IL-6, IL-17, transforming growth factor beta, and toll-like receptor 2 were observed in the skin tissue after treatment. The richness and evenness of the cutaneous microbiome decreased after treatment and the Staphylococcus proportion decreased significantly (P < 0.05), whereas the Propionibacterium proportion tended to decrease (P = 0.066). CONCLUSIONS On the basis of analyses of the skin barrier and microbiota, we speculate that the 30% SSA peel may have a therapeutic effect in patients with moderate-to-severe AV by improving the skin microenvironment and modulating the skin microbiome, thus reducing local inflammation.
Collapse
Affiliation(s)
- Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Asoka Ariyawati
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Tingqiao Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yuxin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
31
|
Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci 2022; 23:13071. [PMID: 36361857 PMCID: PMC9654002 DOI: 10.3390/ijms232113071] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Human skin is the largest organ and serves as the first line of defense against environmental factors. The human microbiota is defined as the total microbial community that coexists in the human body, while the microbiome refers to the collective genome of these microorganisms. Skin microbes do not simply reside on the skin but interact with the skin in a variety of ways, significantly affecting the skin barrier function. Here, we discuss recent insights into the symbiotic relationships between the microbiome and the skin barrier in physical, chemical, and innate/adaptive immunological ways. We discuss the gut-skin axis that affects skin barrier function. Finally, we examine the effects of microbiome dysbiosis on skin barrier function and the role of these effects in inflammatory skin diseases, such as acne, atopic dermatitis, and psoriasis. Microbiome cosmetics can help restore skin barrier function and improve these diseases.
Collapse
Affiliation(s)
| | - Miri Kim
- Department of Dermatology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, #10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
| |
Collapse
|
32
|
Akaza N, Takasaki K, Nishiyama E, Usui A, Miura S, Yokoi A, Futamura K, Suzuki K, Yashiro Y, Yagami A. The Microbiome in Comedonal Contents of Inflammatory Acne Vulgaris is Composed of an Overgrowth of Cutibacterium Spp. and Other Cutaneous Microorganisms. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2003-2012. [PMID: 36172249 PMCID: PMC9510696 DOI: 10.2147/ccid.s379609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Background Acne vulgaris (acne) and cutaneous resident microorganisms are considered to be closely related. However, the bacterial and fungal microbiota in the comedonal contents of inflammatory acne lesions have not yet been investigated in detail. Purpose To clarify the relationship between cutaneous microorganisms and acne, we examined the microbiome in the comedonal contents of inflammatory acne and on the facial skin of patients with acne using 16s rRNA and ITS gene sequencing with a next-generation sequencer (NGS). Patients and Methods Twenty-two untreated Japanese acne outpatients were examined. The comedonal contents of inflammatory acne lesions on the face were collected using a comedo extractor. Skin surface samples from facial skin were collected using the swab method. Results The results obtained revealed that the predominant bacteria in the comedonal contents of inflammatory acne were Cutibacterium spp. (more prominent in areas with large amounts of sebum), while those on the skin surface were Staphylococcus spp. Malassezia spp., particularly Malassezia restricta, were the predominant fungi in both the comedonal contents of inflammatory acne and on the skin surface. The bacterial microbiome in comedonal contents exhibited stronger metabolic activity, including the production of enzymes related to acne, than that on the skin surface. Conclusion These results indicate that acne is an inflammatory disease involving the overgrowth of Cutibacterium acnes and other cutaneous resident microorganisms, including Malassezia spp.
Collapse
Affiliation(s)
- Narifumi Akaza
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | | | | | | | - Shiori Miura
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Aya Yokoi
- Nihombashi Irodori Dermatology Clinic, Tokyo, Japan.,Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Kyoko Futamura
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Kayoko Suzuki
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Youichi Yashiro
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Akiko Yagami
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
34
|
Yang Y, Qu L, Mijakovic I, Wei Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact 2022; 21:176. [PMID: 36038876 PMCID: PMC9422115 DOI: 10.1186/s12934-022-01901-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Skin is the largest organ in the human body, and the interplay between the environment factors and human skin leads to some skin diseases, such as acne, psoriasis, and atopic dermatitis. As the first line of human immune defense, skin plays significant roles in human health via preventing the invasion of pathogens that is heavily influenced by the skin microbiota. Despite being a challenging niche for microbes, human skin is colonized by diverse commensal microorganisms that shape the skin environment. The skin microbiota can affect human health, and its imbalance and dysbiosis contribute to the skin diseases. This review focuses on the advances in our understanding of skin microbiota and its interaction with human skin. Moreover, the potential roles of microbiota in skin health and diseases are described, and some key species are highlighted. The prevention, diagnosis and treatment strategies for microbe-related skin diseases, such as healthy diets, lifestyles, probiotics and prebiotics, are discussed. Strategies for modulation of skin microbiota using synthetic biology are discussed as an interesting venue for optimization of the skin-microbiota interactions. In summary, this review provides insights into human skin microbiota recovery, the interactions between human skin microbiota and diseases, and the strategies for engineering/rebuilding human skin microbiota.
