1
|
Penfield J, Zhang L. Interaction and dynamics of chemokine receptor CXCR4 binding with CXCL12 and hBD-3. Commun Chem 2024; 7:205. [PMID: 39271963 PMCID: PMC11399392 DOI: 10.1038/s42004-024-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Chemokine receptor CXCR4 is involved in diverse diseases. A comparative study was conducted on CXCR4 embedded in a POPC lipid bilayer binding with CXCL12 in full and truncated forms, hBD-3 in wildtype, analog, and mutant forms based on in total 63 µs all-atom MD simulations. The initial binding structures of CXCR4 with ligands were predicted using HADDOCK docking or random-seed method, then μs-long simulations were performed to refine the structures. CXCR4&ligand binding structures predicted agree with available literature data. Both kinds of ligands bind stably to the N-terminus, extracellular loop 2 (ECL2), and ECL3 regions of CXCR4; the C2-C3 (K32-R38) region and occasionally the head of hBD-3 bind stably with CXCR4. hBD-3 analogs with Cys11-Cys40 disulfide bond can activate CXCR4 based on the Helix3-Helix6 distance calculation, but not other analogs or mutant. The results provide insight into understanding the dynamics and activation mechanism of CXCR4 receptor binding with different ligands.
Collapse
Affiliation(s)
- Jackson Penfield
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
2
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
3
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Brewer A, Zhang L. Binding free energy calculation of human beta defensin 3 with negatively charged lipid bilayer using free energy perturbation method. Biophys Chem 2021; 277:106662. [PMID: 34399250 DOI: 10.1016/j.bpc.2021.106662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Human β defensin type 3 (hBD-3) is a cationic peptide having strong antimicrobial activities even at high salt concentrations. The conserved sequence is believed to contribute to its unique antibacterial activities. To design novel drugs based on hBD-3, predicting the binding free energy contribution of each residue on hBD-3 with bacterial membrane is important. Firstly, the stable binding structure of hBD-3 dimer in analog form bound on POPG lipid bilayer was predicted using NAMD simulations, which was confirmed by RMSD, buried surface area, hydrogen bonds, distance map, and insertion depth map calculations. Then, free energy perturbation (FEP) method was applied to calculate the binding free energy of each residue by mutating it into Alanine. It was found that the positively charged residues on the tail region of hBD-3 contribute significantly to its binding with membrane. The result emphasized the importance of electrostatic interactions to hBD-3's binding with bacterial membrane.
Collapse
Affiliation(s)
- Ann Brewer
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN 38505, United States of America
| | - Liqun Zhang
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN 38505, United States of America.
| |
Collapse
|
5
|
Zhang L. Interaction of Human β Defensin Type 3 (hBD-3) with Different PIP2-Containing Membranes, a Molecular Dynamics Simulation Study. J Chem Inf Model 2021; 61:4670-4686. [PMID: 34473496 DOI: 10.1021/acs.jcim.1c00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human β defensin type 3 (hBD-3) is a cysteine-rich small antibacterial peptide. It belongs to the human innate immune system. hBD-3 has six cysteine residues, which form three pairs of disulfide bonds, and those bonds break in the reducing condition. It is known that hBD-3 can interact with bacterial membrane, and even eukaryotic cell membrane, which has a low concentration of phosphatidylinositol 4,5-bisphosphate (PIP2) lipids. PIP2 is a vital component in cell membranes and has been found to play important roles during antimicrobial peptide (AMP) interaction with membranes. To understand the functional mechanism of hBD-3 interacting with PIP2-containing membranes, the binding structures of hBD-3 on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers mixed with 10% of PIP2 were predicted using two kinds of methods. The first one is by placing the hBD-3 monomer in different orientations above the POPC + 10%PIP2 membrane to set up five different initial simulation systems and performing long-term simulations on each to predict the most stable binding structure. It was found that hBD-3 analogue binds on the mixed lipid membrane on the two loop regions. The second method is by running long-term simulations on one or nine hBD-3 dimers binding on POPC mixed with 10%PIP2 lipid bilayer starting from the solid-state NMR (ssNMR)-suggested orientation. The dimer dissociated, and the most stable binding of hBD-3 in wild-type on the mixed membrane is also through the two loop regions, which agrees with the prediction from both the first method and the lipid self-assembly result. The PIP2 lipids can form long-lasting hydrogen bonds with positively charged residues such as Arg and Lys on hBD-3, thus forming clusters with hBD-3. As a comparison, hBD-3 dimers binding with a combined bilayer having 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphoserine (POPS) on the upper and POPC on the lower leaflets and the combined POPS + POPC bilayer mixing with 10%PIP2 were also studied. The long-term simulation result shows that hBD-3 can bind with the heads of negatively charged POPS and PIP2 lipids and form hydrogen bonds. The stable binding sites of hBD-3 on PIP2 or POPS mixed bilayers are still on the two loop regions. On the combined POPS + POPC mixed with 10%PIP2 bilayer, the binding of hBD-3 with PIP2 lipids became less stable and fewer because of the competition of binding with the POPS lipids. Besides that, binding with hBD-3 can decrease the membrane thickness of the POPC + PIP2, POPS + POPC, and POPS + POPC + PIP2 bilayers and make POPS and PIP2 lipids more flexible based on the order parameter calculations. Our results supply molecular insight on AMP binding with different membranes and can help understand the functional mechanism of hBD-3 disrupting PIP2-containing membranes.