1
|
Rong ZJ, Chen M, Cai HH, Liu GH, Chen JB, Wang H, Zhang ZW, Huang YL, Ni SF. Ursolic acid molecules dock MAPK1 to modulate gut microbiota diversity to reduce neuropathic pain. Neuropharmacology 2024; 252:109939. [PMID: 38570065 DOI: 10.1016/j.neuropharm.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jin-Biao Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Zhi-Wen Zhang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yu-Liang Huang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| | - Shuang-Fei Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Khan J, Ali G, Saeed A, Khurshid A, Ahmad S, Kashtoh H, Ataya FS, Bathiha GES, Ullah A, Khan A. Efficacy assessment of novel methanimine derivatives in chronic constriction injury-induced neuropathic model: An in-vivo, ex-vivo and In-Silico approach. Eur J Pharm Sci 2024; 198:106797. [PMID: 38735401 DOI: 10.1016/j.ejps.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4‑chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4‑chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar 25000, Pakistan
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Korea.
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gaber El-Saber Bathiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheria, Egypt
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi PO Box 20316, United Arab Emirates
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
3
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
4
|
Rong ZJ, Cai HH, Wang H, Liu GH, Zhang ZW, Chen M, Huang YL. Ursolic Acid Ameliorates Spinal Cord Injury in Mice by Regulating Gut Microbiota and Metabolic Changes. Front Cell Neurosci 2022; 16:872935. [PMID: 35602557 PMCID: PMC9115468 DOI: 10.3389/fncel.2022.872935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 02/02/2023] Open
Abstract
Background: Spinal cord injury (SCI) damages the autonomic nervous system and affects the homeostasis of gut microbiota. Ursolic acid (UA) is a candidate drug for treating nervous system injury due to its neuroprotective and antioxidant functions. The purpose of our study was to investigate the role of UA on SCI and its mechanism. Methods: UA was administered to SCI mice and the solvent corn oil was used as control. The weight of the mice was recorded daily. Mice feces were collected 21 days after surgery for 16S rRNA-amplicon sequencing and untargeted metabolomics analysis. The expressions of NF-κB, IL-1β, and TNF-α in the spinal cord and colon tissues of mice were detected by Western blot and Enzyme-linked immunosorbent assay, respectively. Immunohistochemistry was used to analyze the expression of NeuN, NF-200, and synapsin in the spinal cord tissues. Results: UA treatment increased body weight and soleus muscle weight of SCI mice. UA treatment inhibited inflammatory response and protected neuronal activity in SCI mice. UA improved the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, and Alloprevotell genus in the gut tract of SCI mice. SCI destroyed the Glutamine_and_D-glutamate_metabolism, Nitrogen_metabolism, Aminoacyl-tRNA_biosynthesis, and Taurine_and_hypotaurine_metabolism in the gut of mice, which might be alleviated by UA. Conclusions: UA treatment could inhibit SCI progression by improving the gut environment and metabolic changes, promoting synaptic regeneration and anti-inflammatory effects.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhi-Wen Zhang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| | - Yu-Liang Huang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| |
Collapse
|
5
|
Neerati P, Prathapagiri H. Alpha lipoic acid attenuated neuropathic pain induced by chronic constriction Injury of sciatic nerve in rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00263-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard.
Methodology
The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies.
Results
ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect.
Conclusion
Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.
Collapse
|
6
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
7
|
Quiñonez-Bastidas GN, Navarrete A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050865. [PMID: 33923101 PMCID: PMC8145628 DOI: 10.3390/plants10050865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/17/2023]
Abstract
Despite the availability of many anti-pain drugs, in the form of NSAIDs, steroids, gabapentinoids, opioids, and antidepressants, in this study we address the natural compounds belonging to the group of Mexican medicinal plants or "Mexican folk medicine", used for pain management in Mexico. Our interest in this subject is due to the growing idea that "natural is harmless" and to the large number of side effects exhibited in pharmacotherapy. The objective of this review was to document the scientific evidence about Mexican medicinal plants and their derivatives used for inflammatory and neuropathic pain treatment, as well as the mechanisms of action implicated in their antinociceptive effects, their possible adverse effects, and the main pharmacological aspects of each plant or compound. Our data review suggested that most studies on Mexican medicinal plants have used inflammatory experimental models for testing. The anti-pain properties exerted by medicinal plants lack adverse effects, and their toxicological assays report that they are safe to consume; therefore, more studies should be performed on preclinical neuropathic pain models. Moreover, there is no convincing evidence about the possible mechanisms of action involved in the anti-pain properties exerted by Mexican plants. Therefore, the isolation and pharmacological characterization of these plant derivatives' compounds will be important in the design of future preclinical studies.