Collapse
Affiliation(s)
- Yudie Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China.
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China.
| |
Collapse
|
35
|
Zhu Z, Zeng Q, Wang Z, Xue Y, Chen T, Hu Y, Wang Y, Wu Y, Shen Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. Skin microbiome reconstruction and lipid metabolism profile alteration reveal the treatment mechanism of Cryptotanshinone in the acne rat. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154101. [PMID: 35472695 DOI: 10.1016/j.phymed.2022.154101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acne has become one of the most prevalent skin disorders, affecting mostly young people's physical and mental health globally. Cryptotanshinone (CPT) is a potential drug for acne, but its mechanism of acne treatment has not been thoroughly studied on the microbiota. Till date, only a few studies are directed to the impact of acne therapy on skin microbiota and lipid metabolites. PURPOSE The action mechanism of CPT treatment of acne was investigated by the strategy of microbiome integration with lipidomics. METHODS The 16Sr DNA sequencing was used to detect skin microbiota composition, and absolute quantitative lipidomics was utilized to identify lipid metabolites profiles levels. Four key proteins of the glycolysis pathway were detected with the immunochemistry method. Antibacterial analysis was used to evaluate CPT treatment of acne. RESULTS CPT significantly inhibited Staphylococcus epidermidis and Staphylococcus aureus. Combination of the skin microbiome and lipidomics analysis, 29 types of differentially expressed flora (DEFs) and 782 differentially expressed lipid metabolites (DELMs) were significantly altered, especially Staphylococcus, Corynebacterium, Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. Cer was mainly regulated by Staphylococcus and Corynebacterium, whereas TG and DG were mainly regulated by Ralstonia, Enhydrobacter, Burkholderia, and Streptococcus. The glycolysis pathway was significantly regulated by Staphylococcus on CPT treatment of acne. The energy metabolism, lipid metabolism, immune system, glycan biosynthesis, and metabolism could be reversed by CPT. CONCLUSION CPT might help acne rats rebuild their skin microbiota and alter lipid metabolism signatures. Furthermore, since skin microbes and skin lipid metabolites have a close correlation and are both regulated by CPT, the findings potentially provide a research foundation for the discovery of biomarkers of skin microbiome imbalance and targeted treatment of acne development mechanisms.
Collapse
Affiliation(s)
- Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510300, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
36
|
Huang TY, Jiang YE, Scott DA. Culturable bacteria in the entire acne lesion and short-chain fatty acid metabolites of Cutibacterium acnes and Staphylococcus epidermidis isolates. Biochem Biophys Res Commun 2022; 622:45-49. [PMID: 35843093 DOI: 10.1016/j.bbrc.2022.06.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Although evidence supports that the acne microbiome harbors a diverse range of microbes that play a vital role in the progression of acne vulgaris, the culturable microbes in the acne microbiome have not yet been largely identified. Here, we grew microbe colonies from entire acne lesions on agar plates and identified abundant Staphylococcus, Acinetobacter, and Pseudomonas species from forty selected single colonies. Staphylococcus species, including Staphylococcus epidermidis (S. epidermidis), Staphylococcus hominis (S. hominis), and Staphylococcus aureus (S. aureus), were isolated from tryptic soy broth (TSB) agar plates. However, Cutibacterium acnes (C. acnes) was predominately isolated from furazolidone-supplemented TSB agar plates. Results from gas chromatography-mass spectrometry (GC-MS) analysis revealed that, besides acetate, propionate and butyrate were the main short-chain fatty acids (SCFAs) in fermentation metabolites of C. acnes and S. epidermidis isolates, respectively. The culturable bacteria and SCFA profiles presented in this study provide a reservoir for selecting acne probiotics and developing SCFA-associated therapies against acne vulgaris.