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
6
|
Yeasmin R, Brewer A, Fine LR, Zhang L. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers. ACS OMEGA 2021; 6:13926-13939. [PMID: 34095684 PMCID: PMC8173616 DOI: 10.1021/acsomega.1c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Human β defensin type 3 (hBD-3) is a small cationic cysteine-rich peptide. It has a broad spectrum of antimicrobial activities. However, at high concentrations, it also shows hemolytic activity by interrupting red blood cells. To understand the selectivity of hBD-3 disrupting cell membranes, investigating the capability of hBD-3 translocating through different membranes is important. Since hBD-3 in the analogue form in which all three pairs of disulfide bonds are broken has similar antibacterial activities to the wild-type, this project investigates the structure and dynamics of an hBD-3 analogue in monomer, dimer, and tetramer forms through both zwitterionic and negatively charged lipid bilayers using molecular dynamics (MD) simulations. One tetramer structure of hBD-3 was predicted by running all-atom MD simulations on hBD-3 in water at a high concentration, which was found to be stable in water during 400 ns all-atom simulations based on root-mean-squared deviation, root-mean-squared fluctuation, buried surface area, and binding interaction energy calculations. After that, hBD-3 in different forms was placed inside different membranes, and then steered MD simulation was conducted to pull the hBD-3 out of the membrane along the z-direction to generate different configurational windows to set up umbrella-sampling (US) simulations. Because extensive sampling is important to obtain accurate free energy barriers, coarse-grained US MD simulations were performed in each window. Based on the long-term simulation result, membrane thinning was found near hBD-3 in different lipid bilayers and in different hBD-3 oligomer systems. By calculating the root-mean-squared deviation of the z-coordinate of hBD-3 molecules, rotation of the oligomer inside the bilayer and stretching of the oligomer structure along the z-direction were observed. Although reorientation of lipid heads toward the hBD-3 tetramer was observed based on the density profile calculation, the order parameter calculation shows that hBD-3 disrupts 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids more significantly and makes it less ordered than on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Calculating the free energy of hBD-3 through different lipid bilayers, it was found that generally hBD-3 encounters a lower energy barrier through negatively charged lipid membranes than the zwitterionic membrane. hBD-3 in different forms needs to overcome a lower energy barrier crossing the combined POPC+POPS bilayer through the POPS leaflet than through the POPC leaflet. Besides that, the potential of mean force result suggests that hBD-3 forms an oligomer translocating negatively charged lipid membranes at a low concentration. This study supplied new insight into the antibacterial mechanism of hBD-3 through different membranes.
Collapse
|
7
|
Shelley JR, Davidson DJ, Dorin JR. The Dichotomous Responses Driven by β-Defensins. Front Immunol 2020; 11:1176. [PMID: 32595643 PMCID: PMC7304343 DOI: 10.3389/fimmu.2020.01176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Defensins are short, rapidly evolving, cationic antimicrobial host defence peptides with a repertoire of functions, still incompletely realised, that extends beyond direct microbial killing. They are released or secreted at epithelial surfaces, and in some cases, from immune cells in response to infection and inflammation. Defensins have been described as endogenous alarmins, alerting the body to danger and responding to inflammatory signals by promoting both local innate and adaptive systemic immune responses. However, there is now increasing evidence that they exert variable control on the response to danger; creating a dichotomous response that can suppress inflammation in some circumstances but exacerbate the response to danger and damage in others and, at higher levels, lead to a cytotoxic effect. Focussing in this review on human β-defensins, we discuss the evidence for their functions as proinflammatory, immune activators amplifying the response to infection or damage signals and/or as mediators of resolution of damage, contributing to a return to homeostasis. Finally, we consider their involvement in the development of autoimmune diseases.