Collapse
Affiliation(s)
| | - Andrés Navarrete
- Correspondence: (G.N.Q.-B.); (A.N.); Tel.: +52-5556225291 (A.N.)
| |
Collapse
|
8
|
Shahid M, Subhan F, Islam NU, Ahmad N, Farooq U, Abbas S, Akbar S, Ullah I, Raziq N, Din ZU. The antioxidant N-(2-mercaptopropionyl)-glycine (tiopronin) attenuates expression of neuropathic allodynia and hyperalgesia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:603-617. [PMID: 33079239 DOI: 10.1007/s00210-020-01995-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The current pharmacotherapy of neuropathic pain is inadequate as neuropathic pain involves varied clinical manifestations with multifactorial etiology, modulated by a cascade of physical and molecular events leading to different clinical presentations of pain. There is an accumulating evidence of the involvement of oxidative stress in neuropathy, and antioxidants have shown promise in mitigating neuropathic pain syndromes. To explore the evidence supporting this beneficial proclivity of antioxidants, this study investigated the antinociceptive effectiveness of N-(2-mercaptopropionyl)glycine or tiopronin, a well-recognized aminothiol antioxidant, in a refined chronic constriction injury (CCI) rat model of neuropathic pain. Tiopronin (10, 30, and 90 mg/kg, i.p.) and pregabalin (30 mg/kg, i.p.) were administered daily after CCI surgery. The neuropathic paradigms of mechanical/cold allodynia and mechanical/heat hyperalgesia were assessed on days 3, 7, 14, and 21 post-nerve ligation. At the end of study, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were estimated in the sciatic nerve, dorsal root ganglion, and spinal cord for assessing the extent of oxidative stress. The expression of neuropathic nociception was attenuated by tiopronin which was observed as a significant attenuation of CCI-induced allodynia and hyperalgesia. Tiopronin reversed the neuronal oxidative stress by significantly reducing MDA, and increasing SOD, CAT, and GSH levels. Pregabalin also showed similar beneficial propensity on CCI-induced neuropathic aberrations. These findings suggest prospective neuropathic pain attenuating efficacy of tiopronin and further corroborated the notion that antioxidants are effective in mitigating the development and expression of neuropathic pain and underlying neuronal oxidative stress.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Nisar Ahmad
- Faculty of Pharmacy, National University of Pakistan, Sialkot, Punjab, Pakistan
| | - Umar Farooq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Sudhair Abbas
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Naila Raziq
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zia Ud Din
- Department of Anatomy, Khyber Medical College, Peshawar, Pakistan
| |
Collapse
|
9
|
Wang C, Chen P, Lin D, Chen Y, Lv B, Zheng K, Lin X, Wu Z. Effects of varying degrees of ligation in a neuropathic pain model induced by chronic constriction injury. Life Sci 2021; 276:119441. [PMID: 33794257 DOI: 10.1016/j.lfs.2021.119441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM Ligature tightness of chronic constriction injury (CCI) model remains inconsistent and controversial, presenting barriers for researchers. METHODS We summarized the different ligation criteria in literature and attempted to clarify their effects. To assess constriction under different criteria, we calculated the radial strain (εR) of ligated nerves from digital photographs. The mechanical withdrawal thresholds (MWT), thermal withdrawal latency (TWL) and sciatic functional index (SFI) were observed in rats of different groups to assess the state of model. Changes of myelin sheath were detected by pathological staining and immunohistochemistry. RESULTS The median εR values in the Loose, Medium and Tight groups were 13.6%, 15.2% and 21.7%, respectively. Ligated groups had lower MWT than Sham group and the TWL of rats in the Loose approached to rats with sham operation, while that of the Tight group was higher than Medium group 14 days after surgery. Medium and Tight groups showed more abnormal in SFI, compared with the other two groups 14 days. Pathological staining revealed demyelination in three CCI groups, especially in the sciatic nerves. Myelin protein zero levels decreased in the sciatic nerves as the degree of constriction increased, but myelin basic protein of the Medium group was lowest abundant in the spinal cords of all rats. CONCLUSIONS Our study demonstrated that the surrounding muscles briefly twitched when the diameter of the sciatic nerves was constricted by approximately 14-15%, which may provide a reference for other researchers for establishing CCI models.
