1
|
Ferrara F, Yan X, Pecorelli A, Guiotto A, Colella S, Pasqui A, Lynch S, Ivarsson J, Anderias S, Choudhary H, White S, Valacchi G. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol 2024; 23:2644-2656. [PMID: 38590207 DOI: 10.1111/jocd.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS Although it has been suggested that topical antioxidants may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION This is the first human study confirming multipollutant cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Xi Yan
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | | | - Stephen Lynch
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - John Ivarsson
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sara Anderias
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | | | | | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
3
|
Nissinen L, Haalisto J, Riihilä P, Piipponen M, Kähäri VM. Clustering of RNA co-expression network identifies novel long non-coding RNA biomarkers in squamous cell carcinoma. Sci Rep 2024; 14:16864. [PMID: 39043845 PMCID: PMC11266547 DOI: 10.1038/s41598-024-67808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important players in cancer progression. Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. The prognosis of the metastatic cSCC is poor, and currently there are no established biomarkers to predict metastasis risk or specific therapeutic targets for advanced or metastatic cSCC. To elucidate the role of lncRNAs in cSCC, RNA sequencing of patient derived cSCC cell lines and normal human epidermal keratinocytes was performed. The correlation analysis of differentially expressed lncRNAs and protein-coding genes revealed six distinct gene clusters with one of the upregulated clusters featuring genes associated with cell motility. Upregulation of the expression of lncRNAs linked to cSCC cell motility in cSCC and head and neck SCC (HNSCC) cells was confirmed using qRT-PCR. Elevated expression of HOTTIP and LINC00543 was also noted in SCC tumors in vivo and was associated with poorer prognosis in HNSCC and lung SCC cohorts within TCGA data, respectively. Altogether, these findings uncover a novel set of lncRNAs implicated in cSCC cell locomotion. These lncRNAs may serve as potential novel biomarkers and as putative therapeutic targets for locally advanced and metastatic cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Josefiina Haalisto
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland.
| |
Collapse
|
4
|
Tartaglia G, Fuentes I, Patel N, Varughese A, Israel LE, Park PH, Alexander MH, Poojan S, Cao Q, Solomon B, Padron ZM, Dyer JA, Mellerio JE, McGrath JA, Palisson F, Salas-Alanis J, Han L, South AP. Antiviral drugs prolong survival in murine recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2024; 16:870-884. [PMID: 38462666 PMCID: PMC11018630 DOI: 10.1038/s44321-024-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFβ pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ignacia Fuentes
- DEBRA Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abigail Varughese
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lauren E Israel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pyung Hun Park
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael H Alexander
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Poojan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qingqing Cao
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brenda Solomon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary M Padron
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan A Dyer
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Francis Palisson
- DEBRA Chile, Santiago, Chile
- Servicio de Dermatologia, Facultad de Medicina Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, Zauli G, Valacchi G. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life (Basel) 2024; 14:155. [PMID: 38276284 PMCID: PMC10817472 DOI: 10.3390/life14010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Rebecca Voltan
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| |
Collapse
|
6
|
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 2024; 19:1. [PMID: 38217019 PMCID: PMC10787507 DOI: 10.1186/s13008-024-00107-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.