Collapse
Affiliation(s)
- Jennifer R Shelley
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Donald J Davidson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Julia R Dorin
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| |
Collapse
|
8
|
Zhang L. Disulfide Bonds Affect the Binding Sites of Human β Defensin Type 3 on Negatively Charged Lipid Membranes. J Phys Chem B 2020; 124:2088-2100. [PMID: 32091905 DOI: 10.1021/acs.jpcb.9b10529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human β defensin type 3 (hBD-3) is a small natural antimicrobiotic. It is strongly cationic and has six cysteine residues which can form three pairs of intramolecular disulfide bonds under oxidized condition. Those disulfide bonds can break under reducing condition. However, the antibacterial activities of hBD-3 in its wild-type and analog forms are similar. In this project, the structure and dynamics of hBD-3 were investigated by running simulations on hBD-3 in its wild-type and analog forms in solvent, binding to negatively charged lipid bilayers, and self-assembly with POPG lipids. It was found that the RMSFs of hBD-3 in both its wild-type and analog forms are similar in solvent, while they are very diverse depending on the binding sites of hBD-3 with negatively charged bilayers. Calculating both the distance map and insertion depths for 18 hBD-3 molecules binding on the POPG bilayer, hBD-3 in its analog form binds stably with the POPG bilayer through the head and loop regions, while hBD-3 wild-type binds with the POPG bilayer on the two loop regions stably. hBD-3 analog caused membrane thinning and disrupted the POPG lipids more significantly than the wildtype. Based on the self-assembly simulations, hBD-3 monomer can bind with and embed inside the negatively charged POPG lipid membrane and have more contacts with the POPG lipid heads than with tails. The current work emphasized the structural diversity of hBD-3 interacting with negatively charged lipid membrane affected by the disulfide bonding states.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
9
|
Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020; 295:850-867. [PMID: 31811089 PMCID: PMC6970916 DOI: 10.1074/jbc.ra119.009716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/17/2019] [Indexed: 01/07/2023] Open
Abstract
Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Pascal Winkler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Priscila Bourilhon
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Zhangping Xiao
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Robbert Cool
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Frank J. Dekker
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany, To whom correspondence may be addressed:
Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany. Tel.:
49-241-80-26655; Fax:
49-241-80-22637; E-mail:
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany, To whom correspondence may be addressed:
Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU) Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany. Tel.:
49-89-4400–46151; Fax:
49-89-4400–46010; E-mail:
| |
Collapse
|
10
|
Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Chen L, Lv Z, Gao Z, Ge G, Wang X, Zhou J, Sheng Q. Human β-defensin-3 reduces excessive autophagy in intestinal epithelial cells and in experimental necrotizing enterocolitis. Sci Rep 2019; 9:19890. [PMID: 31882811 PMCID: PMC6934505 DOI: 10.1038/s41598-019-56535-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of mortality in preterm newborns. Intestinal barrier dysfunction is one key event in NEC pathogenesis. Human β-defensin-3 (hBD3), one member of cationic host defence peptides, was reported to reduce the development of necrotizing enterocolitis in a neonatal rat model. And autophagy was induced in the intestine of human and animals with NEC. We hypothesized that regulation of autophagy might play a critical role in hBD3-mediated protection against NEC injury. Autophagy activity was evaluated both in intestinal epithelial cells and in NEC models. Newborn Sprague-Dawley rats were divided randomly into four groups: Control + NS, Control + rapamycin, NEC + NS, and NEC + hBD3. Body weight, histological score, survival time, enterocyte migration and mucosal barrier were recorded. Our results showed that hBD3 pretreatment could effectively inhibit autophagy activity in cultured IEC-6 and Caco2 enterocytes, and CXCR4 might be involved in hBD3-mediated autophagy suppression. Moreover, hBD3-induced inhibition of autophagy significantly promoted the intestinal epithelial cell migration by wound healing assay and transwell migration assay. In the rat model of NEC, hBD3 could noticeably reduce the expression of autophagy-activated proteins, down-regulate the expression of inflammatory mediators, and promote the mucosal integrity. Our data suggest an additional role of hBD3-mediated protection against intestinal mucosal injury: inhibition of over-activated autophagy in enterocytes.