Collapse
Affiliation(s)
- Chen Wang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Dongsheng Lin
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Baojiang Lv
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kenan Zheng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingdong Lin
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhibing Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Nagayasu M, Imanaka S, Kimura M, Maruyama S, Kobayashi H. Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance. Gynecol Obstet Invest 2021; 86:1-12. [PMID: 33395684 DOI: 10.1159/000512628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.
Collapse
Affiliation(s)
- Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sachiyo Maruyama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan, .,Ms.Clinic MayOne, Kashihara, Japan,
| |
Collapse
|
11
|
Salman I, Fakhoury M, Fouani M, Lawand N. Peripheral Anti-nociceptive and Anti-inflammatory Effect of Oleanolic Acid in a Rat Model of Osteoarthritis. Antiinflamm Antiallergy Agents Med Chem 2020; 20:239-249. [PMID: 33183210 DOI: 10.2174/1871523019999201111191754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oleanolic acid (OA) is a naturally occurring pentacyclic triterpenoid with multifarious actions. Chief among them is the anti-inflammatory effect it exerts when taken orally; however, the underpinning mechanisms of such effects have not yet been fully explored. METHODS In the present study, we evaluated the anti-inflammatory and anti-nociceptive effect of OA by injecting it directly into the knee joint using an animal model of osteoarthritis. Behavioral and electrophysiological studies were conducted to determine whether OA exerts a direct modulatory effect on primary sensory afferents that could lead to a decrease in pain-related behaviors and inflammatory responses. Rats were divided into two main groups: a pre- and a post-treatment group. Knee joint inflammation was induced by injecting a mixture of 3% kaolin and carrageenan (K/C). In the pre-treatment groups, two different doses of OA [5 mg/ml (n=5) and 30 mg/ml (n=4); 0.1 ml per injection] were administered into the synovial cavity of the knee joint before induction of inflammation. In the post-treatment group, rats received only one dose [5 mg/ml (n=5)] of OA after induction of inflammation. RESULTS Results indicate that intra-articular injection of OA improves motor coordination and attenuates nociceptive behav-ior and inflammatory reactions. More importantly, we observed a direct depolarizing action of OA on articular sensory fi-bers, a crucial mechanism that activates descending inhibitory pathways and controls incoming nociceptive signals to the spinal cord. CONCLUSION Overall, our findings suggest that OA can be used as preventive and therapeutic approach for the management of osteoarthritis.