Collapse
Affiliation(s)
| | | | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
37
|
Al-tameemi S, Abid Z, Chen W, Alshammri F, Abid H. Calprotectin may be positively associated with the severity of acne vulgaris. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i02.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and objective: Acne vulgaris (AV) is a common skin disease of sebaceous hair follicles. Many factors are associated with the occurrence and severity of acne, while the exact etiology remains incompletely understood. The current study was aimed to investigate the association between the severity of acne and serum zinc, copper, and calprotectin.
Methods: Fifty patients with AV were recruited in the study as well as 25 healthy age and sex-matched individuals as controls. The acne severity was classified into mild (n=21), moderate (n=16), and severe acne (n=14) according to the global acne grading system (GAGS). Serum levels of zinc, acne and calprotectin were evaluated by enzyme-linked immunosorbent assay (ELISA). The gained data were analyzed using GraphPad Prism software.
Results: Insignificant difference was found in zinc and copper levels between controls and AV patients, except in severe AV, where the patients displayed significant elevation in serum copper level (p<0.05) as compared to that of mild AV. The calprotectin concentration was significantly higher (p<0.001) in all AV patients, when compared with healthy subjects, which was positively correlated with the disease severity. No gender difference was noted for all measured biomarkers.
Conclusions: Our study suggests a possible association between calprotectin and acne inflammation, which requires validation in large-scale studies.
Collapse
|
38
|
Chai R, Tai Z, Zhu Y, Chai C, Chen Z, Zhu Q. Symbiotic microorganisms: prospects for treating atopic dermatitis. Expert Opin Biol Ther 2022; 22:911-927. [PMID: 35695265 DOI: 10.1080/14712598.2022.2089560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common chronic recurrent inflammatory skin disease. The pathogenesis is unclear but may be related to genetic, immune, and environmental factors and abnormal skin barrier function. Symbiotic microorganisms in the gut and on the skin are associated with AD occurrence. AREAS COVERED We discuss the metabolism and distribution of intestinal and skin flora and review their relationship with AD, summarizing the recent applications of intestinal and skin flora in AD treatment, and discussing the prospect of research on these two human microbiota systems and their influence on AD treatment. The PubMed database was searched to identify relevant publications from 1949 to 2020 for the bibliometric analysis of atopic dermatitis and symbiotic microorganisms. EXPERT OPINION Many studies have suggested a potential contribution of microbes in the intestine and on the skin to AD. Bacteria living on the skin can aggravate AD by secreting numerous virulence factors. Moreover, the metabolism of intestinal flora can influence AD occurrence and development via the circulatory system. Current evidence suggests that by regulating intestinal and skin flora, AD can be treated and prevented.
Collapse
Affiliation(s)
- Rongrong Chai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Zongguang Tai
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yunjie Zhu
- RnD-I, Zifo RnD Solution, Shanghai, P.R. China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing P.R. China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai P.R. China
| |
Collapse
|
39
|
Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective? COSMETICS 2022. [DOI: 10.3390/cosmetics9030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician.
Collapse
|
40
|
Salgaonkar N, Kadamkode V, Kumaran S, Mallemala P, Christy E, Appavoo S, Majumdar A, Mitra R, Dasgupta A. Glycerol fermentation by skin bacteria generates lactic acid and upregulates the expression levels of genes associated with the skin barrier function. Exp Dermatol 2022; 31:1364-1372. [PMID: 35535416 DOI: 10.1111/exd.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Commensal bacteria play a major role in multiple skin functions by providing the first layer of defense against pathogens and maintaining the skin barrier. Staphylococcus epidermidis is one of the most common skin commensals. In this study, we showed that S. epidermidis ferments glycerol and uses it as a nutrient, while producing short-chain and organic fatty acids, with the most notable being lactic acid. Lactic acid is an alpha-hydroxy acid that inhibits the growth of pathogenic bacteria, without any negative effect on the commensal bacteria itself. Using in vivo experiments, we validated our in vitro results, showing that the skin microbiome is also capable of doing this. Finally, using 2D and 3D skin culture models, we showed that the fermentation of glycerol, mainly lactic acid, as determined by analytical methods, upregulates the expression levels of several key genes that are associated with the barrier properties of the skin. While the hydration effect of glycerol on the skin is well known, our study shows the overall benefits of glycerol on the skin microbiome, while revealing an alternate mode of action of glycerol for multiple skin benefits.