Collapse
Affiliation(s)
- Liping Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Zhimei Gao
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Guijie Ge
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xueli Wang
- Department of Pathology, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Junmei Zhou
- Department of Central Laboratory, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
12
|
Yeasmin R, Buck M, Weinberg A, Zhang L. Translocation of Human β Defensin Type 3 through a Neutrally Charged Lipid Membrane: A Free Energy Study. J Phys Chem B 2018; 122:11883-11894. [DOI: 10.1021/acs.jpcb.8b08285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rabeta Yeasmin
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | | | | | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
13
|
Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018; 8:5171. [PMID: 29581527 PMCID: PMC5979958 DOI: 10.1038/s41598-018-23554-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
MIF is a chemokine-like cytokine that plays a role in the pathogenesis of inflammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like-loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identified allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure-activity-relationships, and molecular docking, we identified the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4-specific signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR-mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface. Identification of the RLR region adds important structural information to the MIF/CXCR4 binding-site that distinguishes this interface from CXCR4/CXCL12 and will help to design MIF-specific drug-targeting approaches.
Collapse
|
14
|
Abstract
α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Karina Diaz
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
15
|
Corleis B, Lisanti AC, Körner C, Schiff AE, Rosenberg ES, Allen TM, Altfeld M, Kwon DS. Early type I Interferon response induces upregulation of human β-defensin 1 during acute HIV-1 infection. PLoS One 2017; 12:e0173161. [PMID: 28253319 PMCID: PMC5333889 DOI: 10.1371/journal.pone.0173161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
HIV-1 is able to evade innate antiviral responses during acute infection to establish a chronic systemic infection which, in the absence of antiretroviral therapy (ART), typically progresses to severe immunodeficiency. Understanding these early innate immune responses against HIV-1 and their mechanisms of failure is relevant to the development of interventions to better prevent HIV-1 transmission. Human beta defensins (HBDs) are antibacterial peptides but have recently also been associated with control of viral replication. HBD1 and 2 are expressed in PBMCs as well as intestinal tissue, but their expression in vivo during HIV-1 infection has not been characterized. We demonstrate that during acute HIV-1 infection, HBD1 but not HBD2 is highly upregulated in circulating monocytes but returns to baseline levels during chronic infection. HBD1 expression in monocytes can be induced by HIV-1 in vitro, although direct infection may not entirely account for the increase in HBD1 during acute infection. We provide evidence that HIV-1 triggers antiviral IFN-α responses, which act as a potent inducer of HBD1. Our results show the first characterization of induction of an HBD during acute and chronic viral infection in humans. HBD1 has been reported to have low activity against HIV-1 compared to other defensins, suggesting that in vivo induced defensins may not significantly contribute to the robust early antiviral response against HIV-1. These data provide important insight into the in vivo kinetics of HBD expression, the mechanism of HBD1 induction by HIV-1, and the role of HBDs in the early innate response to HIV-1 during acute infection.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonella C. Lisanti
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail E. Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric S. Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Phan TK, Lay FT, Poon IKH, Hinds MG, Kvansakul M, Hulett MD. Human β-defensin 3 contains an oncolytic motif that binds PI(4,5)P2 to mediate tumour cell permeabilisation. Oncotarget 2016; 7:2054-69. [PMID: 26657293 PMCID: PMC4811302 DOI: 10.18632/oncotarget.6520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022] Open
Abstract
Cationic antimicrobial peptides (CAPs), including taxonomically diverse defensins, are innate defense molecules that display potent antimicrobial and immunomodulatory activities. Specific CAPs have also been shown to possess anticancer activities; however, their mechanisms of action are not well defined. Recently, the plant defensin NaD1 was shown to induce tumour cell lysis by directly binding to the plasma membrane phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The NaD1–lipid interaction was structurally defined by X-ray crystallography, with the defensin forming a dimer that binds PI(4,5)P2 via its cationic β2-β3 loops in a ‘cationic grip’ conformation. In this study, we show that human β-defensin 3 (HBD-3) contains a homologous β2-β3 loop that binds phosphoinositides. The binding of HBD-3 to PI(4,5)P2 was shown to be critical for mediating cytolysis of tumour cells, suggesting a conserved mechanism of action for defensins across diverse species. These data not only identify an evolutionary conservation of CAP structure and function for lipid binding, but also suggest that PIP-binding CAPs could be exploited for novel multifunction therapeutics.
Collapse
Affiliation(s)
- Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark G Hinds
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
17
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|