Collapse
Affiliation(s)
- Israa Salman
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon
| | - Marc Fakhoury
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Lebanon
| | - Malak Fouani
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon
| | - Nada Lawand
- Department of anatomy, Cell biology & Physiological Sciences; Faculty of Medicine; American University of Beirut, Beirut,. Lebanon.,Department of Neurology; Faculty of Medicine; American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
13
|
Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. Ursolic acid downregulates thymic stromal lymphopoietin through the blockade of intracellular calcium/caspase‑1/NF‑κB signaling cascade in HMC‑1 cells. Int J Mol Med 2019; 43:2252-2258. [PMID: 30976816 DOI: 10.3892/ijmm.2019.4144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) plays an important role in allergic disorders, including atopic dermatitis and asthma. Ursolic acid (UA) has various pharmacological properties, such as antioxidant, anti‑inflammatory and anticancer. However, the effect of UA on TSLP regulation has not been fully elucidated. The aim of the present study was to analyze how UA regulates the production of TSLP in the human mast cell line HMC‑1. Enzyme‑linked immunosorbent assay, quantitative polymerase chain reaction analysis, western blotting, caspase‑1 assay and fluorescent measurements of intracellular calcium levels were conducted to analyze the regulatory effects of UA. The results revealed that UA inhibited TSLP production and mRNA expression. In addition, UA reduced the activation of nuclear factor‑κB and degradation of IκBα. Caspase‑1 activity was increased by exposure to phorbol myristate acetate plus calcium ionophore, whereas it was reduced by UA. Finally, UA treatment prevented an increase in intracellular calcium levels. These results indicated that UA may be a useful agent for the treatment and/or prevention of atopic and inflammatory diseases, and its effects are likely mediated by TSLP downregulation.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science and Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| |
Collapse
|
14
|
A bioinformatics investigation into the pharmacological mechanisms of the effect of Fufang Danshen on pain based on methodologies of network pharmacology. Sci Rep 2019; 9:5913. [PMID: 30976033 PMCID: PMC6459854 DOI: 10.1038/s41598-019-40694-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Fufang Danshen (FFDS), a Chinese medicine formula widely used in the clinic, has proven therapeutic effects on pain relief. However, the mechanisms of these effects have not been elucidated. Here, we performed a systematic analysis to discover the mechanisms of FFDS in attenuating pain to gain a better understanding of FFDS in the treatment of other diseases accompanied by pain. Relevance analysis showed that Salvia miltiorrhizae was the best studied herb in FFDS. Most compounds in FFDS have good bioavailability, and we collected 223 targets for 35 compounds in FFDS. These targets were significantly enriched in many pathways related to pain and can be classified as signal transduction, endocrine system, nervous system and lipid metabolism. We compared Salvia miltiorrhizae and Panax notoginseng and found that they can significantly affect different pathways. Moreover, ten pain disease proteins and 45 therapeutic targets can be directly targeted by FFDS. All 45 therapeutic targets have direct or indirect connections with pain disease proteins. Forty-six pain disease proteins can be indirectly affected by FFDS, especially through heat shock cognate 71 kDa protein (HSPA8) and transcription factor AP-1 (JUN). A total of 109 targets of FFDS were identified as significant targets.
Collapse
|
15
|
Magar S, Nayak D, Mahajan UB, Patil KR, Shinde SD, Goyal SN, Swaminarayan S, Patil CR, Ojha S, Kundu CN. Ultra-diluted Toxicodendron pubescens attenuates pro-inflammatory cytokines and ROS- mediated neuropathic pain in rats. Sci Rep 2018; 8:13562. [PMID: 30202036 PMCID: PMC6131166 DOI: 10.1038/s41598-018-31971-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the availability of multiple therapeutic agents, the search for novel pain management of neuropathic pain is still a challenge. Oxidative stress and inflammatory signaling are prominently involved in clinical manifestation of neuropathic pain. Toxicodendron pubescens, popularly known as Rhus Tox (RT) is recommended in alternative medicines as an anti-inflammatory and analgesic remedy. Earlier, we reported anti-inflammatory, anti-arthritic and immunomodulatory activities of Rhus Tox. In continuation, we evaluated antinociceptive efficacy of Rhus Tox in the neuropathic pain and delineated its underlying mechanism. Initially, in-vitro assay using LPS-mediated ROS-induced U-87 glioblastoma cells was performed to study the effect of Rhus Tox on reactive oxygen species (ROS), anti-oxidant status and cytokine profile. Rhus Tox decreased oxidative stress and cytokine release with restoration of anti-oxidant systems. Chronic treatment with Rhus Tox ultra dilutions for 14 days ameliorated neuropathic pain revealed as inhibition of cold, warm and mechanical allodynia along with improved motor nerve conduction velocity (MNCV) in constricted nerve. Rhus Tox decreased the oxidative and nitrosative stress by reducing malondialdehyde (MDA) and nitric oxide (NO) content, respectively along with up regulated glutathione (GSH), superoxide dismutase (SOD) and catalase activity in sciatic nerve of rats. Notably, Rhus Tox treatment caused significant reductions in the levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) as compared with CCI-control group. Protective effect of Rhus Tox against CCI-induced sciatic nerve injury in histopathology study was exhibited through maintenance of normal nerve architecture and inhibition of inflammatory changes. Overall, neuroprotective effect of Rhus Tox in CCI-induced neuropathic pain suggests the involvement of anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Shital Magar
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Deepika Nayak
- School of Biotechnology, Kalinga Institute of Industrial technology (a deemed to be University), Campus-11, Patia, Bhubaneswar, Odisha, Pin-751024, India
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Sachin D Shinde
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule-424001, Dist-Dhule, Maharashtra, India
| | - Shivang Swaminarayan
- Janmangal Homeopathy and Wellness Centre, Bopal, Ahmedabad, Gujarat, 380058, India
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India.