Collapse
Affiliation(s)
| | | | | | | | - Ernest Christy
- Unilever R&D, 64 Whitefield, Bangalore, Karnataka, India
| | | | | | - Rupak Mitra
- Unilever R&D, 64 Whitefield, Bangalore, Karnataka, India
| | | |
Collapse
|
41
|
Dagnelie MA, Poinas A, Dréno B. What is new in adult acne for the last 2 years: focus on acne pathophysiology and treatments. Int J Dermatol 2022; 61:1205-1212. [PMID: 35521784 DOI: 10.1111/ijd.16220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Acne affects more than 640 million people worldwide, including about 85% of adolescents. This inflammatory dermatosis affects the entire population, from teenagers to adults, which reinforces the need to investigate it. Furthermore, in adults, acne has serious consequences, including a psychological impact, low self-esteem, social isolation, and depression. Over the last years, the understanding of acne pathophysiology has improved, mainly thanks to the identification of the pivotal role of the microbiota. The aim of this review was to screen the most recent scientific literature on adult acne and the newly tested treatments. Clinically, therapeutic innovations for the treatment of acne have been recently developed, including pre/probiotics, new molecules, and innovative formulations associated, however, with fewer side effects. Moreover, clinical trials are underway to use off-label molecules that seem to be proving their value in the fight against adult acne.
Collapse
Affiliation(s)
- Marie-Ange Dagnelie
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Alexandra Poinas
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Brigitte Dréno
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| |
Collapse
|
42
|
A split face study on the effect of an anti-acne product containing fermentation products of Enterococcus faecalis CBT SL-5 on skin microbiome modification and acne improvement. J Microbiol 2022; 60:488-495. [DOI: 10.1007/s12275-022-1520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
|
43
|
A New Topical Candidate in Acne Treatment: Characterization of the Meclozine Hydrochloride as an Anti-Inflammatory Compound from In Vitro to a Preliminary Clinical Study. Biomedicines 2022; 10:biomedicines10050931. [PMID: 35625668 PMCID: PMC9138413 DOI: 10.3390/biomedicines10050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Acne is a chronic inflammatory multifactorial disease involving the anaerobic bacterium Cutibacterium acnes (C. acnes). Current acne treatments are associated with adverse effects, limiting treatment compliance and use. We showed that meclozine, an anti-histaminic H1 compound, has anti-inflammatory properties. In Vitro, meclozine reduced the production of CXCL8/IL-8 and IL-1β mRNA and protein by C. acnes-stimulated human keratinocytes and monocytes. No cell toxicity was observed at the IC50. Meclozine prevented the phosphorylation of ERK and JNK. In Vivo, 1% meclozine gel significantly decreased C. acnes-mouse ear induced inflammation by 26.7% (p = 0.021). Ex vivo experiments on human skin explants showed that meclozine decreased the production of GM-CSF, IL-1β and TNF-α at transcriptional and translational levels. In a randomized, double-blind, placebo-controlled proof-of-concept clinical trial on 60 volunteers, 2% meclozine pharmaceutical gel decreased by 20.1% (p < 0.001) the ASI score in the treated group after 12 weeks of treatment. No adverse event was reported. Together, these results indicate that meclozine is a potent topical anti-inflammatory compound of potential value for acne treatment.
Collapse
|
44
|
Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol 2022; 12:834135. [PMID: 35321316 PMCID: PMC8936186 DOI: 10.3389/fcimb.2022.834135] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The human skin harbors a wide variety of microbes that, together with their genetic information and host interactions, form the human skin microbiome. The role of the human microbiome in the development of various diseases has lately gained interest. According to several studies, changes in the cutaneous microbiota are involved in the pathophysiology of several dermatoses. A better delineation of the human microbiome and its interactions with the innate and adaptive immune systems could lead to a better understanding of these diseases, as well as the opportunity to achieve new therapeutic modalities. The present review centers on the most recent knowledge on skin microbiome and its participation in the pathogenesis of several skin disorders: atopic and seborrheic dermatitis, alopecia areata, psoriasis and acne.