Collapse
Affiliation(s)
- Min Wei
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Siljamäki E, Riihilä P, Suwal U, Nissinen L, Rappu P, Kallajoki M, Kähäri VM, Heino J. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene 2023; 42:3633-3647. [PMID: 37864034 PMCID: PMC10691969 DOI: 10.1038/s41388-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The prognosis of patients with metastatic cSCC is poor emphasizing the need for new therapies. We have previously reported that the activation of Ras/MEK/ERK1/2 and transforming growth factor β (TGF-β)/Smad2 signaling in transformed keratinocytes and cSCC cells leads to increased accumulation of laminin-332 and accelerated invasion. Here, we show that the next-generation B-Raf inhibitor PLX8394 blocks TGF-β signaling in ras-transformed metastatic epidermal keratinocytes (RT3 cells) harboring wild-type B-Raf and hyperactive Ras. PLX8394 decreased phosphorylation of TGF-β receptor II and Smad2, as well as p38 activity, MMP-1 and MMP-13 synthesis, and laminin-332 accumulation. PLX8394 significantly inhibited the growth of human cSCC tumors and in vivo collagen degradation in xenograft model. In conclusion, our data indicate that PLX8394 inhibits several serine-threonine kinases in malignantly transformed human keratinocytes and cSCC cells and inhibits cSCC invasion and tumor growth in vitro and in vivo. We identify PLX8394 as a potential therapeutic compound for advanced human cSCC.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
8
|
Ivarsson J, Ferrara F, Vallese A, Guiotto A, Colella S, Pecorelli A, Valacchi G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int J Mol Sci 2023; 24:16674. [PMID: 38068996 PMCID: PMC10706824 DOI: 10.3390/ijms242316674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Vallese
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Guiotto
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, 53100 Siena, Italy;
| | - Alessandra Pecorelli
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| |
Collapse
|
9
|
Doddawad V, Shivananda S, Kalabharathi HL, Shetty A, Sowmya S, Sowmya HK. Matrix metalloproteinases in oral cancer: A catabolic activity on extracellular matrix components. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_10_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Deng LJ, Jia M, Luo SY, Li FZ, Fang S. Expression of Hedgehog Signaling Pathway Proteins in Basal Cell Carcinoma: Clinicopathologic Study. Clin Cosmet Investig Dermatol 2022; 15:2353-2361. [PMCID: PMC9637365 DOI: 10.2147/ccid.s389551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Li-Jia Deng
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Meng Jia
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Si-Yu Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng-Zeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Sheng Fang, Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
11
|
Super Enhancer-Regulated LINC00094 (SERLOC) Upregulates the Expression of MMP-1 and MMP-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14163980. [PMID: 36010973 PMCID: PMC9406669 DOI: 10.3390/cancers14163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Super enhancers (SE) play a role in tumorigenesis and regulate the expression of specific lncRNAs. We examined the role of BRD3OS, also named LINC00094, in cutaneous squamous cell carcinoma (cSCC). Elevated BRD3OS (LINC00094) expression was detected in cSCC cells, and expression was downregulated by SE inhibitors THZ1 and JQ1 and via the MEK1/ERK1/2 pathway. Increased expression of BRD3OS (LINC00094) was noted in tumor cells in cSCCs and their metastases compared to normal skin, actinic keratoses, and cSCCs in situ. Higher BRD3OS (LINC00094) expression was noted in metastatic cSCCs than in non-metastatic cSCCs. RNA-seq analysis after BRD3OS (LINC00094) knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Basement membrane, Metalloendopeptidase activity, and KEGG pathway Extracellular matrix–receptor interaction. Among the top-regulated genes were MMP1, MMP10, and MMP13. Knockdown of BRD3OS (LINC00094) resulted in decreased production of MMP-1 and MMP-13 by cSCC cells, suppressed invasion of cSCC cells through collagen I, and growth of human cSCC xenografts in vivo. Based on these observations, BRD3OS (LINC00094) was named SERLOC (super enhancer and ERK1/2-Regulated Long Intergenic non-protein coding transcript Overexpressed in Carcinomas). These results reveal the role of SERLOC in cSCC invasion and identify it as a potential therapeutic target in advanced cSCC.