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, UAE University, Al Ain, UAE.
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial technology (a deemed to be University), Campus-11, Patia, Bhubaneswar, Odisha, Pin-751024, India.
| |
Collapse
|
16
|
Nogueira AO, Oliveira YIS, Adjafre BL, de Moraes MEA, Aragão GF. Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: a literature review. Fundam Clin Pharmacol 2018; 33:4-12. [PMID: 30003594 DOI: 10.1111/fcp.12402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023]
Abstract
Protium heptaphyllum Aubl. belongs to the Burseraceae family. It is commonly called 'almecegueira' and is known to produce an amorphous resin which has constituents such as α- and β-amyrin, taraxastan-3-oxo-20-ol and sitostenonein. The α- and β-amyrin from P. heptaphyllum have pharmacological activities in several systems, such as central and peripheral nervous system, gastrointestinal tract and immunological system. In this study, our objective was to review pharmacological activities and to gather more information on the mixture of α- and β-amyrin obtained from P. heptaphyllum to guide future preclinical and clinical studies using this compound. This review consisted of searches performed using scientific databases such as PubMed, SciELO, LILACS, SciFinder and Science Direct. Some uses of α- and β-amyrin have been partially confirmed by previous studies demonstrating analgesic, anti-inflammatory, anticonvulsant, antidepressive, gastroprotective, hepatoprotective, antipancreatitic, anticholytic, antihyperglycemic and hypolipidemic effects. It is noteworthy that there are no α- and β-amirin toxicity tests described in the literature as recommended in the international guidelines, and such tests are one of the research stages to proceed in clinical and preclinical trials if this compound was to be used.
Collapse
Affiliation(s)
- Amaurilio O Nogueira
- Drug Discovery and Developmente Center, Federal University of Ceara, St. Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil, 60430-275.,Higher Institute of Biomedical Sciences, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, Brazil, 60741-000
| | - Yasmin Ingrid S Oliveira
- Drug Discovery and Developmente Center, Federal University of Ceara, St. Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil, 60430-275
| | - Beatriz L Adjafre
- Higher Institute of Biomedical Sciences, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, Brazil, 60741-000
| | - Maria E Amaral de Moraes
- Drug Discovery and Developmente Center, Federal University of Ceara, St. Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil, 60430-275
| | - Gislei F Aragão
- Drug Discovery and Developmente Center, Federal University of Ceara, St. Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil, 60430-275.,Medicine Course, State University of Ceara, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, Brazil, 60741-000
| |
Collapse
|
17
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Nieoczym D, Socała K, Wlaź P. Assessment of the Anticonvulsant Potency of Ursolic Acid in Seizure Threshold Tests in Mice. Neurochem Res 2018; 43:995-1002. [PMID: 29541930 PMCID: PMC5949134 DOI: 10.1007/s11064-018-2505-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
19
|
Thakur R, Sharma A, Lingaraju MC, Begum J, Kumar D, Mathesh K, Kumar P, Singh TU, Kumar D. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats. Biomed Pharmacother 2018; 101:972-980. [PMID: 29635907 DOI: 10.1016/j.biopha.2018.02.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD.