Collapse
|
45
|
Martín C, Ordiales H, Vázquez F, Pevida M, Rodríguez D, Merayo J, Vázquez F, García B, Quirós LM. Bacteria associated with acne use glycosaminoglycans as cell adhesion receptors and promote changes in the expression of the genes involved in their biosynthesis. BMC Microbiol 2022; 22:65. [PMID: 35219289 PMCID: PMC8881830 DOI: 10.1186/s12866-022-02477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Cell surface glycosaminoglycans (GAGs) participate in many physiological and pathological processes, including infections and inflammatory response. Acne is a common chronic inflammatory skin disorder that affects the pilosebaceous unit and has a multifactorial etiology, including bacterial colonization of the hair follicle. This study aimed to investigate the participation of GAG in the adhesion of Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis to keratinocytes and fibroblasts of the skin by competition experiments and cell surface removal using specific liases. The alteration in the transcription of the genes responsible for the synthesis of GAG induced by the adhesion of these bacteria was also analyzed by qRT-PCR. Results GAGs are involved in bacterial adherence to skin cells, especially fibroblasts, where chondroitin sulfate displayed the higher effect. Bacterial adherence produced different alterations in the transcription of the genes responsible for GAG structures. P. acnes induced mostly changes in keratinocytes, while S. epidermidis was the main cause of alterations in fibroblasts. These variations in gene expression affected all the stages in the biosynthesis of the main species of GAGs, heparan and chondroitin sulphate. Conclusions GAGs species are involved in the adhesion of acne-related bacteria to skin cells in a differential manner depending on each microorganism and cellular type, although other receptors seem to exist. Bacterial adherence led to variations on gene expression in skin cells affecting GAG chains structure what, consequently, should alter their interactions with different ligands, affecting the development of acne disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02477-2.
Collapse
|
46
|
Ruan SF, Hu Y, Wu WF, Du QQ, Wang ZX, Chen TT, Shen Q, Liu L, Jiang CP, Li H, Yi Y, Shen CY, Zhu HX, Liu Q. Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Front Pharmacol 2022; 13:832088. [PMID: 35211023 PMCID: PMC8861462 DOI: 10.3389/fphar.2022.832088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acne vulgaris is one of the most common inflammatory dermatoses in dermatological practice and can affect any gender or ethnic group. Although in previous studies, we had found that licorice flavonoids (LCF) play an anti-acne role by inhibiting PI3K-Akt signaling pathways and mitochondrial activity, the mechanism of LCF regulating skin metabolism, serum metabolism and skin microbes is still unclear. Here, we performed a full spectrum analysis of metabolites in the skin and serum using UHPLC-Triple TOF-MS. The results showed that LCF could treat acne by regulating the metabolic balance of amino acids, lipids and fatty acids in serum and skin. Similarly, we performed Illumina Hiseq sequencing of DNA from the skin microbes using 16S ribosomal DNA identification techniques. The results showed that LCF could treat acne by regulating the skin microbes to interfere with acne and make the microecology close to the normal skin state of rats. In summary, this study confirmed the anti-acne mechanism of LCF, namely by regulating metabolic balance and microbial balance. Therefore, this discovery will provide theoretical guidance for the preparation development and clinical application of the drug.
Collapse
Affiliation(s)
- Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun-Qun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting-Ting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Morss-Walton PC, McGee JS, Rosales Santillan M, Kimball R, Cukras A, Patwardhan SV, Porter ML, Kimball AB. The Yin and Yang of Skin Microbiota in "Swimmer Acne". Exp Dermatol 2022; 31:899-905. [PMID: 35118730 DOI: 10.1111/exd.14535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Cutibacterium acnes (C. acnes) is an organism implicated in the pathogenesis of acne. Despite regular immersion in antimicrobial chlorine, adolescent swimmers suffer from acne and tend to be resistant to standard therapies. Given the presence of Pseudomonas within swimming facilities, we hypothesized that "swimmer acne" is potentially driven by a different microbial mechanism. In this study, we aimed to examine the microbial dynamics of C. acnes and Pseudomonadaceae, a family of Gram-negative bacteria (includes Pseudomonas aeruginosa), in swimmers and its potential contribution to pathogenesis of acne in this population. Using fluorescence photography that measures the Coproporphyrin III (CPIII), we quantitated an absolute abundance of C. acnes present on the face of each participant pre- and post-swimming. In addition, 16S rRNA gene sequencing was utilized to assess relative abundance of the skin microbiota on each participant pre- and post-swimming. 16 swimmers (8 girls and 8 boys) completed the study. Seven had acne on the face. The CPIII fluorescence levels decreased for all swimmers after 1 hour of swimming (p-value <0.001). In contrast, relative abundance of C. acnes remained unchanged, while that of Pseudomonadaceae increased after swimming (p-value = 0.027). Comparing the relative abundances of Pseudomonadaceae before swimming, there was a significant increase in variance from the mean in acne group as compared to no acne group (p-value <0.001). Taken together, we conclude that the skin dysbiosis resulting from repeated decolonization and colonization of C. acnes and Pseudomonadaceae, respectively, can potentially be associated with the pathogenesis of acne in swimmers.