Collapse
|
12
|
Łasińska I, Zielińska A, Mackiewicz J, Souto EB. Basal Cell Carcinoma: Pathology, Current Clinical Treatment, and Potential Use of Lipid Nanoparticles. Cancers (Basel) 2022; 14:2778. [PMID: 35681758 PMCID: PMC9179516 DOI: 10.3390/cancers14112778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Skin cancer is the most common type of carcinoma diagnosed worldwide, with significant morbidity and mortality rates among Caucasians, in particular basal cell carcinoma (BCC). The main risk factors of BCC are well-identified, and there are many chemotherapeutic drugs available for its treatment. The effectiveness of therapeutic options is governed by several factors, including the location of the tumor, its size, and the presence of metastases (although rare for BCC). However, available treatments are based on non-targeted approaches, which encounter a significant risk of systemic toxicity in several organs. Site-specific chemotherapy for BCC has been proposed via the loading of anticancer drugs into nanoparticles. Among various types of nanoparticles, in this review, we focus on potential new regimens for the treatment of BCC using classical anticancer drugs loaded into novel lipid nanoparticles. To meet patient aesthetic expectations and enhance the effectiveness of basal cell carcinoma treatment, new therapeutic topical strategies are discussed, despite a limited number of reports available in the literature.
Collapse
Affiliation(s)
- Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznań, Poland;
- Department of Nursing, Institute of Health Sciences, University of Zielona Góra, Energetyków Street 2, 65-417 Zielona Góra, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznań, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznań, Poland
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal;
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
14
|
Zou M, Zhang C, Sun Y, Wu H, Xiao F, Gao W, Zhao F, Fan X, Wu G. Comprehensive analysis of matrix metalloproteinases and their inhibitors in head and neck squamous cell carcinoma. Acta Oncol 2022; 61:505-515. [PMID: 34879791 DOI: 10.1080/0284186x.2021.2009564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: This study aimed to explore the association of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) with cancer progression and prognosis in head and neck squamous cell carcinoma (HNSCC).Methods: Differentially expressed genes (DEGs) were identified by LIMMA package using R software. The correlation between the expression levels of MMPs and TIMPs in HNSCC cancer samples and adjacent normal tissue samples was performed using Pearson correlation analysis. The Kruskal-Wallis test (H-test) was used to determine the association between the expression level of MMPs/TIMPs and HNSCC clinical stage. The survival result was expressed as a KM curve, and the log-rank test was used for statistical analysis. Lasso regression and multivariate Cox regression analyses were used to examine whether the gene signature based on MMPs and TIMPs was an independent prognostic factor in patients with HNSCC.Results: Among the top 10 most up-regulated genes in HNSCC cancer tissues when compared with normal tissues, six genes belonged to the MMPs. Spearman correlation analysis revealed that only MMP11 and MMP23B were positively correlated with tumor stage. Survival analysis showed that patients with a high expression of MMP14, MMP20, TIMP1, and TIMP4 had a worse prognosis than low expression patients. Additionally, a novel five-gene (MMP3, MMP17, MMP19, MMP24, and TIMP1) signature was constructed and significantly associated with prognosis as an independent prognostic signature.Conclusions: Our data show that the accuracy of a single gene of MMP or TIMP as predictors of progression and prognosis of HNSCC is limited, although some studies have proposed that MMPs act as driving factors for cancer progression. The prediction performance of the five-gene signature prediction model was much better than that of the gene signatures based on every single gene in prognosis prediction.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
- Public Health School of Southeast University, Nanjing, People’s Republic of China
| | - Yan Sun
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Huina Wu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Feng Xiao
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Fengfeng Zhao
- Medical School of Southeast University, Nanjing, People’s Republic of China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Xiaobo Fan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China