Collapse
Affiliation(s)
- Richa Thakur
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Anshuk Sharma
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Jubeda Begum
- Department of Veterinary Microbiology, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263153, UK, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Pawan Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
20
|
Riffel APK, Santos MCQ, de Souza JA, Scheid T, Horst A, Kolberg C, Belló-Klein A, Partata WA. Treatment with ascorbic acid and α-tocopherol modulates oxidative-stress markers in the spinal cord of rats with neuropathic pain. ACTA ACUST UNITED AC 2018. [PMID: 29513797 PMCID: PMC5856434 DOI: 10.1590/1414-431x20177097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin E (vit. E) and vitamin C (vit. C) are antioxidants that inhibit nociception. The effect of these vitamins on oxidative-stress markers in the spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve is unknown. This study investigated the effect of intraperitoneal administration of vit. E (15 mg·kg-1·day-1) and vit. C (30 mg·kg-1·day-1), given alone or in combination, on spinal cord oxidative-stress markers in CCI rats. Adult male Wistar rats weighing 200-250 g were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received injections of vitamins or vehicle (saline containing 1% Tween 80) for 3 or 10 days (n=6/each group). The vitamins prevented the reduction in total thiol content and the increase in superoxide-anion generation that were found in vehicle-treated CCI rats. While nitric-oxide metabolites increased in vehicle-treated CCI rats 3 days after surgery, these metabolites did not show significant changes in vitamin-treated CCI rats. In all rats, total antioxidant capacity and hydrogen-peroxide levels did not change significantly. Lipid hydroperoxides increased 25% only in vehicle-treated CCI rats. These changes may contribute to vit. C- and vit. E-induced antinociception, because scavenging reactive oxygen species seems to help normalize the spinal cord oxidative status altered by pain.
Collapse
Affiliation(s)
- A P K Riffel
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - J A de Souza
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Scheid
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A Horst
- UNIVATES, Lajeado, RS, Brasil
| | - C Kolberg
- Centro Universitário da Serra Gaúcha, Caxias do Sul, RS, Brasil
| | - A Belló-Klein
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
21
|
Horst A, de Souza JA, Santos MCQ, Riffel APK, Kolberg C, Partata WA. Effects of N-acetylcysteine on spinal cord oxidative stress biomarkers in rats with neuropathic pain. ACTA ACUST UNITED AC 2017; 50:e6533. [PMID: 29069230 PMCID: PMC5649872 DOI: 10.1590/1414-431x20176533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
N-acetylcysteine (NAC) inhibits nociceptive transmission. This effect has been associated partly with its antioxidant properties. However, the effect of NAC on the levels of lipid hydroperoxides (a pro-oxidant marker), content of ascorbic acid (a key antioxidant molecule of nervous tissue) and total antioxidant capacity (TAC) is unknown. Thus, our study assessed these parameters in the lumbosacral spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve, one of the most commonly employed animal models of neuropathic pain. Thirty-six male Wistar rats weighing 200–300 g were equally divided into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve). All rats received intraperitoneal injections of NAC (150 mg·kg−1·day−1) or saline for 1, 3, or 7 days. Rats were killed 1, 3, and 7 days after surgery. NAC treatment prevented the CCI-induced increase in lipid hydroperoxide levels only at day 1, although the amount was higher than that found in naive rats. NAC treatment also prevented the CCI-induced increase in ascorbic acid content, which occurred at days 1, 3, and 7. No significant change was found in TAC with NAC treatment. The changes observed here may be related to the antinociceptive effect of NAC because modulation of oxidative-stress parameters seemed to help normalize the spinal cord oxidative status altered by pain.
Collapse
Affiliation(s)
- A Horst
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Univates, Lajeado, RS, Brasil
| | - J A de Souza
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A P K Riffel
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|