Collapse
Affiliation(s)
- Peyton C Morss-Walton
- University of Massachusetts Medical School, Worcester, MA, USA.,Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jean S McGee
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Monica Rosales Santillan
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ranch Kimball
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Martina L Porter
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexa B Kimball
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
48
|
Arpa MD, Seçen İM, Erim ÜC, Hoş A, Üstündağ Okur N. Azelaic acid loaded chitosan and HPMC based hydrogels for treatment of acne: formulation, characterization, in vitro- ex vivo evaluation. Pharm Dev Technol 2022; 27:268-281. [PMID: 35112652 DOI: 10.1080/10837450.2022.2038620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, hydrogels containing azelaic acid were developed using chitosan or HPMC (1-7%) for local treatment of acne vulgaris. Physicochemical properties such as viscosity, pH and mechanical properties were evaluated. In vitro release and ex vivo permeability studies were performed using Franz diffusion cell system. The pH of the hydrogels were highly compatible with the skin pH and varied between 4.38-5.84. The cumulative release percentages of the hydrogels at the end of 6 hours were 65-78%, whereas the marketed product yielded 50% drug release. According to the ex vivo permeability results, azelaic acid accumulated in the skin were found to be 9.38 ± 0.65% (marketed cream), 19.53 ± 1.06% (K3), 10.96 ± 1.91% (H6). The antiacne studies with Cutibacterium acnes revealed that K3 (29.45 ± 0.95) and H6 (32.35 ± 0.15) had higher inhibition zones compared to the marketed cream (24.50 ± 0.90). Additionally, the gels were found to be highly stable as a result of the stability studies for 6 months. Among the hydrogels that were prepared based on experimental findings, K3 (3% Chitosan) and H6 (6% HPMC) represented elevated in vitro release profile, higher permeability and increased antiacne activity. The findings of this research suggest that the developed hydrogels might be an alternative to the marketed product.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - İkbal Merve Seçen
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Turkey
| | - Ümit Can Erim
- Istanbul Medipol University, School of Pharmacy, Department of Analytical Chemistry, 34085, Istanbul, Turkey
| | - Ayşegül Hoş
- Istanbul Medipol University, School of Pharmacy, Department of Microbiology, 34085, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Turkey
| |
Collapse
|
49
|
Chen YJ, Weng YC. Skin microbiome in acne vulgaris, skin aging, and rosacea: An evidence-based review. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Zhou L, Chen L, Liu X, Huang Y, Xu Y, Xiong X, Deng Y. The influence of benzoyl peroxide on skin microbiota and the epidermal barrier for acne vulgaris. Dermatol Ther 2021; 35:e15288. [PMID: 34962033 DOI: 10.1111/dth.15288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/03/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
The disordered skin microbiome has been reported to contribute to the pathogenesis of acne vulgaris, for which benzoyl peroxide (BPO) has long been recommended as the first-line therapy. However, there are no data regarding the effect of BPO treatment on skin microbiota and the epidermal barrier in young adults with acne vulgaris. Thirty-three patients with acne vulgaris and 19 healthy controls were enrolled in the study. All patients received topical treatment with BPO 5% gel for 12 weeks. The epidermal barrier was analyzed at baseline and after treatment. Microbial diversity was analyzed using a high-throughput sequencing approach targeting the V3-V4 region of 16S rRNA genes. After receiving treatment with BPO, patients had significant improvement in their Global Acne Grading System (GAGS) score, porphyrin, and red areas (p < 0.05), and the presence of sebum, stratum corneum hydration (SCH), and transepidermal water loss (TEWL) increased (p < 0.05). When compared with baseline, microbial diversity was significantly reduced after treatment, as calculated by the goods coverage (p = 0.0017), Shannon (p = 0.0094), and Simpson (p = 0.0017) diversity indices. The prevalence of the genus Cutibacterium (before treatment: 5.64 [3.50, 7.78] vs. after treatment: 2.43 [1.81, 3.05], p = 0.011) was significantly reduced after treatment while Staphylococcus (before treatment: 43.80 [36.62, 50.98] vs. after treatment: 53.38 [44.88, 61.87], p = 0.075) tended to increase. The abundance of Staphylococcus was negatively associated with SCH (p = 0.008, r = -0.286). Despite its contribution to an improved GAGS score, BPO treatment for acne vulgaris may reduce microbial diversity and damage the epidermal barrier. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Linna Chen
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueping Liu
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yukun Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongqiong Deng
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|