- Diagnostics Department, Medical School of Southeast University, Nanjing, People’s Republic of China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
15
|
Rahmati Nezhad P, Riihilä P, Knuutila JS, Viiklepp K, Peltonen S, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14020305. [PMID: 35053469 PMCID: PMC8773783 DOI: 10.3390/cancers14020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The incidence of the most common metastatic skin malignancy, cutaneous squamous cell carcinoma (cSCC), is growing worldwide, and the prognosis of the metastatic disease is poor. Presently, there are no biomarkers or therapeutic targets for high-risk cSCCs. Recent studies have demonstrated the essential role of autocrine complement synthesis in the progression of cSCC. Here, we have evaluated the role of complement Factor D (FD), the rate-limiting enzyme of the alternative complement pathway, in cSCC development. The results identify FD as a novel biomarker and putative therapeutic target for cSCC and propose the small-molecule FD inhibitor Danicopan as a highly specific drug candidate in the therapy of advanced cSCC. It is expected that the discovery of complement-associated molecular markers for cSCC progression would improve diagnosis, classification, prognostication, and targeted therapy of cSCC and its precursors in the future. Abstract Cutaneous squamous cell carcinoma (cSCC) is the most prevalent metastatic skin cancer. Previous studies have demonstrated the autocrine role of complement components in cSCC progression. We have investigated factor D (FD), the key enzyme of the alternative complement pathway, in the development of cSCC. RT-qPCR analysis of cSCC cell lines and normal human epidermal keratinocytes (NHEKs) demonstrated significant up-regulation of FD mRNA in cSCC cells compared to NHEKs. Western blot analysis also showed more abundant FD production by cSCC cell lines. Significantly higher FD mRNA levels were noted in cSCC tumors than in normal skin. Strong tumor cell-associated FD immunolabeling was detected in the invasive margin of human cSCC xenografts. More intense tumor cell-specific immunostaining for FD was seen in the tumor edge in primary and metastatic cSCCs, in metastases, and in recessive dystrophic epidermolysis bullosa-associated cSCCs, compared with cSCC in situ, actinic keratosis and normal skin. FD production by cSCC cells was dependent on p38 mitogen-activated protein kinase activity, and it was induced by interferon-γ and interleukin-1β. Blocking FD activity by Danicopan inhibited activation of extracellular signal-regulated kinase 1/2 and attenuated proliferation of cSCC cells. These results identify FD as a novel putative biomarker and therapeutic target for cSCC progression.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko S. Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| | - Seppo Meri
- Department of Bacteriology and Immunology, The Translational Immunology Research Program, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
16
|
C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2021; 142:1478-1488.e9. [PMID: 34756877 DOI: 10.1016/j.jid.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. Previous studies have demonstrated the role of complement system in cSCC progression. In this study we have investigated the mechanistic role of serine protease C1r, a component of the classical pathway of complement system, in cSCC. Knockout of C1r in cSCC cells using CRISPR/Cas9 resulted in significant decrease in their proliferation, migration, and invasion through collagen type I compared to wild type cSCC cells. Knockout of C1r suppressed growth and vascularization of cSCC xenograft tumors, and promoted apoptosis of tumor cells in vivo. mRNA-seq analysis after C1r knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Extracellular matrix component, Basement membrane, Metalloendopeptidase activity and KEGG pathway Extracellular matrix-receptor interaction. Among the significantly regulated genes were invasion-associated matrix metalloproteinases MMP1, MMP13, MMP10, and MMP12. Knockout of C1r resulted in decreased production of MMP-1, MMP-13, MMP-10, and MMP-12 by cSCC cells in culture. Knockout of C1r inhibited expression of MMP-13 by tumor cells, suppressed invasion, and reduced the amount of degraded collagen in vivo in xenografts. These results provide evidence for the role of C1r in promoting the invasion of cSCC cells by increasing MMP production.
