1
|
Sun Q, Tang H, Zhu H, Liu Y, Zhang M, Che C, Xiang B, Wang S. Single-cell transcriptome analysis reveals the regulatory functions of islet exocrine cells after short-time obesogenic diet. Endocrine 2024; 86:204-214. [PMID: 38806892 DOI: 10.1007/s12020-024-03883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This study aims to investigate the functions of exocrine islet cell subtypes in the early stage of obesity induced by high-fat diet (HFD), which is accompanied with deterioration of the systemic insulin response and islet subpopulation abnormalities. METHODS In this study, we analyzed published islet single-cell RNA sequencing (scRNA-seq) datasets from the early stage induced by HFD feeding. Bioinformatics tools such as findMarkers, Cellchat, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) terms were applied to identify the different functions of exocrine cell clusters. RESULTS A total of 26 cell clusters were obtained were identified from this dietary intervention model. Most proportions of cell subtypes were consistent between high-fat diet (HFD) and low-fat diet (LFD) groups, except for partial endocrine islet clusters and exocrine clusters. Most differentiated expression of genes in the HFD group was found in exocrine cluster. And we also found that the cell-cell interactions between ductal and endothelial cells were reduced in the HFD group, with the significant alteration in C17 (ductal) cluster. By further analyzing the co-expression regulatory network of transcription in the C17 cluster, we speculate that differentially expressed transcription factors affected the function of duct cells by affecting the expression of related genes in intercellular interaction networks, thereby promoting insulin resistance (IR) development. CONCLUSION Our results provide a reference for the function and regulatory mechanisms of exocrine cells in the obesity induced by HFD and probably influence the process of following insulin resistance.
Collapse
Affiliation(s)
- Qianqian Sun
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huiyu Tang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huan Zhu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yanyan Liu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenghang Che
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Bing Xiang
- Department of Hematology, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Liu N, Ji Y, Liu R, Jin X. The state of astragaloside IV research: A bibliometric and visualized analysis. Fundam Clin Pharmacol 2024; 38:208-224. [PMID: 37700611 DOI: 10.1111/fcp.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
3
|
Shang D, Liu H, Tu Z. Pro-inflammatory cytokines mediating senescence of vascular endothelial cells in atherosclerosis. Fundam Clin Pharmacol 2023; 37:928-936. [PMID: 37154136 DOI: 10.1111/fcp.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease, and aging is a major risk factor. The accumulation of senescent vascular endothelial cells (VECs) often leads to chronic inflammation and oxidative stress and induces endothelial dysfunction, contributing to the occurrence and development of AS. Senescent cells can secrete a variety of pro-inflammatory cytokines to induce the senescence of adjacent cells in a paracrine manner, leading to the transmission of signaling of cellular senescence to neighboring cells and the accumulation of senescent cells. Recent studies have demonstrated that several pro-inflammatory cytokines, including IL-17, TNF-α, and IFN-γ, can induce the senescence of VECs. This review summarizes and focuses on the pro-inflammatory cytokines that often induce the senescence of VECs and the molecular mechanisms of these pro-inflammatory cytokines inducing senescence of VECs. Targeting the senescence of VECs induced by pro-inflammatory cytokines may provide a potential and novel strategy for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
John A, Howarth FC, Raza H. Exercise alleviates diabetic complications by inhibiting oxidative stress-mediated signaling cascade and mitochondrial metabolic stress in GK diabetic rat tissues. Front Physiol 2022; 13:1052608. [PMID: 36531176 PMCID: PMC9751475 DOI: 10.3389/fphys.2022.1052608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Type 2 diabetes, obesity (referred to as "diabesity"), and metabolic syndrome associated with increased insulin resistance and/or decreased insulin sensitivity have been implicated with increased oxidative stress and inflammation, mitochondrial dysfunction, and alterations in energy metabolism. The precise molecular mechanisms of these complications, however, remain to be clarified. Owing to the limitations and off-target side effects of antidiabetic drugs, exercise-induced control of hyperglycemia and increased insulin sensitivity is a preferred strategy to manage "diabesity" associated complications. In this study, we have investigated the effects of moderate exercise (1 h/day, 5 days a week for 60 days) on mitochondrial, metabolic, and oxidative stress-related changes in the liver and kidney of type 2 diabetic Goto-Kakizaki (GK) rats. Our previous study, using the same exercise regimen, demonstrated improved energy metabolism and mitochondrial function in the pancreas of GK diabetic rats. Our current study demonstrates exercise-induced inhibition of ROS production and NADPH oxidase enzyme activity, as well as lipid peroxidation and protein carbonylation in the liver and kidney of GK rats. Interestingly, glutathione (GSH) content and GSH-peroxidase and GSH reductase enzymes as well as superoxide dismutase (SOD) activities were profoundly altered in diabetic rat tissues. Exercise helped in restoring the altered GSH metabolism and antioxidant homeostasis. An increase in cytosolic glycolytic enzyme, hexokinase, and a decrease in mitochondrial Kreb's cycle enzyme was observed in GK diabetic rat tissues. Exercise helped restore the altered energy metabolism. A significant decrease in the activities of mitochondrial complexes and ATP content was also observed in the GK rats and exercise regulated the activities of the respiratory complexes and improved energy utilization. Activation of cytochrome P450s, CYP 2E1, and CYP 3A4 was observed in the tissues of GK rats, which recovered after exercise. Altered expression of redox-responsive proteins and translocation of transcription factor NFκB-p65, accompanied by activation of AMP-activated protein kinase (AMPK), SIRT-1, Glut-4, and PPAR-γ suggests the induction of antioxidant defense responses and increased energy metabolism in GK diabetic rats after exercise.
Collapse
Affiliation(s)
- Annie John
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Haider Raza
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Haider Raza,
| |
Collapse
|
5
|
Nihad M, Shenoy P S, Bose B. Cell therapy research for Diabetes: Pancreatic β cell differentiation from pluripotent stem cells. Diabetes Res Clin Pract 2021; 181:109084. [PMID: 34673084 DOI: 10.1016/j.diabres.2021.109084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (PSCs), both embryonic and induced pluripotent stem cells (iPSCs), have been differentiated into pancreatic β isletsin vitrofor more than a decade. The idea is to get enough β cells for cell transplantation for diabetics. Finding a standard cell therapy for diabetes is essential because of the logarithmic increase in the global population of people with diabetes and the insufficient availability of the human cadaveric pancreas. Moreover, with better insights into developmental biology, thein vitroβ cell differentiation protocols have depended on thein vivoβ cell organogenesis. Various protocols for pancreatic β cell differentiation have been developed. Such protocols are based on the modulation of cell signalling pathways with growth factors, small molecules, RNAi approaches, directed differentiation using transcription factors, genome editing. Growth factor free differentiation protocols, epigenetic modulations, 3D differentiation approaches, and encapsulation strategies have also been reported for better glycemic control and endocrine modulations. Here, we have reviewed various aforementionedin vitroβ cell differentiation protocols from human PSCs, their respective comparisons, challenges, past, present, and future. The literature has been reviewed primarily from PubMed from the year 2000 till date using the mentioned keywords.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India.
| |
Collapse
|
6
|
Romero A, Eckel J. Organ Crosstalk and the Modulation of Insulin Signaling. Cells 2021; 10:cells10082082. [PMID: 34440850 PMCID: PMC8394808 DOI: 10.3390/cells10082082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
A highly complex network of organ communication plays a key role in regulating metabolic homeostasis, specifically due to the modulation of the insulin signaling machinery. As a paradigm, the role of adipose tissue in organ crosstalk has been extensively investigated, but tissues such as muscles and the liver are equally important players in this scenario. Perturbation of organ crosstalk is a hallmark of insulin resistance, emphasizing the importance of crosstalk molecules in the modulation of insulin signaling, potentially leading to defects in insulin action. Classically secreted proteins are major crosstalk molecules and are able to affect insulin signaling in both directions. In this review, we aim to focus on some crosstalk mediators with an impact on the early steps of insulin signaling. In addition, we also summarize the current knowledge on the role of extracellular vesicles in relation to insulin signaling, a more recently discovered additional component of organ crosstalk. Finally, an attempt will be made to identify inter-connections between these two pathways of organ crosstalk and the potential impact on the insulin signaling network.
Collapse
|