Collapse
|
17
|
A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021; 11:biom11101506. [PMID: 34680139 PMCID: PMC8533820 DOI: 10.3390/biom11101506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Pemphigus and pemphigoid diseases are potentially life-threatening autoimmune blistering disorders that are characterized by intraepithelial and subepithelial blister formation, respectively. In both disease groups, skin and/or mucosal blistering develop as a result of a disruption of intercellular adhesion (pemphigus) and cell-extracellular matrix (ECM) adhesion (pemphigoid). Given that metalloproteinases can target cell adhesion molecules, the purpose of the present study was to investigate the role of these enzymes in the pathogenesis of these bullous dermatoses. Studies examining MMPs (matrix metalloproteinases) and the ADAM (a disintegrin and metalloproteinase) family of proteases in pemphigus and pemphigoid were selected from articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and bioRxiv. Multiple phases of screening were conducted, and relevant data were extracted and tabulated, with 29 articles included in the final qualitative analysis. The majority of the literature investigated the role of specific components of the MMP family primarily in bullous pemphigoid (BP) whereas studies that focused on pemphigus were rarer. The most commonly studied metalloproteinase was MMP-9 followed by MMP-2; other MMPs included MMP-1, MMP-3, MMP-8, MMP-12 and MMP-13. Molecules related to MMPs were also included, namely, ADAM5, 8, 10, 15, 17, together with TIMP-1 and TIMP-3. The results demonstrated that ADAM10 and MMP-9 activity is necessary for blister formation in experimental models of pemphigus vulgaris (PV) and BP, respectively. The data linking MMPs to the pathogenesis of experimental BP were relatively strong but the evidence for involvement of metalloproteinases in PV was more tentative. These molecules represent potential candidates for the development of mechanism-based treatments of these blistering diseases.
Collapse
|
18
|
Piipponen M, Riihilä P, Nissinen L, Kähäri VM. The Role of p53 in Progression of Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13184507. [PMID: 34572732 PMCID: PMC8466956 DOI: 10.3390/cancers13184507] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Skin cancers are the most common types of cancer worldwide, and their incidence is increasing. Melanoma, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC) are the three major types of skin cancer. Melanoma originates from melanocytes, whereas BCC and cSCC originate from epidermal keratinocytes and are therefore called keratinocyte carcinomas. Chronic exposure to ultraviolet radiation (UVR) is a common risk factor for skin cancers, but they differ with respect to oncogenic mutational profiles and alterations in cellular signaling pathways. cSCC is the most common metastatic skin cancer, and it is associated with poor prognosis in the advanced stage. An important early event in cSCC development is mutation of the TP53 gene and inactivation of the tumor suppressor function of the tumor protein 53 gene (TP53) in epidermal keratinocytes, which then leads to accumulation of additional oncogenic mutations. Additional genomic and proteomic alterations are required for the progression of premalignant lesion, actinic keratosis, to invasive and metastatic cSCC. Recently, the role of p53 in the invasion of cSCC has also been elucidated. In this review, the role of p53 in the progression of cSCC and as potential new therapeutic target for cSCC will be discussed.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Center for Molecular Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
19
|
Identification of Broad-Spectrum MMP Inhibitors by Virtual Screening. Molecules 2021; 26:molecules26154553. [PMID: 34361703 PMCID: PMC8347235 DOI: 10.3390/molecules26154553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are the family of proteases that are mainly responsible for degrading extracellular matrix (ECM) components. In the skin, the overexpression of MMPs as a result of ultraviolet radiation triggers an imbalance in the ECM turnover in a process called photoaging, which ultimately results in skin wrinkling and premature skin ageing. Therefore, the inhibition of different enzymes of the MMP family at a topical level could have positive implications for photoaging. Considering that the MMP catalytic region is mostly conserved across different enzymes of the MMP family, in this study we aimed to design a virtual screening (VS) workflow to identify broad-spectrum MMP inhibitors that can be used to delay the development of photoaging. Our in silico approach was validated in vitro with 20 VS hits from the Specs library that were not only structurally different from one another but also from known MMP inhibitors. In this bioactivity assay, 18 of the 20 compounds inhibit at least one of the assayed MMPs at 100 μM (with 5 of them showing around 50% inhibition in all the tested MMPs at this concentration). Finally, this VS was used to identify natural products that have the potential to act as broad-spectrum MMP inhibitors and be used as a treatment for photoaging.
Collapse
|
20
|
Tartaglia G, Cao Q, Padron ZM, South AP. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:5104. [PMID: 34065916 PMCID: PMC8151646 DOI: 10.3390/ijms22105104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFβ) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFβ signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Zachary M. Padron
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Rahmati Nezhad P, Riihilä P, Piipponen M, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement factor I upregulates expression of matrix metalloproteinase-13 and -2 and promotes invasion of cutaneous squamous carcinoma cells. Exp Dermatol 2021; 30:1631-1641. [PMID: 33813765 DOI: 10.1111/exd.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing globally. Here, we have studied the functional role of complement factor I (CFI) in the progression of cSCC. CFI was knocked down in cSCC cells, and RNA-seq analysis was performed. Significant downregulation of genes in IPA biofunction categories Proliferation of cells and Growth of malignant tumor, in Gene Ontology (GO) terms Metallopeptidase activity and Extracellular matrix component, as well as Reactome Degradation of extracellular matrix was detected after CFI knockdown. Further analysis of the latter three networks, revealed downregulation of several genes coding for invasion-associated matrix metalloproteinases (MMPs) after CFI knockdown. The downregulation of MMP-13 and MMP-2 was confirmed at mRNA, protein and tissue levels by qRT-qPCR, Western blot and immunohistochemistry, respectively. Knockdown of CFI decreased the invasion of cSCC cells through type I collagen. Overexpression of CFI in cSCC cells resulted in enhanced production of MMP-13 and MMP-2 and increased invasion through type I collagen and Matrigel, and in increased ERK1/2 activation and cell proliferation. Altogether, these findings identify a novel mechanism of action of CFI in upregulation of MMP-13 and MMP-2 expression and cSCC invasion. These results identify CFI as a prospective molecular marker for invasion and metastasis of cSCC.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
22
|
Riihilä P, Nissinen L, Kähäri V. Matrix metalloproteinases in keratinocyte carcinomas. Exp Dermatol 2021; 30:50-61. [PMID: 32869366 PMCID: PMC7821196 DOI: 10.1111/exd.14183] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
The incidence of cutaneous keratinocyte-derived cancers is increasing globally. Basal cell carcinoma (BCC) is the most common malignancy worldwide, and cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. BCC can be classified into subtypes based on the histology, and these subtypes are classified further into low- and high-risk tumors. There is an increasing need to identify new therapeutic strategies for the treatment of unresectable and metastatic cSCC, and for aggressive BCC variants such as infiltrating, basosquamous or morpheaform BCCs. The most important risk factor for BCC and cSCC is solar UV radiation, which causes genetic and epigenetic alterations in keratinocytes. Similar gene mutations are noted already in sun-exposed normal skin emphasizing the role of the alterations in the tumor microenvironment in the progression of cSCC. Early events in cSCC progression are alterations in the composition of basement membrane and dermal extracellular matrix induced by influx of microbes, inflammatory cells and activated stromal fibroblasts. Activated fibroblasts promote inflammation and produce growth factors and proteolytic enzymes, including matrix metalloproteinases (MMPs). Transforming growth factor-β produced by tumor cells and fibroblasts induces the expression of MMPs by cSCC cells and promotes their invasion. Fibroblast-derived keratinocyte growth factor suppresses the malignant phenotype of cSCC cells by inhibiting the expression of several MMPs. These findings emphasize the importance of interplay of tumor and stromal cells in the progression of cSCC and BCC and suggest tumor microenvironment as a therapeutic target in cSCC and aggressive subtypes of BCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Liisa Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Veli‐Matti Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalTurkuFinland
- FICAN West Cancer Centre Research LaboratoryUniversity of Turku and Turku University HospitalTurkuFinland
| |
Collapse
|
23
|
Plikus MV, Krieg T. More than just bricks and mortar: Fibroblasts and ECM in skin health and disease. Exp Dermatol 2021; 30:4-9. [PMID: 33349992 PMCID: PMC9911308 DOI: 10.1111/exd.14257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| |
Collapse
|